Difference between revisions of "Xenopus Genome Project"

From Marcotte Lab
Jump to: navigation, search
(Howto)
(Howto)
Line 28: Line 28:
 
= Howto =
 
= Howto =
 
* [[TXGP_RNAseq_analysis]]  
 
* [[TXGP_RNAseq_analysis]]  
* [[TXGP_Naming_Convention]]
+
* [[TXGP_Data_Description]]
  
 
----
 
----
 
[[Category:XenopusGenome]]
 
[[Category:XenopusGenome]]

Revision as of 12:04, 14 June 2011

Xenopus-PV.jpg

Xenopus laevis is an essential model organism in several areas of biology. In addition to the key attributes of these embryos for in vivo imaging, cell-free extracts from Xenopus provide among the most powerful in vitro systems for studies of cell and molecular biology. A complete sequence of the X. laevis genome is an essential resource for accurate identification of peptides for mass-spec analyses, for cloning of an ORFeome, for identifying evolutionarily conserved regulatory regions, and for design of morpholino-oligonucleotides for gene knockdowns.

The Wallingford and Marcotte labs have obtained funding from the Texas Institute for Drug and Diagnostic Development (TI3D) to begin sequencing of the X. laevis genome. We are primarily working with Scott Hunicke-Smith at the University of Texas Genome Sequencing and Analysis facility, with funding sufficient for ~20x coverage of the X. laevis genome using ABI SOLiD next-generation sequencing. We have started the first runs by sequencing 96 BACs from the CHORI-219 library (vector: pBACGK1.1) at ~100X coverage. The selected BACs include ~70 genes of interest (Shroom3, Wnt5a, Glypican-4, Noggin, Gremlin, Pax6, Formin, etc., as initially identified by the group of Jan-Fang Cheng via probing the CHORI-219 library), as well as 10 BACs that have already been sequenced by the DOE Joint Genome Institute/HudsonAlpha Genome Sequencing Center to serve as positive controls for the sequencing and assembly pipeline. In addition, we are generating several mate pair libraries of different sizes from genomic DNA prepared by Mustafa Khokha from J strain frogs obtained from Jacques Robert, sequencing each to multiple-fold coverage of the genome.

The primary data from this project will be made available as soon as possible for use by the community. We plan to periodically post reports on our progress below.

Contents

Progress Report

SA09023: First test stage of sequencing (Nov/16/2009)

See /XENLA_SA09023 for more details. Three mate paired libraries were sequenced:

  • X_laevis_WG - the X. laevis whole genome library, 5kb insert size - about 4.4GB raw data, 0.4GB high quality data
  • X_laevis_2kb - The set of 96 BACs, with 2kb insert size - about 3.6GB raw data, 0.3GB high quality data
  • X_laevis_5kb - The set of 96 BACs, with 5kb insert size - about 2.8GB raw data, 0.2GB high quality data

This (very roughly) corresponds to >600X coverage by raw data, ~50X coverage by high quality data, of the BAC set.

  • Given that we currently see better mapping of the shotgun SA09023 reads to X. tropicalis than to X. laevis (both to BACs and mRNAs), we're confirming the sample identity before continuing with whole genome sequencing. See the 'sanity check' /Species_Identification for details.

SA10026: Whole genome sequencing

SA11017: First RNA-seq (Apr. 2011)

See /XENLA_SA11017 for more details. This is the test run prior to main 'large-scale' RNA-seq experiment.

  • V3BC04_JA11050Testis: 35M reads. 1.6M reads with no-call.
  • V3BC10_JA11050Heart: 25M reads. 1.1M reads with no-call.
  • V3BC35_JA11049Stomach: 32M reads. 1.5M reads with no-call.

Howto