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DATA SETS  

 

Saccharomyces cerevisiae genome 

This study is based on the verified 5,817 protein encoding open reading frames 

(ORFs) of yeast genome (downloaded from Saccharomyces cerevisiae Genome Database 

(SGD) (1) on August 2003).  All linkages and calculations of genome coverage are based 

on this gene set. 

 

mRNA expression data 

Currently, mRNA expression profiling represents one of the most extensive 

functional genomics data sets, and many such data sets are available in the public 

domain.  Our basic analysis is to measure the co-expression of each pair of genes across 

multiple experimental conditions, from which we infer functional associations between 

pairs of the genes.  Our approach is described in full below, but in general terms, we 

measure the Pearson correlation coefficient across a chosen subset of mRNA expression 

data as an indicator of the strength of functional association in those experiments, and 

record the strongest such expression linkages found between two genes from across a 

bank of distinct experiments.  All expression data are from the Stanford Microarray 
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Database (SMD) (2), currently the most extensive source of publicly available data.  The 

version of SMD downloaded on June 2003 contains a total of 717 experiments for yeast 

divided into 27 experimental categories (see Table S1).  

 

Experimental protein-protein interaction data 

Physical or genetic protein-protein interactions (PPI) reflect functional association of 

the corresponding genes in most, if not all, cases.  PPI evidence from various small-scale 

experiments were collected from the Database of Interacting Proteins (DIP) (downloaded 

on March 2003) (3).  The other PPI evidence is from large-scale experiments, 

specifically, mass spectrometry analysis for co-precipitated protein complexes (4, 5), 

high throughput yeast two hybrid (Y2H) assays (6-8), and high-throughput synthetic 

lethal (SL) screens (9).  

 

Gene context data 

With the many genome sequencing projects, genome sequences themselves represent 

a large source of data from which we can infer functional linkages for pairs of genes.  

There are several different algorithms that show reasonable performance, and in this 

study, we use two different genome sequence analyses: the method of phylogenetic 

profiling (PG) (10-12), and the Rosetta Stone protein (RS) (or gene-fusion) method (11, 

13-15).  Linkages for each method were derived from analysis of a database of 174,901 

protein sequences from 57 genomes (41 bacteria, 11 archaea, and 5 eukaryotes).  Briefly, 

each protein sequence was compared to every other sequence using the program 

BLASTP with default settings (16), for a total of 174,9012, or ~31 billion, sequence 
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comparisons.  Phylogenetic profiles were constructed from these comparisons and 

analyzed as in (17), and Rosetta Stone linkages were identified as in (18). 

 

Literature mining data 

In order to effectively capture known functional relationships in the gene networks, 

we also identified functional linkages by mining the scientific literature (specifically, 

Medline abstracts) using the co-citation approach (19, 20).  This approach is based upon 

the assumption that pairs of genes mentioned in the same set of Medline abstract in 

excess of random expectation tend also to be functionally linked. In our study, we 

analyzed a set of N = 65,807 Medline abstracts that included the word “Saccharomyces 

cerevisiae” in the title, abstract, or MESH terms (21) for perfect matches to either the 

standardized names or common names (or their synonyms) of yeast genes.   

For a given pair of genes, we measured the total number of Medline abstract in which 

each gene name appears (n and m, respectively) and the number of abstracts in which 

both names appear (k), and calculated the probability of co-citation by random chance 

from the hypergeometric distribution as 

   ∑
−

=

−=≥
1

0
),,,|(1),,|citations-co ofNumber (

k

i
NmnipNmnkp

 

 where  ( ) ( )
( ) ( ) ( ) !!!!!

!!!!),,|(
NimnNimiin

mNmnNnNmnip
+−−−−

−−
= .   

 

(Large factorials were calculated with Sterling’s approximation, and all probability 

calculations were performed in logarithmic form to avoid underflow errors.) 
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Reference and benchmark sets 

In order to test the correct assignment of functional linkages in this study, five 

different benchmark sets were used, based on cellular function, functions of conserved 

gene families, or sub-cellular localization, and summarized in Table S2.   

The Kyoto-based KEGG database (22) provides metabolic and regulatory pathway 

annotation for genes.  KEGG maps about 20% of the yeast genes into at least one 

pathway or cellular system (examples include “glycolysis”, “ribosome”, and “MAPK 

signaling pathway”).  We’ve previously found (17, 23) the KEGG database to be an 

excellent reference set for evaluating functional linkages because of its reasonable 

coverage of the genome (20%) and its moderately large number of categories (118) and 

therefore relatively small background probability of matching pathways at random (see 

Table S2).   

As an independently derived set of pathway annotations, we’ve used the Gene 

Ontology (GO) annotation, provided through the Saccharomyces cerevisiae Genome 

Database (SGD) (24).  The GO schema lists three hierarchies of function describing 

“biological process” (i.e., pathways and systems), “molecular function” (i.e., biochemical 

activities), and “cellular component” (i.e., subcellular localization).  For pathway 

annotations, we have used the GO “biological process” annotation, which contains up to 

16 different levels within the hierarchy (assuming the term “biological process” as the 

first level).  Empirical testing (data not shown) revealed the best performance (as 

assessed by maximizing the coverage of the genome and maximally distinguishing well-

curated protein-protein interactions from random gene pairs) at the 8th level of the 
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hierarchy (referred to below as “8pGO”).  This level of GO has extensive annotation, 

covering about 46% of the yeast genome with 494 distinct pathway annotations.  The 

KEGG and GO pathway annotations are therefore reasonably independent annotations, 

with the extent of GO annotation more than twice that of the KEGG both in terms of 

genes and pathways.   

As the third independent functional linkage benchmark, we opted for the clusters of 

orthologous group (COG) annotation (25), which is based on reconstructing homologous 

groups of proteins in such a manner as to considerably enrich for orthologous proteins 

within each group, with the functions of genes assigned within 23 broad categories (such 

as “Transcription” and “Signal Transduction Mechanisms”) based on the well-annotated 

proteins with each COG.  We use the recently updated COG collection that includes 

multicellular eukaryotic genomes (named eukaryotic orthologous groups, or KOG) (26).   

As the fourth benchmark, we chose a completely independent form of data, based not 

on pathway annotation or homology, but on experimentally-determined subcellular 

localization.  Essentially, we expect that functionally-linked genes should also typically 

be localized to the same subcellular compartment.  For this benchmark, we used the yeast 

protein localization data generated from genome-wide GFP-tagging and microscopy (27).  

Given the diversity of benchmark sets (especially with regard to the subcellular 

localization data), we expect that consistent performance across all four of these 

benchmark sets should indicate legitimate functional linkages between genes.  

Finally, in order to effectively summarize broad trends in the data with respect to 

pathways (for which we desire relatively few categories of pathway annotation, unlike for 

the case of benchmarking the results), we use a fifth reference set of pathways from the 
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Munich Information Center for Protein Sequences (MIPS) (28).  In this latter case, we 

have used the 11 major pathway categories from the top level MIPS functional category 

annotation to analyze trends in our resulting modular network. 

 

 

COMPUTATIONAL METHODS 

 

Overview of the method for integrating functional genomics data 

Our working hypothesis is that each set of functional genomics data has an intrinsic 

error rate and a limited coverage but informs us to some extent about the tendency for 

genes to operate in the same cellular systems and pathways in the cell.  We can therefore 

construct a more accurate and extensive functional gene network by integrating the 

information from multiple functional genomics datasets, and in this manner estimate the 

overall functional coupling between yeast genes across a broad set of experiments.  

Figure 1 shows our overall strategy of data integration.  The prerequisite of this strategy 

is that we have a unified scoring scheme for testing the many heterogeneous data sets, 

even when the data sets are accompanied by their own intrinsic scoring schemes (such as 

for the computational methods).  This re-scoring by a single criterion allows us to directly 

measure the relative merit of each data set, and then to integrate the data sets with 

weights that reflect this merit.   

The integration is performed in four stages.  First, different sets of mRNA expression 

data are analyzed for significant co-expression of pairs of genes, and linkages from the 

assortment of microarray data sets are integrated to generate a set of functional linkages 
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derived entirely from DNA microarray data.  These expression-based linkages are then 

integrated with other protein-protein interaction experiments, literature mining linkages, 

and gene context linkages to produce the initial integrated network (referred to as 

“IntNet” below).  An additional set of functional linkages can then be derived from the 

genes’ linkage patterns in this initial network, in effect using the genes’ contexts in the 

network to determine whether unlinked genes are more properly linked together (these 

additional linkages are referred to as “ContextNet” below).  Finally, the resulting network 

context-derived linkages are integrated with the original linkages to generate the final 

network (“FinalNet”).  Therefore, the final network contains both linkages that are 

derived from direct experimental evidence as well as linkages inferred from the collective 

weight of indirect evidence implicating pairs of genes into the same cellular system. 

 

A unified scoring method 

The scoring method used in this study derives from a Bayesian statistics approach, in 

which each experiment, computational or physical, adds some degree of evidence that a 

pair of genes is functionally linked.  More specifically, we calculate the odds ratio 

representing the likelihood that a pair of genes is functionally linked.  If P(L|E) 

represents the probability of linkage between a pair of genes conditioned on the given 

evidence (and ~P(L|E) represents the probability that these genes are not functionally 

linked), and P(L) is the unconditional probability of linkage between a pair of genes, the 

odds ratio (OR) that the given pair of genes is linked is given as: 

 OR(L, E) = 
P(L)/~P(L)

L|E)P(L|E)/~P(  
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In Bayesian terms, the ratio P(L)/~P(L) represents the prior odds ratio, which is the 

ratio of the probability of the linkage and its negation before the evidence is seen.  This 

term is estimated by counting the number of gene pairs with any shared functional 

annotation (using only a single source of functional annotation, for example, the KEGG 

pathway annotation) and those without any shared functional annotation among all 

possible gene pairs chosen from the set of annotated yeast genes.  The ratio 

P(L|E)/~P(L|E) represents the  posterior odds ratio, which is the ratio of the probability 

of the linkage and its negation conditioned on the given evidence.  For estimating these 

conditional odds, we count the number of gene pairs that share or do not share functional 

annotation and that are also supported by the given evidence.  The OR(L, E) can therefore 

be interpreted as the ‘likelihood’ of the linkage conditioned on the given evidence and 

corrected for background expectations of linkages.  As an example, Figure S1A plots 

P(L|E) and ~P(L|E) for genes linked by mRNA co-expression patterns.  Regardless of the 

correlation coefficient between pairs of genes’ expression profiles across the microarray 

experiments, the value of ~P(L|E) is consistently low.  However, P(L|E) shows a positive 

correlation with the correlation coefficient, especially for the region greater than about 

0.3.  The OR(L, E) is then calculated from these curves and the odds ratio of prior 

expectations, P(L) and ~P(L).  In practice, we calculate the natural logarithm of this ratio, 

the log likelihood ratio, in order to create an additive score, LLS = ln(OR(L, E)), plotted 

in Figure S1B.  The ultimate score for a functional linkage is based upon a weighted sum 

of LLS scores from across the different lines of evidence linking the gene pair. (The 

weighting scheme is described in more detail below.)  Empirically, we find the log 

likelihood scoring framework to be far more robust than previous benchmarks based on 
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the same pathway data (23), providing a ratio of well-measured values rather than 

measuring more subtle differences in the precise extent of pathway similarities.   

 

“Re-scoring” experiment-specific scoring schemes in the log likelihood framework 

For data sets that provide only binary evidence (e.g., “observed to interact” or “not 

observed to interact”), each linkage derived from the same data set is scored with an 

identical LLS value calculated as the log of the odds ratio described above.  The 

experimental protein interaction data are scored in this manner (see Table S3).   

Other data sets provide functional linkages with associated parametric scores, such as 

the correlation coefficients indicating the degree of mRNA co-expression, the probability 

scores of genes being linked by gene fusions or co-citation, and the mutual information 

score indicating the degree of coinheritance of genes in phylogenetic profiling (as 

described in (17)).  For these data sets, we first “re-map” or “re-score” the data in the log 

likelihood scheme before the linkages derived from this data can be integrated with 

linkages from other data sets.  We rank the gene pairs by the original parametric scores 

and calculate the log likelihood scores for bins of equal numbers of gene pairs (usually 

500 – 2,000 pairs of linked genes per bin).  A regression fit is then made from a scatter 

plot of the log likelihood score versus the parametric score, and the linkages are assigned 

log likelihood scores as a function of their original parametric scores using the regression 

relationship between the two scoring schemes.  In this manner, all such independent 

scoring schemes are converted into a single unified scoring scheme.  We find log 

likelihood scores larger than ln(1.5) (i.e., evidence for genes to be linked consisting of 

odds ratios of larger than 1.5) with bins containing at least 200 pairs annotated by KEGG 
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unlikely represent gene linkages by random chance (Confidence level > 99%, data not 

shown), thus exclude scores below this threshold for the integration procedure using 

KEGG.  The score threshold varies among different reference/benchmark sets and bin 

sizes.  Data sets that showed qualitatively poor regression fits were excluded from the 

integration procedure. 

 

A heuristic strategy for integrating links derived from different lines of evidence 

Various approaches for integrating information in order to more accurately define 

physical or functional interactions between proteins have been previously explored in the 

literature.  These approaches range from relatively simple algorithms, such as using the 

intersection (23) or union (29) of distinct sets of evidence, to more refined approaches 

that rely on a variety of scoring schemes (30-33).  Among these more sophisticated 

approaches, the Bayesian method of integrating information has proved useful in 

predicting functional associations (32) and physical interactions (33) between yeast 

proteins because it captures the relative weights of the various data sets.  However, the 

relative independence of the various datasets can be difficult to estimate in the Bayesian 

framework. We’ve empirically found that a heuristic modification to the strict Bayesian 

approach performs extremely well for integrating the diverse functional linkage data sets 

by incorporating the relative weighting of the data as well as capturing simple aspects of 

their relative independence. 

In this approach, we first collect all available log likelihood scores deriving from the 

various data sets and lines of evidences, then add the scores with a rank-order dependent 
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weighting scheme.  The resulting weighted sum (WS) scoring the functional linkage 

between a pair of genes is calculated as: 

 ∑
=

−=
n

i
i
i

D
L
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1

)1( , 

where L represents the log likelihood score for the gene linkage from a single data set, D 

is a free parameter roughly representing the relative degree of dependence between the 

various data sets, and i is the rank index in order of descending magnitude of the n log 

likelihood scores for the given gene pair.  The free parameter D ranges from 1 to +∞, and 

is chosen to optimize overall performance (accuracy and coverage) on the functional 

benchmark.   When D = 1, WS represents the simple sum of all log likelihood scores and 

is equivalent to a naïve Bayesian integration.  We might expect D to exhibit an optimal 

value of 1 in the case that all data sets were completely independent. As the optimal value 

of D increases, WS approaches the single maximum value of the set of log likelihood 

scores, indicating that the various data sets are strongly redundant (i.e., no new evidence 

is offered by the additional data sets over what is provided by the first set).  Intermediate 

values of D in effect represent exponentially diminishing belief in the additional 

evidence. In practice, solving for the optimal value of D provides a simple way to detect 

and account for strongly dependent data sets (as in the integration of mRNA expression 

data, Figure S5A).  This approach offered a significant improvement in performance over 

the naïve Bayesian integration (for example, see Figures S4A, S5A, and S6C), while 

requiring optimization of only a single additional parameter.  

 

Inferring additional functional linkages from the network context of genes 
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Two proteins that interact often tend to share additional interaction partners, or more 

generally, an interaction neighborhood (34-37).  We exploited this tendency to discover 

new functional linkages between genes after the initial integrated gene network was 

calculated.  First, we generated a matrix containing the weighted log likelihood scores 

(WS) between all pairs of yeast genes, where these scores exceeded a threshold of 

ln(1.5), or zeroes otherwise. Each row in this matrix was treated as a “context vector” 

describing the local network context of the associated gene.  For each pair of genes, the 

Pearson correlation coefficient was calculated between the genes’ context vectors, 

including in the calculation only those entries in which at least one of the two genes had a 

non-zero value.  The resulting correlation coefficients indicate the degree of similarity 

between the overall network neighborhoods of each pair of genes, regardless of whether 

the genes were previously linked.  These correlation coefficients were then treated like 

any other parametric scoring scheme for discovering linkages and were mapped into the 

log likelihood framework as described above.  The resulting context-derived linkages 

were then integrated with the initial network to produce the final linkage network 

(FinalNet, see Figure 1). 

 

Construction of a simplified network of gene modules 

As the overall gene network itself is of extremely high complexity, we attempted to 

simplify analysis of the network by delineating naturally occurring gene modules within 

the network.  From previous examinations of biological networks such as metabolic 

networks (38), we expected a hierarchical organization of gene modules, with genes 

organized into groupings of ever increasing functional association.  Given such an 

 12



organization, the precise definition of module or cluster boundaries can be difficult (or 

unreasonable).  For this task, we used unsupervised clustering to define coherent groups 

of genes based upon their linkages.  Specifically, we used hierarchical clustering (average 

linkage), which allows both detection of the hierarchy of gene organization as well as 

delineation into disjoint groupings of genes, if desired.   

First, we took the final set of functional linkages which scored equal or better on the 

KEGG functional benchmark to our “gold standard” set of small scale experimental data 

from the DIP database. This set (labeled “ConfidentNet” in Figure 1) consists of 34,000 

linkages between 4,686 genes (80.6 % of the genome).  A matrix summarizing the links 

between the 4,686 genes was constructed consisting of the log likelihood scores from 

linkages in this set and zero otherwise, and hierarchical clustering was performed on this 

matrix using the program CLUSTER (39). 

After the hierarchical clustering procedure, the clusters can be separated at different 

levels of the hierarchy, capturing broader or narrower gene modules in the network. 

Finding an optimal level of the hierarchy to define the clusters is non-trivial, however.  

Such functional modules have been previously defined in sparse but highly clustered 

protein interaction networks (2.7 links / protein, high clustering coefficent (40) of 0.6) by 

breaking clusters according to the sparser edges that connect highly interconnected 

groups of proteins (41), but this approach was less useful for the dense network we 

present (average number of linkages per protein ~ 7.3, and intermediate clustering 

coefficient = 0.3).  Another approach that has proved useful is constructing a dendrogram 

of genes by connectivity and delimiting the cluster boundaries by determining the 

threshold in the dendrogram at which the tree should be cut (42) based upon 
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reconstruction of known pathways.  We devised a variation of this strategy in which the 

gene modules are defined by optimizing the “functional coherence” and size of the 

clusters.  The functional coherence is calculated as the fraction of annotated gene pairs 

that share functional annotation in the given cluster,  

 Coherence = 
pairs gene annotated of # total
annotation sharedany  with pairs gene of # ,  

and tends to be high for small clusters and diminishes as more genes are included.  

This trend is in turn balanced by a term that maximizes the size of the clusters in the 

calculation of the “modulation efficiency” at a given depth in the hierarchy, 

 Modulation efficiency = ∑
=

×n

i 1 network in the genes of # total
cluster) in the genes of (#)(Coherence  

where n is the number of clusters at the given tree depth. The level of the hierarchy with 

the highest modulation efficiency therefore reflects a compromise between the efficiency 

of clustering and the degree of functional association between genes in a cluster. 

To create a network of gene modules (labeled “ModularNet” in Figure 1), rather than 

genes, we generated linkages between the modules as a function of the sets of linkages 

between their component genes.  In this module network, nodes and edges represent 

defined functional clusters and functional association of pairs of clusters, respectively.  

The degree of association between two functional modules is defined as 

 Distance between module A and B = 
 B) andA between  linked genes of (#

B)in  genes of (#  A)in  genes of (# + , 

and was chosen to minimize the effects on the modular network of highly connected 

single proteins (i.e., single proteins with large numbers of linkages) and more accurately 
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reflect the tendency for proteins in the respective modules to be linked (with the square 

root taken only to reduce overall network layout size).   

 

Network layout and visualization 

All gene networks were visualized in either two-dimensions (2D) or three-dimensions 

(3D) using the Large Graph Layout (LGL) package (available at 

http://bioinformatics.icmb.utexas.edu/lgl), treating the network as unweighted, undirected 

graphs (43).  The module network was treated as a weighted graph with edge weights 

proportional to the inter-module distances defined above and with node weights 

proportional to the number of genes in each module, and visualized in 2D with Graphviz 

(http://www.research.att.com/~north/graphviz/) (44) and in 3D with LGL and Virtual 

Reality Modeling Language (VRML). 

 

 

RESULTS 

 

Measuring functional linkage accuracy with the log likelihood scoring scheme 

The relative accuracy of each protein-protein interaction data set was measured on the 

4 benchmark sets, and the resulting log likelihood scores are summarized in Table S3. In 

these tests, the small scale protein interaction data from the Database of Interacting 

Proteins act as a “gold standard” and serve to calibrate the high accuracy end of the 

measures. Despite the differences in score ranges across the different reference sets, the 

protein-protein interaction data sets are ranked in an essentially equivalent order 
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regardless of scoring scheme or benchmark set, which implies that the ranking reflects 

the accuracy of functional linkage discovery in these experiments.  As expected, the 

small scale experimental interaction set from the Database of Interacting Proteins show 

higher log likelihood scores than any of the large scale experimental interaction assays.  

Among the large scale interaction data sets, the TAP-tag purification/mass spectrometry 

analysis of Gavin et al. (4) exhibited the highest accuracy.  The yeast two-hybrid data of 

Ito et al. (6) was divided into four subsets of interactions according to their reported 

reproducibility—log likelihood scores increase accordingly as the number of independent 

observations of the interaction increases.   

The various functional linkage data sets for which independent confidence measures 

were available were also tested against the four benchmark sets, binning the linkages as 

described above according to their confidence measures.  In each case, the tendency for a 

pair of genes to be functionally linked increases with the confidence measure associated 

with the data set. We analyzed mRNA co-expression-derived gene linkages (described in 

detail below), phylogenetic profile-derived gene linkages (Figure S2A), Rosetta Stone 

gene linkages (Figure S2B), and the literature mining (co-citation) gene linkages (Figure 

S2C), each of which shows a significant reconstruction of gene linkages as a function of 

their confidence measures.  Each set of KEGG benchmark scores was fit by an 

appropriate regression curve (sigmoidal, or rational) and linkages derived from the data 

sets were assigned log likelihood scores from these KEGG-based regression curves. 

(Figure S2A-C and Figure S3). 

 

Calculating functional linkages from mRNA expression data sets 
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Empirical tests indicated that we achieved our best performance from the mRNA co-

expression data by first breaking the sets of microarray experiments into selected groups 

and analyzing for co-expression only within a group, integrating the linkages from these 

groups second, and only then combining these integrated mRNA expression-based 

linkages with linkages from other classes of data.  Our rationale is as follows:  If the 

complete set of 717 DNA microarray experiments for each gene were analyzed as a 

single monolithic expression vector, a pair of genes might be strongly and significantly 

co-expressed in a subset of experiments, but not all, and the resulting signal would be 

overwhelmed by the associated noise.  Therefore, subdividing the microarray 

experiments into coherent subgroups and testing for co-expression only across a single 

subgroup allows us to discover the genes co-expressed in one but not all such groups.   

We chose groups of experiments designed to perturb a single class of cellular systems 

(Table S1), following the experimental classes assigned by the Stanford Microarray 

Database, and then measured co-expression within each subset of experiments.  Figure 

S5A shows that this “divide-test-integrate” approach significantly enhances the data 

mining performance in terms of both accuracy and coverage.  Of 717 available 

experiments from SMD, 497 experiments (grouped into 12 categories labeled in bold text 

in Table S1) showed a significant correspondence between the correlation coefficient of 

co-expression and the log-likelihood scores for the KEGG and GO benchmarks. In each 

case, the tendency for a pair of genes to be functionally linked increases as the genes 

tendency to co-express across the set of microarray experiments increases, and genes that 

strongly co-express (i.e., show high correlation coefficients) exhibit high log likelihood 

scores, up to an accuracy higher than quality small scale experiment data set.    
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Linkages between pairs of genes in these 12 sets of experiments were assigned log 

likelihood scores from the regression fits on the KEGG benchmark data.  These linkages 

were then integrated using the rank-weighted integration scheme described above, 

optimizing the relative weights between the 12 experiments by choosing the parameter D 

that maximized both accuracy and coverage of the KEGG benchmark set.  For 

comparison, we also tested the performance of predicting functional links from mRNA 

co-expression across the complete set of 497 experiments (i.e., without subdividing into 

the 12 subgroups).  Figure S4A shows poor performance, especially for the larger size of 

network, from both this complete set and the naïve Bayesian integration (D = 1) of the 

scores from the 12 subgroups, but as the dependency parameter D increases, the 

performance improves, with the best performance seen when D is very large (i.e., from 

taking only the maximum log likelihood score from across the 12 groups of experiments 

and ignoring the other 11 scores.)  This implies that the linkages derived from the 12 

experimental groups tend to be highly redundant—filtering the redundancy improves the 

overall calculation of functional linkages, especially by reducing systematic bias of 

information retrieval for certain cellular systems (Figure S4C).    

To complete the calculation of functional linkages from the DNA microarray data, the 

integrated scores for the complete set of mRNA co-expression-derived functional links 

were re-scored in the log likelihood framework (Figure S4B), ensuring their proper 

weighting relative to links from other data sources.  This set of linkages and scores 

represents the final set of links derived from mRNA co-expression (as analyzed in 

Figures 2). 
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Constructing the Initial Integrated Network (“IntNet”)   

Among the various sets of linkages, the co-expression-derived linkages show the 

most extensive coverage (> 60% of genome) with an accuracy equivalent to that of the 

“gold standard” DIP small scale interaction data.  However, we expected that both the 

accuracy and coverage could be improved by adding in the linkages from all of the other 

data sources.  Using the rank-order weighted integration scheme, linkages were 

integrated from the 11 distinct data sets: co-expression, phylogenetic profiles, Rosetta 

Stone links, literature mining, and the experimental interaction data listed in Table S3.  

For the purposes of linkage integration, all scores were derived from the KEGG 

benchmark tests, with the remaining three benchmark sets held aside as independent test 

sets.  The data dependency parameter D was chosen to optimize the accuracy and 

coverage of the linkages (Figure S5A).  Unlike for the integration of the various mRNA 

expresison data, the naive Bayesian integration (D = 1) performed relatively well, but not 

best.  Optimal performance was seen with a value of D = 1.5, indicating that the data sets 

are still redundant, but much less than in the case of the mRNA expression-based 

linkages.  To complete the construction of the initial network (referred to as “IntNet”), 

the integrated scores were re-scored in the log likelihood framework (Figure S5B). 

 

Discovering Additional Linkages from Network Context (“ContextNet”) 

After the initial network reconstruction, we identified additional functional linkages 

by analyzing the genes’ overall network neighborhoods (34-37) as described in Methods.  

Such linkages might be thought of as deriving from the total collection of indirect 

evidence for the genes’ associations, as opposed to the direct evidence linking them.  
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Empirically, we observed that the quality of linkages identified depended strongly on the 

initial network’s quality.  To test this notion formally, we ordered all functional linkages 

by their initial integration scores and analyzed for network context-derived linkages using 

sequential subsets of 200,000 linkages to produce the networks.  Not surprisingly, 

networks derived from linkages with lower average scores produced poorer quality 

context-derived linkages (Figure S6A), suggesting that this approach is best applied to 

high-quality networks.  The final set of context linkages was derived from the IntNet 

which contains 290,560 linkages, without regard to whether or not the genes were 

previously linked.  The quality of the resulting linkages is plotted in Figure S6B. 

 

Constructing the Final Integrated Network (“FinalNet”) 

The final integrated network results from the combination of the direct and indirect 

evidence linking together gene pairs, and was derived by integrating the initial gene 

network with the context-derived linkages (see Figure 1).  Specifically, the scores from 

IntNet and ContextNet were integrated with the rank-order weighting scheme (optimal D 

= 8; see Figure S6C), then re-scored in the log likelihood framework (see Figure S6D).  

To more fully evaluate the contribution of the context-derived linkages, we examined the 

quality of links derived only from network context as well as those derived from both 

network context and other evidence.  Links derived only from network context showed 

excellent performance, comparable in accuracy to Ito yeast two hybrid data set with 

minimum 3 hits (Ito3) (Figure S6E).  As expected, context-derived linkages that are also 

supported by other evidence considerably exceed the context-only linkages in quality. 
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The improvement of the networks throughout the integration process is summarized 

in Figure S7A-B.  Not only did network accuracy and coverage improve, but the degree 

of clustering in the network (as defined by measuring the average clustering coefficient 

for each gene in the network (40)) increased as well, largely as a result of including the 

context-derived linkages, which serve to strengthen pre-existing clusters in the initial 

network.  Visualized Networks also show substantially increased clustering of genes in 

FinalNet (Figure S7C and D).  Topological properties of FinalNet and IntNet (each 

truncated to the top 34,000 linkages) indicate that both are small world networks (40) and 

their connectivity distributions fit a combination of power-law and exponential decay 

(45) rather than single power-law (46) (Table S4 and Figure S7E).  Although FinalNet 

and IntNet are roughly comparable in their overall structure and properties, FinalNet 

exhibits a slightly higher degree of clustering (a local property of the networks) and a 

slightly longer average shortest pathlength between pairs of genes (a global property of 

the networks), indicating that the context-derived linkages serve to induce more order in 

the network (more specifically, the FinalNet resembles a random network’s properties 

less than the IntNet.)  The final gene linkages (FinalNet) are listed along with scores for 

the individual sources of evidence for the linkage, in the accompanying supplemental text 

file.  

 

Assessing the Overall Quality of the Final Integrated Network (“ConfidentNet”) 

To evaluate the overall network quality, we compared the performance of the final 

network to the performance of the various component data sets using the 4 independent 

benchmark sets: KEGG and GO annotation sets (two independent pathway annotation 
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sets), KOG annotations (providing general functional information for conserved protein 

families), and the UCSF set of experimentally observed GFP-protein fusion subcellular 

localizations.  These comparisons are summarized in Figure 2 (for KEGG and GO) and 

S8 (for KOG and UCSF subcellular localizations).  Although both KEGG and GO 

annotations are based on gene functions derived from the literature, they are surprisingly 

independent, with KEGG sharing only 31% of its linkages with GO (Figure S8C).  On all 

4 benchmarks, the final integrated network significantly outperforms all individual data 

sets, even the gold standard set of small scale interaction data.  Results are consistent 

across the 4 benchmarks, suggesting that the tests reflect the true accuracies of the 

linkages, and that no strong bias was introduced into the networks during the integration 

procedure.  With the small scale interactions to establish the acceptable level of accuracy 

on the KEGG benchmark, the final integrated network includes 34,000 linkages between 

4,681 genes (80.5 % of the proteome; referred to as “ConfidentNet” in the Figure S1).  

Among the 34,000 linkages, 11,320 linkages are also supported by at least one of the 

other three benchmarks (GO, KOG, or UCSF subcellular localization) but not by KEGG.  

This suggests that the improved behavior of the final integrated network does not result 

from over-training on the KEGG benchmark set.   

We tested for systematic bias in the representation of genes in the final network by 

calculating the gene retrieval rate for genes of different functional classes (as defined by 

MIPS).  Figure S8D shows that proteins involved in protein synthesis were favored 

among high scoring linkages, probably reflecting these genes’ tendency to be highly 

expressed and easily studied by most functional genomics methods.  However, this bias 

decreased for the lower scores.  The final set of 34,000 functional linkages exhibited little 
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overall bias in gene representation, suggesting the bias present in individual data sets (47) 

was successfully reduced in the integration procedure. 

In order to compare our functional linkage network against previously constructed 

protein interaction networks of yeast (33, 47) we tested each network against the 4 

pathway benchmark tests, KEGG, GO, KOG, and UCSF-GFP localization, as well as 

against a set of physical protein interactions derived from protein complexes (33), as 

shown in Figure S9.  As expected, FinalNet represented a considerably more accurate and 

complete set of pathways, while the two protein interaction networks scored better on the 

physical interaction test.  In fact, comparison of FinalNet with an integrated physical 

protein interaction network derived from at least several of the same data sets (33) shows 

only a small intersection of the linkages (Figure S9F).  

 

Defining Modules of Genes in the Final Integrated Network (“ModularNet”) 

The resulting final network of genes is highly complex (Figure S7C-D).  In order to 

discover and more conveniently describe the genes’ organization, we searched for 

coherent modules of genes in the network.  In short, we’ve used unsupervised clustering 

techniques to reveal the higher order organization of the genes.  This approach might be 

considered a “bottom-up” approach to studying the systems of genes (i.e., letting the 

network connections reveal the genes’ intrinsic patterns of organization), in contrast to 

surveying how known gene functions are distributed across the network (a “top-down” 

approach), and has the attractive feature of potentially revealing new systems and 

connections not yet catalogued in existing gene hierarchies.  
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Hierarchical clustering (average linkage) was applied to the final integrated network 

(see Methods).  Genes were divided into groups according to the hierarchy, essentially by 

“slicing” the hierarchical tree at a given level and assigning genes still connected in the 

tree into the same module.  In this way, clusters with different numbers of genes and 

different degrees of functional coherence can be produced (Figures S10A-B), with 

clusters ordered according to the hierarchical tree in such a way that neighboring clusters 

tend also to be functionally related (Figure S10C).  For clarity, clusters containing only 

one gene were discarded.   

Near the highest level of the tree, 54 modules could be defined, each containing large 

numbers of genes, that show the broadest level of organization in the networks (Figure 

S11; genes within each cluster are listed in the accompanying supplementary text file.  

The interactions among major clusters can be interactively visualized in 3D using a 

VRML viewer on the associated supplemental VRML file (denoted by the .wrl filename 

extension.)  By raising the threshold at which the hierarchy is cut (i.e., requiring greater 

similarity between genes in a module), more modules are produced with proportionally 

fewer genes in each module.  For example, at an intermediate level of the hierarchy 

(where cutoff of similarity between clusters is 0.5), 669 modules are produced, each 

much more coherent in function.  We sought a set of modules that were maximally 

functionally coherent, yet as large as possible—for this task, we calculated the 

“modulation efficiency” of each clustering and chose the clustering that maximized this 

value (Figure S10D).  The resulting set (where cutoff of similarity between clusters is 

0.39) of 627 gene modules contained 3285 genes (70.2 % of the genes in the network), 

which are listed in the accompanying supplementary text file (Interactive visualization is 
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also available for this in the accompanying VRML file (indicated by the .wrl filename 

extension).  Labeling the genes according to their major functions in the cell (using MIPS 

annotations) revealed that the modules were functionally quite coherent (Figure 3B and 

S12), and also tends to be linked to modules of similar function.  Clusters contained 

21.3% essential genes (exceeding the 99% confidence interval) as compared to 17.0% for 

genes which failed to cluster at this threshold. 

In practice, we found the modular view of the network to considerably ease the 

analysis of systems and their connections, as described in more detail in the paper for 

several specific local regions of the network, such as the systems of DNA repair, vesicle 

transport, and RNA processing (e.g., see Figure S13).  The hierarchical organization of 

genes in the network is evident in the many occurrences of groupings of functionally-

related clusters, such as for energy metabolism, cellular transport, and RNA processing 

systems. Conversely, modules of cell cycle regulatory genes that are connected to a 

functionally diverse range of other modules, are not themselves clustered but are 

distributed throughout the network, including protein fate, cellular transport, signal 

transduction, metabolism, and transcription.  Gene clusters composed primarily of 

uncharacterized genes or clusters with no dominant function are also numerous. 

 

Testing an Alternate Benchmarking Strategy Based on Cross-Validation 

As the integration method we describe relies critically on benchmarks in order to 

weight data, we also experimented with an alternate method of generating benchmarks: 

we pooled annotation sets from KEGG, GO, and MIPS, then split the pooled annotation 

sets into independent training and test benchmark sets.  Because data are integrated using 
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weights derived only from the training benchmark, the performances measured on the 

remaining test benchmark are expected to be free from circular logic and memorization 

of the annotation set during the training procedure. 

Specifically, we generated a pooled annotation set by assembling all pairs of yeast 

genes that shared the same pathway key at the lowest level of KEGG annotation, that 

shared the same biological process key at the 8th level of GO process annotation, or that 

belonged to the same cellular complex key in either the GO components or lowest level 

MIPS annotation.  In total, this represented 121,800 links between 3,390 unique genes.  

We separated these into disjoint training and test sets by randomly separating the set of 

3,390 genes into 2 subsets of 1,695 genes each, retaining all links among genes within the 

same subset.  The resulting training set contained 30,574 links among 1,666 genes; the 

test set contained 30,261 links among 1,655 genes, with neither links nor genes shared 

between the sets.  The network integration was performed using only the training set for 

calculating weights and all other steps prior to the final assessment of network accuracy, 

which was performed on the independent test set.  The network derived in this manner is 

consistent in quality and content with that derived from the KEGG set alone (Figure 

S14):  A comparison of the actual linkages in the top 34,000 linkages derived under the 

two different training/test regimens shows that 26,736 gene pairs (79%) are shared 

among the IntNet networks, and 24,599 gene pairs (72%) are shared between the 

FinalNet networks. 
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FIGURES 

 

Figure S1 

Graphic illustration of unified scoring scheme for a mRNA expression (SMD cellcycle) 

data set.  (A) The P(L|E) and ~P(L|E) can be obtained by measuring frequency of gene 

pairs operating in the same pathway/process and those in different ones, respectively.  All 

possible gene pairs were sorted by correlation coefficient between expression vectors, 

and frequencies of genes’ sharing or not sharing pathways/processes, based on KEGG or 

GO process 8th level annotation, were measured for bins of 20,000 gene pairs.  The 

~P(L|E) is relatively constant across the entire range of correlation coefficients, whereas 

the P(L|E) is positively correlated with it.  In this data set (and many other mRNA 

expression data sets), P(L|E) is lower that ~P(L|E) for the range of lower correlation 

coefficient (e.g. < ~0.3 for the SMD cellcycle data set).  However, P(L|E) surpasses 

~P(L|E) for the range of high correlation coefficient where P(L|E) drastically increases as 

the correlation coefficient increases.  The likelihood, OR(L, E) can be calculated from 

these probabilities of interaction/non-interaction, conditioned on the given evidence (the 

given value of correlation coefficient), and from the unconditional probability of 

interaction/non-interaction.  (B) A plot of the log likelihood score, calculated as the 

natural logarithm of OR(L, E).  Note that the log likelihood scores based on two different 

pathway/process references, KEGG and GO, show very similar distributions. 
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Figure S1

Correlation coefficient between expression vectors

-1.0 -0.5 0.0 0.5 1.0

Fr
eq

ue
nc

y

e-8

e-7

e-6

e-5

e-4

gene pairs that operate in different pathway/process
gene pairs that operate in the same pathway/process

Correlation coefficient betwen expression vectors
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

e-8

e-7

e-6

e-5

e-4

e-3

Gene Ontology (GO)
biological process

KEGG pathway

Correlation coefficient between expression vectors
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Lo
g 

lik
el

ih
oo

d 
sc

or
e

-2

-1

0

1

2

3

4

KEGG annotation
GO annotation

A B



Figure S2 

Performance of the computational methods for reconstructing pathways.  Each plot shows 

regression curve fits of association between the method-specific parameters and the log 

likelihood scores, reflecting the method’s ability to identify biological pathways for three 

different in-silico methods.  The computational methods are (A) Phylogenetic profiling 

(fit by 4 parameter sigmoid curve).  (B) Rosetta stone (or gene fusion) method (fit by 3 

parameter rational curve).  (C) Co-citation (fit by 3 parameter rational curve).  Regression 

curves were fit based on the KEGG annotation data. 

 29



B

C

Figure S2

Similarity between phlogenetic profiles (mutual information)

0.4 0.6 0.8 1.0

Lo
g 

lik
el

ih
oo

d 
sc

or
e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

KEGG annotation
GO annotation

-ln(Probability of gene fusion occurring by random chance)

2 4 6 8 10 12 14 16 18

Lo
g 

lik
el

ih
oo

d 
sc

or
e

-1

0

1

2

3

4

KEGG annotation
GO annotation

-ln(Probability of genes being cocited in Medline abstracts
 by random chance)

0 20 40 60 80

Lo
g 

lik
el

ih
oo

d 
sc

or
e

-1

0

1

2

3

4

5

6

KEGG annotation
GO annotation

A



Figure S3 

Regression curve fits of association between gene pairs’ mRNA co-expression (measured 

by correlation coefficient; CC) and the agreement with biological pathways (measured by 

the log likelihood score; LLS) for 12 categorized DNA microarray expression sets (2) 

listed in Table S1.  In each case, the performances on two independent benchmark 

reference sets, KEGG pathway (filled circle) and 8pGO (open circle), agree well.  Only 

regression curves for the KEGG pathway data are plotted.  All fit by 4 parameter sigmoid 

curves. 
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Figure S4 

Integration of the gene functional linkages from the12 different DNA microarray data 

sets. (A) Benchmarking, by measuring the agreement of linked proteins’ KEGG 

pathways (accuracy) and the percentage of the yeast proteome with linkages (coverage), 

of the resulting functional networks created by integrating mRNA co-expression data sets 

with different assumptions of independence.  Treating the entire set of mRNA expression 

data as a single set of 497 element vectors, the scoring co-expression based on correlation 

of these vectors is indicated by ‘All 497 experiments’.  The remaining curves show 

different methods of integrating linkages from the 12 separate data sets, as described in 

the text: Integration with free parameter D = 1 is mathematically equivalent to naïve 

Bayesian approach.  Integration with D = positive infinity can be performed, in practice, 

by taking only the largest log likelihood scores for each gene pairs.  Here, integration 

shows the best performance at the level of our ‘Gold standard’ (the DIP small scale 

assays data set) where D = positive infinity.  (B) For incorporation of these integrated 

linkages with other linkages, they are re-scored.  Here the top-scoring integrated log 

likelihood scores (achieved with D = positive infinity) re-scored on the log likelihood 

score test.  (C) The top-scoring method of integration (D = positive infinity) also shows 

the least functional bias, as measured by counting the rate at which linkages are generated 

for the annotated yeast genes in each of 11 major functional categories by MIPS (28).  

The naïve Bayesian integration (D = 1) is strongly biased to include links from protein 

synthesis, but the top-scoring method not only achieves improved accuracy and coverage 

but also reduced systematic bias in the functional annotations. 
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MIPS 11 major functional categories

Figure S4
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Figure S5 

Construction of IntNet (Figure 1) by integration of gene functional linkage information of 

all available functional genomics data sets.  The integration mRNA expression 

information from the previous step was used in this second step integration.  (A)  

Benchmarking, as described in Figure S4A, of gene functional network by integration of 

all available functional genomics data with different degree of dependence.  The best 

performance is observed where D = 1.5, indicating that the different functional genomics 

data sets are reasonably independent in terms of the linkages represented.  (B) Re-scoring 

of original log likelihood scores to new ones after the integration of all functional 

genomics data. 
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Figure S5
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Figure S6 

Construction of ContextNet and FinalNet (Figure 1).  (A) Testing the importance of the 

quality of the initial network (IntNet) on the quality of the resulting network created by 

introducing context-derived linkages into the initial network (ContextNet).  Three 

different initial networks with identical size but different quality were made by replacing 

high quality linkages with low ones (essentially, ranking linkages by their LLS scores and 

choosing 200,000 successive linkages to form the network, selecting linkages 1-200,000 

as the most accurate set, 5,000-205,000 as the second most accurate, and so on).  A 

poorer quality initial network results in much lower cumulative log likelihood score 

ranges in ContextNet.  (B) Re-scoring of the network neighborhood similarity (measured 

by correlation coefficient) in the log likelihood scoring scheme (LLS).  ContextNet is 

defined using these re-scored log likelihood scores.  (C) Choosing the optimal integration 

of the initial linkages with the context-derived linkages by benchmarking, as described in 

Figure S4A, the functional gene networks resulting from different choices of the 

dependency parameter D.  A high degree of dependence, where D is 8, shows optimized 

performance, and naïve Bayesian performs poorly.  (D) Re-scoring of the original log 

likelihood scores after the (weighted) integration of initial linkages with context-derived 

linkages.  (E) Assessment, as described in Figure S4A, of the quality of linkages derived 

by analysis of network context.  Linkages derived from only network context (i.e. without 

supporting evidence from other functional genomics data) show significant accuracy, 

while linkages supported by both direct functional genomics evidence and network 

context have higher accuracy for smaller networks but lower for larger ones.  The total 
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set of linkages derived by this context-based approach (ContextNet) shows improved 

accuracy and coverage over the initial network (IntNet). 
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Figure S6
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Figure S7 

(A) A summary of the improvement in quality of the functional network with each step of 

the linkage integration procedure.  Data integration noticeably improves the network.  (B) 

A summary of the degree of clustering in the network after each integration step.  Note 

that data integration significantly increases clustering of genes in the network, 

representing improved definition of functional modules/systems.  The addition of 

context-derived linkages also significantly increases clustering, but the effect is 

moderated somewhat in the final network.  (C-D) A comparison of the initial integrated 

functional network (C) (plotting the top-scoring 24,000 linkages of IntNet) with the final 

integrated network (D) (plotting the top-scoring 24,000 linkages of FinalNet).  While 

both networks show local clustering, the inclusion of context-derived linkages in 

FinalNet results in more extensive clustering of genes into modules, evident in the 

“clumping” in (D).  Each network is visualized with LGL (43). (E) The connectivity 

distribution of IntNet and FinalNet was assessed using the top ranked 34,000 linkages 

from each (i.e. IntNet34000 and FinalNet34000 (= ConfidentNet)).  Both networks’ 

connectivity distributions were fit by a combined power-law and exponential decay 

function (45), f(x) = a(1+x)-bexp-cx with r2 for the fit greater than 0.99 (IntNet34000: a = 

1487 ± 18, b = 0.87 ±  0.02, c = 0.045 ±  0.002; FinalNet34000:  a = 1018 ±  18, b = 0.39 

±  0.02, c = 0.104 ±  0.004). 
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Figure S7
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Figure S8 

In addition to the benchmarks of Figure 2, the accuracy and extent of each functional 

genomics data set and the resulting integrated networks were measured on two additional 

benchmark annotation sets.  A critical point is the comparable performance of the 

networks on all four independent benchmarks.  Besides the tests of Figure 2, we assessed 

the tendencies for linked genes to share (A) GO process annotations (24) and (B) KOG 

annotation (26) Each x-axis indicates the percentage of protein encoding yeast genes 

provided with linkages by the plotted data sets; each y-axis indicates the measured 

agreement of the linked genes’ annotations on one of the four benchmark sets.  The “gold 

standards” of accuracy, used to calibrate the benchmarks and indicated by a red star, are 

small scale protein-protein interaction data from the Database of Interaction Proteins 

(DIP) (3).  Experimental data sets are indicated by colored markers, computational by 

gray markers.  The initial integrated network (lower black line), although trained only 

using the KEGG benchmark, has measurably higher accuracy than any of the individual 

data sets on each of the four benchmarks; adding context-inferred linkages to create the 

final integrated network (upper black line) further improves the accuracy and extent of 

the network.  (C) A Venn diagram showing annotation overlap among ConfidentNet, 

KEGG pathway, and GO biological process 8th level.  Notice that the redundancy of 

annotation among them is minimal, with only 31% of the linkages derived from the 

KEGG set also present in the GO set.  (D)  The final network shows little representational 

bias for different gene functions, as measured by the percent of genes in each major 

functional category (defined by MIPS (28)) incorporated in the network as a function of 
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network size.  Approx. 90% of the genes in each MIPS functional category are included 

in the network at the gold standard confidence level (~34,000 linkages). 
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Figure S8
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Figure S9 

Comparison of FinalNet to previously re-constructed physical interaction networks of 

yeast proteins (33, 47).  FinalNet, two other yeast protein networks, and the “gold 

standard” DIP small scale interaction data, were assessed as described in Figure S4A with 

five different reference sets; (A) KEGG, (B) GO 8th level process annotation, (C) KOG, 

(D) UCSF-GFP localization, and (E) Jansen’s “gold standard” composed of known 

protein complexes based on small scale protein interaction experiments (33).  FinalNet 

represents a more accurate and extensive pathway set, based on functional (A, B), protein 

co-evolutionary (C), and sub-cellular location (D), but the highest scoring physical 

interaction data sets score better than FinalNet on the physical interaction benchmark set 

(E) (although FinalNet achieves better accuracies for large networks), presumably 

because FinalNet has been “trained” by pathway data.  (F) This interpretation is 

supported by the relatively small intersection between ConfidentNet (top 34,000 linkages 

of FinalNet) and the Jansen et al. physical protein complex network (with L > 600) (33), 

in which only 16 % of ConfidentNet linkages are found. 
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Figure S9
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Figure S10 

Finding the optimized similarity cutoff for defining hierarchical clusters.  We tested the 

dependence of desirable properties of the resulting clusters and chose a similarity cutoff 

that maximized these properties; including (A) the differences in the number of clusters 

(B) in the number of proteins belong to any cluster and (C) in the mean degree of 

functional coherence of the clusters.  (D) We defined function, the modulation efficiency, 

based on these 3 parameters, then chose the similarity cutoff that maximized the 

modulation efficiency.  For the hierarchically clustered ConfidentNet, we found that a 

cutoff of similarity of 0.39 achieved the maximized modulation efficiency, producing 627 

gene clusters. 
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Figure S10

Similarity cutoff in hierarchical tree for defining clusters
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Figure S11 

(A) Views of gene modules at the most inclusive level of hierarchical clustering that 

defines 54 gene modules encompassing 3,744 of the 4,681 genes (~80%) of 

ConfidentNet—we plot the 18 major modules connected by the 50 strongest inter-module 

linkages.  These broadly inclusive clusters and their connections provide an overview of 

the yeast gene network in which the main features of the network are easily visualized—

dominant features include the ribosome, ribosomal biogenesis system, cellular transport, 

cell cycle regulation, and general categories of metabolism.  To simplify visualization of 

the networks of modules, we indicate gene modules as shapes whose sizes are 

proportional to the number of member genes, connected by edges whose lengths are 

inversely proportional to the fraction of genes directly linked between clusters.  The color 

and shape of each module indicates the major function of the associated genes, as defined 

by MIPS (28) and listed at the bottom right. (B) We analyzed the gene functions 

represented in each cluster, using the 11 MIPS protein functional categories.  The number 

of annotated proteins in a cluster in each functional category was counted.  Only 12 

clusters showed significant grouping of genes with reasonably homogeneous functions, 

representing very broadly defined functional modules in the network, even at this gross 

level generalization.  
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Figure S12 

For the network of Figure 3B, we summarize the functions of genes in each cluster by 

plotting the distribution of MIPS functional categories among the 627 modules, ordered 

according to the hierarchical clustering tree.  The height of each plot indicates the number 

of genes per cluster in a given functional category, indicated by color.  The functional 

coherence of genes in each cluster is apparent; adjacent modules (indicated by sequential 

numberings) are often functionally related. 
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Figure S13   

Detailed views of the reconstructed gene modules participating in DNA damage 

response/repair (top) and intracellular transport (bottom).  In both examples, each shape 

represents one of the 627 modules defined by clustering genes in the network, with colors 

indicating module functions (see legend, bottom left) and sizes proportional to the 

number of genes in a module.  We chose several modules of interest (diamonds) and plot 

all modules directly linked to these.  The hierarchical organization of genes in the 

network is obvious:  genes within the same module have precisely related functions, as 

labeled, while connected modules have more generally related functions, still within the 

same broad cellular category.  For example, we find the genes participating in base-

excision repair within a single module (#364).  In the same local region of the network, 

we find modules devoted to double-strand break repair (#10, #27, #307), DNA 

unwinding (#11), and signal transduction (#14).  Moving beyond these modules are more 

generally associated systems, such as cell cycle control (#53, #614).  Similarly for the 

bottom example, modules dedicated to intracellular transport, such as the Cop I system 

(#188) are connected in the network to functionally related modules, such as the Cop II 

system (#189), vacuolar transport (#182, #183), and nuclear export (#214).  These 

clusters (especially those related to protein transport) are in turn connected to those for 

protein fate, whose systems are strongly functionally coupled to the transport systems.  

Networks were visualized using NEATO (44) 
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Figure S14 

An alternate method of data integration produces a network consistent with that 

described.  Rather than “training” versus the KEGG database and testing versus other 

annotation sets, such as GO, MIPS, KOGs, and subcellular localization, we assembled a 

pooled annotation set from KEGG, GO, and MIPS, then split this set into two disjoint 

sets of linkages.  One served as a training set for calculating weights for data set 

integration; the other annotation set was held aside for a final, independent test of 

integration accuracy.  (A) shows the performance of the various data sets and integrated 

networks on the annotation set they were trained upon, while (B) shows their accuracies 

as measured using the independent test set.  The similar performance between (A) and 

(B) indicates the effectiveness of data integration in successfully combining experimental 

and computational data to reconstruct pathways.  (C) shows a histogram comparing the 

FinalNet network calculated in this fashion with that described previously (i.e., trained on 

KEGG).  Scores for the top 100,000 linkages calculated under each training regime are 

binned in bins of size 0.1 x 0.1, and the resulting distribution plotted with color indicating 

height of the histogram—the preponderance of scores near the diagonal shows 

consistency between the networks. Multiple trends visible in the histogram reflect the 

slightly differing weights given to the major sources of data under the two training 

regimes.  The consistent scores shown by linkages in the two networks argue that the 

integration method correctly predicts pathways and is reasonably robust to the precise 

choice of training set. 
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Log likelihood scores of ConfidentNet,
trained by KEGG
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TABLES 

 

Table S1 

Categories of DNA microarray mRNA expression data for yeast, downloaded from the 

Stanford Microarray Database.  A total of 717 experiments in 27 categories were tested, 

and, among them, 497 experiments in 12 categories showed significant regression 

between the mRNA co-expression patterns and the log likelihood scores (i.e., see Figure 

S3).  These 12 categories are indicated by bold letters in the Table. 
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TABLE S1 

 

SMD Category # Exp  Description 
Calcium 24 Time course of calcineurin/Crz1p-dependent gene expression 

following addition of 200 mM Ca2+  
Cell cycle 87 Time course of cell cycle dependent gene expression in  cultures 

synchronized by alpha factor arrest, elutriation, cdc15-ts mutant 
Chemical 15 Time course after treatment with dithiothreitol 
Chemostat 5 Differential gene expression between parent strain and evolved strain 

after many generations in chemostat 
ChIP 44 Finding TF binding sites using ChIP and intergenic microarray 

DNA damage 42 Comparison of wild-type cells with mutants defective in Mec1 
signaling, including mec1, dun1, and crt1 mutants, under normal 
growth conditions and in response to the methylating-agent 
methylmethane sulfonate (MMS) and ionizing radiation. 

Drug treatment 8 Response to the sulfhydryl-oxidizing agent diamide 
Evolution 45 Changes in DNA copy number were assessed  after 100-500 

generations of growth in glucose-limited chemostats 
GCAT 31 Variety of experiments by many different groups 

Genomic DNA 2 Genomic DNA analyses 
Over expression 1 GAL vector over-expression 

Martel 4 Response to different iron conditions 
Mating 6 Differential expression of MCM1 or MCM7 (DNA replication init) 
Metal 15 Response to different metal treatments 

Mutant 36 Stationary phase, osmotic treatment, heat shock 
ORF-IN enrichment 34 Genomic binding distributions of promoter specific transcr. factors 

Osmotic 3 Transcriptional response to different osmotic conditions 
Phosphate 8 Transcriptional response to low extracellular Pi concentrations 
Polysome 43 Analyses of RNA bound to different polysomal fractions 

RNA processing 58 Measured decay rates of yeast mRNAs after thermal inactivation of  
temperature-sensitive RNA polymerase II 

Salt treatment 18 Time course of calcineurin/Crz1p-dependent gene expression 
following addition of 0.8 M Na+  

Sporulation 9 Time course during sporulation 
Starvation 36 Time course in various  conditions of nutritional starvation  

Stress 117 Transcriptional responses to different environmental stresses 
Transcription 22 Response to deletion of general TFs 

Unfolded protein 
response 

2  

Yeast expression 2  
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Table S2 

Five independent reference sets were used in this study.  The 11 major top level MIPS 

protein functional category (MIPS major 1st level funcat to provide benchmarks of 

linkage accuracy) was used primarily in functional profiling of the final network or its 

derived clusters, while the other four references were used for assessing the quality of 

linkages between proteins.   
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TABLE S2 
 

Reference Number 
of terms 

Number of annotated 
proteins (% of 

proteome) 

O prior Download 
date 

KEGG pathway 118 1166 (20.0) 0.078 08/07/2003
GO process 8th level 494 2675 (46.0) 0.022 03/05/2003

KOG 23 3025 (52.0) 0.093 11/26/2003
UCSF-GFP localization   22 3965 (68.2) 0.475 10/08/2003

MIPS major 1st level funcat    11 3753 (64.5) 0.302 06/25/2003
O prior = P(share any annotation unconditionally) / P(share no annotation unconditionally) 
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Table S3 

Assessment the accuracies of protein-protein interaction data sets in the log likelihood 

scoring framework.  Ten different interaction data sets are ranked by descending order of 

quality (indicated by log likelihood score; LLS) based on the KEGG pathway reference.  

It is notable that each independent reference set provides similar rankings, indicating that 

the scores provided by the log likelihood scheme correctly reflect data accuracy are 

reasonably independent of the precise reference set used, whether derived from pathways 

(KEGG), biological processes (GO process 8th), sequence homology (KOG), of protein 

sub-cellular localization (UCSF-GFP localization).  Protein-protein interaction data set 

derived from many individual small scale experiments (collected from the Database of 

Interacting Proteins, DIP) outperformed all data sets derived from large scale 

experiments, and were adopted as the gold standard for interaction quality.  
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TABLE S3 
 

PPI data set # unique 
protein 

# interaction LLS by KEGG 
pathway 

LLS by GO 
process 8th 

LLS by KOG LLS by UCSF-
GFP localization 

DIP small scale 382 2822 4.43 4.18 3.41 1.94 
Gavin MS 1361 3221 3.83 3.87 2.47 1.80 

Ito Y2H 4 above  hit 598 521 3.25 3.59 2.29 0.97 
Tong2002 Y2H 141 211 3.06 2.47 1.49 0.43 

Uetz Y2H 934 854 3.03 3.16 2.09 1.28 
Ito Y2H 3 hit 307 212 2.33 2.88 1.71 0.95 

Ho MS 1560 3589 1.97 2.27 1.13 0.95 
Tong2001 SL 195 275 1.71 1.91 1.89 0.28 
Ito Y2H 2 hit 761 625 1.62 1.97 1.03 0.41 
Ito Y2H 1 hit 2462 2628 0.68 1.20 0.62 0.14 
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Table S4 

The integrated network shows a “small world” topology (40).  Here, we compare network 

topology between IntNet and FinalNet (using only the top 34,000 linkages of each).  

Although the topology of FinalNet appears more ordered than IntNet (i.e., has a higher 

mean shortest path length between proteins and a higher clustering coefficient), both are 

“small world” networks.  The higher coverage and accuracy of the FinalNet is evident in 

the fraction of proteome represented and the log likelihood scores. 
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TABLE S4 
 

Parameters IntNet34000 FinalNet34000
# of links 34000 34000

# of unique proteins 4478 4681
Proteome coverage (%) 77.0 80.5

Log likelihood score by KEGG 4.19 4.46
Average connectivity (links / gene) 7.60 7.26

C (clustering coefficient) 0.244 0.308
C of random counterpart 0.004 0.003

C of regular lattice counterpart 0.697 0.694
N.C. (normalized C by regular) 0.351 0.444

N.C. of random counterpart 0.006 0.004
L (length of shortest path) 4.28 5.03
L of random counterpart 3.40 3.46

L of regular lattice counterpart 148.34 162.02
N.L. (normalized L by regular) 0.029 0.031

N.L. of random counterpart 0.023 0.021
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