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ABSTRACT: De novo peptide sequencing by mass spectrometry
represents an important strategy for characterizing novel peptides
and proteins, in which a peptide’s amino acid sequence is inferred
directly from the precursor peptide mass and tandem mass spectrum
(MS/MS or MS3) fragment ions, without comparison to a reference
proteome. This method is ideal for organisms or samples lacking a
complete or well-annotated reference sequence set. One of the major
barriers to de novo spectral interpretation arises from confusion of N-
and C-terminal ion series due to the symmetry between b and y ion
pairs created by collisional activation methods (or c, z ions for electron-based activation methods). This is known as the
“antisymmetric path problem” and leads to inverted amino acid subsequences within a de novo reconstruction. Here, we combine
several key strategies for de novo peptide sequencing into a single high-throughput pipeline: high-efficiency carbamylation blocks
lysine side chains, and subsequent tryptic digestion and N-terminal peptide derivatization with the ultraviolet chromophore
AMCA yield peptides susceptible to 351 nm ultraviolet photodissociation (UVPD). UVPD-MS/MS of the AMCA-modified
peptides then predominantly produces y ions in the MS/MS spectra, specifically addressing the antisymmetric path problem.
Finally, the program UVnovo applies a random forest algorithm to automatically learn from and then interpret UVPD mass
spectra, passing results to a hidden Markov model for de novo sequence prediction and scoring. We show this combined strategy
provides high-performance de novo peptide sequencing, enabling the de novo sequencing of thousands of peptides from an
Escherichia coli lysate at high confidence.

The breadth of proteomic studies has never been greater, as
a growing trend in proteomics research pushes mass

spectrometry experiments beyond the study of model
organisms, proteotypic peptides, and common posttranslational
modifications. This strains the limits of traditional spectral
interpretation using sequence databases, and it has driven
development of more flexible search methods and proteoge-
nomic pipelines. De novo peptide and protein sequencing is one
potential strategy for characterizing novel peptides.1 Rather
than comparing a peptide spectrum to theoretical candidate
spectra from a reference protein sequence database, de novo
analysis directly infers a peptide sequence from the precursor
peptide mass and tandem mass spectrum (MS/MS or MS3)
fragment ions.2 This method is ideal for organisms or samples
lacking a complete or well-annotated reference sequence set. In
the event that gene sequences are available, de novo approaches
are well-suited for interpreting unidentified spectra and
discovering unknown splice variants, intergenic peptides,
sequence polymorphisms, and other novel peptides.
Given an ideal MS/MS spectrum, de novo peptide sequence

assignment is a trivial exercise. Such a spectrum would exhibit a

complete series of ions, all of a single-fragment type (N-
terminal a/b/c or C-terminal x/y/z ions) and known charge
state, that span an entire precursor peptide. The sequence could
then be read directly from the spectrum by matching the mass
difference between each consecutive ion pair to its correspond-
ing amino acid. Technological developments, notably high-
resolution MS/MS acquisition and concurrent collection of
complementary fragmentation spectra (e.g., paired collision-
induced dissociation (CID)/electron transfer dissociation
(ETD) mass spectra), have greatly improved the potential of
de novo peptide sequencing, but spectra still suffer from
incomplete peptide fragmentation, complex fragmentation
patterns and neutral losses, and uninterpretable noise. CID,3,4

HCD,5 ETD,6,7 and dual fragmentation (EThcD, ETciD),8

have all been applied for de novo sequencing. Infrared
multiphoton dissociation (IRMPD) and ultraviolet photo-
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dissociation (UVPD)9−12 are also emerging as viable
alternatives for tandem mass spectrometry of peptides.
One of the major barriers to de novo spectral interpretation

arises from confusion of N- and C-terminal ion series due to
the symmetry between b and y ion pairs created by collisional
activation methods (or c, z ions for electron-based activation
methods). This is known as the “antisymmetric path problem”
and leads to inverted amino acid subsequences within a de novo
reconstruction.13 A related difficulty arises when fragment ions
with similar m/z values cannot be independently resolved.14

Biased peptide backbone fragmentation, the most serious
problem, leads to spectral regions without fragment ion
evidence and precludes definition of a complete amino acid
sequence. These issues have made it unrealistic in practice to
assign full and accurate peptide sequences in an automated de
novo fashion. Therefore, database searches still greatly outper-
form de novo in any complex bottom-up shotgun proteomics
experiment for which representative sequence data are available.
Many modern de novo algorithms compensate by reporting tens
or hundreds of putative sequences for a single peptide spectrum
or only partial peptide sequences containing gaps where amino
acids cannot be derived.15,16 The results are most useful after
manual curation or homology-based database comparisons,
where such hybrid sequence tag-based homology searching
combines the flexibility of de novo sequencing with the
identification power provided through database comparison.
Among the many de novo programs available today, a few of

the more popular established and emerging options include
PEAKS, PepNovo, NovoHMM, pNovo, DirecTag, and Novor
for bottom-up proteomics and Twister for top-down
analysis.14,17−22 Most such tools use statistical models of
peptide fragmentation for spectral interpretation prior to
sequence generation or for scoring candidate de novo sequences
constructed from simple initial assumptions and rules. These
fragmentation models are rooted in the idea of the offset
frequency function (OFF), introduced by Dancǐḱ et al. in
1999.23 Fundamentally, OFF treats fragmentation as a
stochastic process whereby specific ions (example, b+, y+-
NH3) have a certain chance for being observed from each
peptide residue position. These models are highly dependent
on the type of spectra used during construction, limiting the
application of existing software for new spectral paradigms.
In parallel to the continued development of de novo

interpretation software, considerable effort has focused on
creating “ideal” spectra for de novo sequencing through novel
sample preparation and instrumentation methods.2 Most of
these methods have been implemented to overcome the
antisymmetric path problem or, more generally, the issue of
discerning product ion type. Differential labeling between two
samples, via isotopic or chemical modification of peptide N- or
C-termini, is applied to evoke a mass difference between
product ion pairs and allows MS2 ion type annotation.24,25

Alternatively, spectral simplification through chemical derivati-
zation and charge sequestration can either enhance or eliminate
a particular fragment ion series. In particular, peptide termini
may be modified to increase the relative abundance of either
the N- or C-terminal ion series.26,27 Changing the basicity or
charge of a peptide terminus influences the charge localization
of and charge mobility within a peptide and, consequently,
produces a more prominent series of fragment ions from the
end where charge is concentrated.
We recently demonstrated marked spectral simplification

through a combination of chromophore derivatization and

UVPD-MS.28,29 The simplification mechanism, fundamentally
different from those described above, destroys rather than
neutralizes redundant fragment ions. By attaching the
chromophore 7-amino-4-methylcoumarin 3-acetic acid
(AMCA) to a peptide N-terminus, the peptide becomes
susceptible to 351 nm photoactivation. The selectivity of 351
nm UVPD ensures that only AMCA-derivatized peptides
undergo photodissociation, and successive laser pulses
effectively eliminate N-terminal chromophore-containing ions.
C-terminal product ions (without a chromophore) remain
unaffected by the UVPD, and the process yields a clean series of
y ions uniformly distributed along the entire peptide length.
In this work, we combine three key strategies for de novo

peptide sequencing into a single high-throughput pipeline: (i)
covalent modification of peptides and (ii) 351 nm UVPD
fragmentation to favor elimination of N-terminal products and
survival of C-terminal fragment ions with (iii) a dedicated
software platform, UVnovo, to interpret these data. We
introduce an improved strategy for selective peptide N-terminal
AMCA derivatization. This is accomplished through highly
efficient carbamylation of lysine side-chain amines30 prior to
tryptic digestion and AMCA labeling. LC-UVPD-MS/MS of
the AMCA-modified peptides then predominantly produces y
ions in the MS/MS spectra, specifically addressing the
antisymmetric path problem. Finally, the program UVnovo
applies a random forest (RF) algorithm31 to automatically learn
from and then interpret UVPD spectra, passing results to a
hidden Markov model (HMM) for de novo sequence prediction
and scoring. We show this combined strategy provides high-
performance de novo peptide sequencing.

■ MATERIALS AND METHODS
Materials. Trypsin Gold, mass spectrometry grade, was

purchased from Promega (Madison, WI, USA). LC-MS grade
acetonitrile and water were purchased from EMD Millipore
(Darmstadt, Germany). Phosphate-buffered saline (PBS) and
dimethyl sulfoxide (DMSO) were purchased from Thermo
Fisher Scientific Inc. (San Jose, CA, USA). Sulfosuccinimydyl-
7-amino-4-methylcoumarin-3-acetic acid (Sulfo-NHS-AMCA)
was purchased from Pierce Biotechnology (Rockford, IL, USA).
Escherichia coli (E. coli) lysate was graciously donated by Dr. M.
Stephen Trent’s research group at the University of Texas at
Austin.

Modification of E. coli Lysate. Figure 1 shows the process
for N-terminal AMCA peptide derivatization. A 50 μg amount
of E. coli lysate in 100 μL of 50 mM sodium carbonate and 8 M
urea was heated at 80 °C for 4 h to carbamylate lysine side
chains (ε-amines) and the N-termini primary amine of each
protein, blocking subsequent reaction with AMCA. (The
carbamylation reaction of all primary amines means that the
N-terminus and N-terminal peptide of each protein will not be
characterized by UVPD-MS). Urea was removed through PBS
buffer exchange, and proteins were then digested using trypsin
at 37 °C overnight. After digestion, 25 μL of 20 mM sulfo-
NHS-AMCA in DMSO was added to approximately 270 μL of
the digest to label the primary N-terminal amine of each
peptide (except the N-terminus of each protein which was
already blocked by carbamylation in the first step), and the
solution was kept in the dark overnight at room temperature.
Samples were cleaned using a C18 SPE cartridge to facilitate
removal of unreacted AMCA, evaporated to dryness, and
resuspended for LC-MS/MS (98% water/2% acetonitrile with
0.1% formic acid). We anticipate that carbamylation could also
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react with monomethyl-lysine, following slower kinetics, and if
the presence of substantial monomethyl-lysines is expected,
then ArgC could be used as an alternative protease.
LC-MS/MS Analysis of E. coli Lysate. All mass spectra

were acquired using a Thermo Scientific Velos Pro dual linear
ion trap mass spectrometer (Thermo Scientific, San Jose)
modified for UVPD by addition of a Coherent 351 nm excimer
laser (Coherent, Santa Clara, CA, USA) to allow 351 nm UV
excitation of ions present in the ion trap.32 The laser was set to
3 mJ/pulse at 500 Hz, with 15 pulses/scan. Peptides were
separated by reverse phase chromatography and eluted into the
mass spectrometer using a Dionex NSLC 3000 nanoLC system
(Thermo Scientific, Waltham, MA, USA). We used a 15 cm
capillary column (75 μm i.d.) packed with 3.5 μm particles
(C18 stationary phase) with a pore size of 140 Å, loading 5 μg

of peptide mixture (via 1 μL injection). Sample elution
followed a 360 min gradient starting at 3% B and increasing to
50% B with a flow rate of 300 nL/min; solvent A was water
with 0.1% formic acid (v/v), and solvent B was acetonitrile with
0.1% formic acid (v/v).

SEQUEST. In order to obtain a list of high-confidence
peptide spectral matches, raw spectra were analyzed using the
SEQUEST and Percolator nodes of Proteome Discoverer v. 1.4
(Thermo Fisher, San Jose). AMCA was required as a fixed N-
terminal modification, and optional oxidized methionine in any
position was allowed. The precursor mass tolerance was set at
±1.6 Da due to the low resolution of ion trap spectra. Because
trypsin does not cleave at carbamylated lysines, SEQUEST
protease specificity was set to trypsin (R) and included the
proline rule. We considered only y ion fragments for the UVPD
data sets, searching spectra against the UniProt E. coli strain
K12 reference proteome.

De Novo Analysis Using UVnovo. We implemented
UVnovo, a de novo sequencing program for analysis of UVPD
spectra, in the MATLAB programming language. All top-
ranked high-confidence SEQUEST peptide spectrum matches
(PSMs) from doubly charged precursor ions (2+) were used to
train and validate UVnovo using 3-fold cross-validation as
follows:

Spectral Partitioning and Preprocessing. Spectra were
randomly partitioned into three sets. All spectra from a given
peptide, collapsing PTM variants, were allocated to the same
set, preventing their use for both training and validation.
During each of the three cross-validation rounds, a different
partition was treated as an “unknown” test set, and the “known”
spectra in the remaining two partitions were used for model
training. We repeated this three times, withholding a different
test partition each time, to evaluate the performance of
UVnovo against the high-confidence SEQUEST PSMs.
Thermo *.raw files were converted to the mzXML format

using MSConvert with peak picking, and peaks with an
intensity < 5 were removed. Through an unexplained artifact of
UVPD spectral generation, all fragment ions in the MS2 spectra

Figure 1. (a) Workflow for carbamylation/AMCA modification and
(b) carbamylation reaction.

Figure 2. UVnovo workflow for de novo sequencing. Spectra are divided into training and test sets. A random forest, trained on known spectra,
transforms an unknown spectrum into a simplified representation of peptide cleavage site probabilities. At each position in this “simplified spectrum”,
a hidden Markov model (HMM) refines the probability, also incorporating amino acid frequencies and requiring valid mass transitions. The best
valid path through the HMM yields the de novo sequence prediction, and the individual fragmentation site probabilities provide a means to score
each sequence.
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from all precursors less than m/z 817.2 were systematically
shifted up 0.16 m/z by the instrument, whereas peaks of the
remaining spectra displayed no such systematic mass error.
This was corrected in preprocessing by subtracting 0.16 m/z
from all peaks of the affected spectra. Additionally, because our
goal was to evaluate the potential of UVPD-MS/MS for
automated de novo peptide sequencing, we chose to marginalize
the effect of incorrect precursor mass on de novo sequence
assignment. We set the precursor mass for each spectrum to the
integer mass nearest its respective SEQUEST PSM. Thus, our
results should be understood as being contingent on an
accurate definition of precursor mass, to the nearest 1 Da, well
within the capacity of modern high-resolution instruments.
UVnovo Overview. Figure 2 presents the overall software

workflow. Following data import and preprocessing, spectral
interpretation follows four main steps: (1) transform each MS/
MS spectrum into a spectral representation of peptide cleavage
site probability at each possible mass position (this applies a
random forest model for peptide fragmentation pattern
deconvolution); (2) refine the backbone cleavage site
predictions using a hidden Markov model; (3) identify amino
acid sequences that best fit the predictions; (4) score and rank
the de novo sequence reconstructions.
Details of the fragment pattern deconvolution, fragment site

scoring, HMM construction, and assignment and scoring of de
novo sequences are described in full in the Supporting
Information.

■ RESULTS AND DISCUSSION
We based our strategy to enhance de novo peptide spectrum
interpretation on the ability of UVPD to efficiently generate C-
terminal fragment ion (y ion) series while eliminating N-
terminal ions (a, b ions). This strategy required efficient
attachment of a UV chromophore to the N-terminus of each
peptide in order to target them by 351 nm UVPD, while
avoiding labeling of lysine side chains that would result in
indiscriminant chromophore attachment. We describe a sample
processing scheme that accomplishes these goals and enables
UVPD-based de novo peptide sequencing. We also introduce
the de novo sequencing program UVnovo, as to date there is no
de novo sequencing program suitable for analysis of 351 nm
UVPD mass spectra.
Lysine Capping with Carbamylation. In order to confine

AMCA modification to the N-termini of peptides, the ε-amino
group on lysine side chains must first be blocked. We have
previously employed lysine guanidination for this purpose,
converting lysines into homoarginines via reaction with O-
methylisourea in the presence of 7 M ammonium hydroxide.8,29

Here, we improve on this strategy and instead convert lysine to
homocitrulline via carbamylation. This provides a quick and
efficient alternative to guanidination for blocking the reactive ε-
amino group on lysine side chains. Heating samples at 80 °C
for 4 h in an 8 M urea solution resulted in complete reaction of
reactive primary amines on model proteins, including the N-
termini and lysine side chains.30 As a proof of concept we
evaluated carbamylation efficiency on intact myoglobin
molecules before and after the carbamylation reaction, using
direct injections of the intact protein into a high-resolution
Thermo Orbitrap Elite. With 19 lysine residues and a free N-
terminus, myoglobin has 20 amine reactive sites (Supporting
Information Figure S1a). We observed a mass shift of 860.09
Da between the modified and unmodified forms, very close to
the 860.116 Da expected from complete carbamylation (20 ×

43.0058 Da). We estimated it to be nearly complete based on
the ESI mass spectrum shown in Figure S1b,c. A similar analysis
of intact ubiquitin (data not shown) also revealed complete
lysine carbamylation.

351 nm UVPD Spectra. Figure 3 presents a representative
UVPD mass spectrum for a peptide from E. coli elongation

factor G protein. The clean series of y ions is consistent with
351 nm UVPD and demonstrates the effective annihilation of b
ions during the activation period (i.e., 15 laser pulses). The b
ions (which contain the N-terminus) retain the AMCA
chromophore and are susceptible to photoabsorption and
dissociation during successive laser pulses. Very few internal
fragment ions are observed. While fragment ions are often
diminished C-terminal to proline (akin to conventional
collisional activation), peptide cleavage otherwise produces a
comprehensive series of observable y ions. In general,
photoactivation using 351 nm photons results in cleavage of
the C−N backbone bonds analogous to that observed upon
collisional activation. There is no evidence for production of a/
x and c/z ions more commonly observed upon 157 nm UVPD
or 193 nm UVPD.10,12

In one regard, spectral symmetry is beneficial for low-
resolution data because b and y ion pairs provide the most
effective means for correct de novo precursor mass assign-
ment.19,23,33,34 The lack of complementary ion pairs and other
telltale MS/MS signatures of precursor mass in our data
precluded effective mass error correction. After a baseline
correction of systematic error, only 63% of the E. coli lysate
spectra we used for benchmarking (described below) had a
mass within ±0.5 Da of the SEQUEST PSM. In all results
below, the precursor mass was therefore assigned as the integer
nearest the PSM mass.
However, the benefits of the UVPD method for de novo

sequencing are 2-fold, and they cannot be overstated. First, with
a complete y ion ladder, full-length, gapless de novo
reconstructions are frequently attainable for nontrivial peptides.
Second, the spectra display an ion ladder from only the C-
terminus, eliminating the computationally intractable antisym-
metric path problem (where mirror-image sequences propagate
along both N-terminal and C-terminal ion ladders). De novo
algorithms commonly address this problem by making
imprecise assumptions, such as requiring that b and y ions
not share the same mass node. Such assumptions are
unnecessary with 351 nm UVPD mass spectra.

UVnovo. We developed UVnovo to de novo interpret
AMCA-treated UVPD spectra. As illustrated in Figure 2, the
UVnovo spectral processing pipeline progresses through four
main steps for each MS/MS spectrum, described with further

Figure 3. UVPD (3 mJ/pulse, 15 pulses) mass spectrum of elongation
factor G peptide V[AMCA]YSGVVNSGDTVLNSVK[carbamyl]AAR (2+)
from a trypsin-digested E. coli lysate. The precursor is labeled with an
asterisk.
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detail in the Supporting Information. Briefly, the spectrum is
simplified using a random forest (RF) classifier.31 At each
integer mass position along the spectrum, the RF merges
evidence from 30 spectral features to predict whether that
position falls at a peptide bond of the precursor peptide
backbone. Next, a hidden Markov model is used to estimate the
probability that each site corresponds to a true fragment ion.35

Each spectrum is then assigned one or more potential
sequences using the Viterbi algorithm, with a single best
sequence generated for each likely spectrum peptide length.36

The candidate de novo sequences are scored and ranked using
the HMM fragment node probabilities.
Validation of UVnovo Using E. coli Lysate. In order to

measure performance on a complex protein sample, we applied
the AMCA-UVPD strategy on a full E. coli lysate. The lysate
was carbamylated, digested, and derivatized with AMCA and
analyzed via LC-MS/MS with 351 nm UVPD. Spectra from
triplicate E. coli runs were processed with Proteome Discoverer
SEQUEST using the Percolator node and allowing a ±1.6 Da
precursor mass tolerance. Limiting the results to doubly
charged precursors and top-ranked matches, 7911 high-
confidence identifications matching 2983 unique peptides
were obtained from the 106,870 spectra collected across all
three samples. We benchmark UVnovo against these high-
confidence PSMs using 3-fold cross-validation (CV) to
maintain independence between training and test sets.
Each CV repetition was trained independently for UVPD

spectral interpretation. During random forest generation, 30
predictor variables were automatically identified as the most
important out of a total space of 407 potential features. Feature
scoring and selection was largely consistent between the three
CV repetitions, and 27 of the 30 selected features were the
same between each of the CV repetitions (Supporting
Information Table S1). These primarily represented spectral
peaks at specific mass offsets relative to the base position, and

as expected, the most important feature corresponded with y+

ions. Many of the features have not been used in prior de novo
software, although the fact that they independently emerged
among the most important from each of the CV rounds shows
their value and the power of an open machine learning
approach to spectral analysis.
UVnovo generated a list of sequences for each spectrum,

typically with no more than seven candidates, and sequences
were ranked based on descending confidence score. We
required a “correct” sequence reconstruction to exactly match
its corresponding SEQUEST PSM, after allowing for
indistinguishable residue pairs I/L and F/Moxidation. No
sequence gaps or truncations were permitted.
UVnovo produced correct top-ranked sequences for 47.4%

of the E. coli mass spectra, and when considering the top three
de novo sequences for each spectrum, 59.8% had a match to the
corresponding SEQUEST PSM (Figure 4a). The number of
correct reconstructions drops substantially with decreasing de
novo sequence rank (Figure 4b). Peptides with correct
sequences ranged in size between 6 and 24 amino acids and
had an average length of 11.0 residues. This compares to an
average peptide length of 11.8 from the total set of SEQUEST
PSMs, only two of which were longer than 24 residues.
Exclusion of spectra without high-scoring de novo reconstruc-
tions dramatically improved sequencing precision. This filtered
out two-thirds of the false positive predictions while retaining
85.5% of true predictions, boosting the precision to 66.4% and
80.4% for the top one and top three de novo sequence sets,
respectively (Figure 4c,d). Our ability to identify correct full-
length sequences from the majority of the test set demonstrates
the benefits of AMCA-UVPD for comprehensive and
interpretable peptide fragmentation.
For those spectra without a correct full-length identification,

the highest scoring prediction often differed from its matching
PSM at only a single fragmentation site, corresponding to a

Figure 4. UVnovo de novo results for the E. coli lysate test set. A correct sequence matches the SEQUEST PSM exactly with no gaps. UVnovo scores
each sequence reconstruction and ranks it relative to others from the same spectrum. (a) Number of correct sequences versus peptide length for the
top-ranked de novo result and for the top three de novo results. (b) Fraction of correct sequences versus de novo rank. (c, d) Filtering of low-scoring de
novo predictions improves sequence-level precision. 5062 of the original 7911 spectra remain, and over 75% of those removed had no correct match.
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difference of two amino acids. Figure 5a displays the frequency
and extent of amino acid sequencing errors versus peptide
length in the filtered set. Over half (52.0%) of the misidentified
sequences differ from the SEQUEST PSM by only two amino
acids, meaning that only one fragmentation site per peptide is
recognized incorrectly. Furthermore, each amino acid in a
sequence reconstruction has an associated score. Pooling all
residue predictions and sorting by descending score allowed us
to plot the amino acid-level precision and recall of residue

assignments, a common metric for de novo algorithm
performance.19,21,37 In brief, precision is measured as the
fraction of correct predictions out of all amino acid predictions,
and recall is the fraction of all amino acids in the test set that
are correctly identified. Correct counts must match both the
residue assignment and mass position along the spectrum.
Shown for the total set in Figure 5b and the filtered set in
Figure 5c, the UVnovo precision−recall curves confirm high
sequence coverage and low error at the amino acid level.

Figure 5. UVnovo performance for the E. coli lysate de novo reconstructions. (a) Amino acid error versus peptide length for top-ranked de novo
sequences from the filtered set of higher confidence predictions. Most sequences are correct with no insertions or deletions. Incorrect sequences
tend to diverge from SEQUEST PSMs by only two residues (a single fragmentation site misprediction). Histograms show fractional counts in each
dimension. (b, c) Amino acid precision recall for the complete and filtered de novo results. AAs are pooled and sorted by residue-level score from
(blue) the top-ranked de novo predictions for each spectrum or (dashed red) the best match among the top three predictions for each spectrum.

Figure 6. Co-eluting E. coli peptides independently identified between UVnovo and SEQUEST. (a) UVnovo and SEQUEST both assign the
sequence EVEGFGEVFR. (b) Spectrum is acquired 49 s after that of panel a. Here, UVnovo assigns PVNIDIQTIR, conflicting with the SEQUEST
identification, EVEGFGEVFR. Both sequences are presented within the E. coli reference database.
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Co-eluting peptides in our data sometimes manifest as
differences between the de novo sequence and SEQUEST PSM
for a spectrum. In some cases, this resulted in a hybrid de novo
sequence blended from the two precursor peptides. Ideally,
however, the differing de novo results complement the
SEQUEST identification, and both are correct. As an example,
Figure 6 presents a pair of co-eluting peptides observed across
two spectra. Both SEQUEST and UVnovo identified the first
spectrum as EVEGFGEVFR (1383.62 Da). The second
spectrum, acquired 49 s later in the same injection, took the
same SEQUEST PSM, while UVnovo assigned the sequence
PVNLDLQTIR (1383.73 Da). Both are present within the E.
coli sequence database, though the latter was not included in
the SEQUEST search due to the presence of proline C-terminal
to the tryptic arginine residue. We also observed other
“incorrect” de novo identifications with exact matches to
semitryptic E. coli peptides. Such examples indicate inflated
error rate estimates in our results and point to the power of de
novo methods in general for identifying unanticipated peptide
variants.
Finally, we note that our results compare favorably to the

performance of leading de novo sequencing algorithms on high-
resolution data sets in general, although specific comparisons
on this data set were not feasible due to the nature of the
modifications and ion series employed here. For example, while
UniNovo was designed to interpret novel fragmentation
spectra, it does not permit user-defined peptide modifications
or custom protease specificities.14 More generally, most
available de novo software is designed to recognize peptide
fragmentation patterns generated through HCD, CID, or ExD,
very different from the single y ion series we observe, and many
of these programs address the antisymmetric path problem with
assumptions that would negatively affect results for spectra with
unambiguous directionality. Nonetheless, by employing
stringent benchmarking criteria (e.g., requiring complete
peptide sequence predictions that exactly match corresponding
database PSMs), our data show that UVPD/UVnovo accurately
identifies peptide sequences in complex samples and cell lysate
contexts through a fully de novo sequencing approach.

■ CONCLUSIONS
We describe new experimental methods and the UVnovo
software package for de novo peptide sequencing by UVPD.
High-efficiency carbamylation blocks lysine side chains, and
subsequent tryptic digestion and N-terminal peptide derivatiza-
tion with the UV chromophore AMCA yield peptides
susceptible to 351 nm ultraviolet activation. The UVPD mass
spectra, primarily composed of y ions, are particularly well
suited for de novo sequencing. As illustrated in the present
study, 351 nm UVPD alleviates two of the fundamental
limitations for de novo sequencing of standard spectra:
incomplete or biased peptide sequence coverage and spectral
symmetry due to observation of both N- and C-terminal ions.
Because of the proclivity to generate abundant y ions, the
spectral peaks are easier to interpret, and the antisymmetric
path problem is nonexistent. Additionally, the comprehensive
peptide backbone cleavage of UVPD provides the means to
reconstruct full or nearly full sequences for most high-quality
peptide spectra.
Development of UVnovo was motivated by a lack of

appropriate tools for analysis of 351 nm UVPD peptide mass
spectra. UVnovo combines random forests and hidden Markov
models to simplify and interpret UVPD fragmentation spectra,

enabling the de novo sequencing of thousands of peptides from
an E. coli lysate at high confidence. UVnovo performance, seen
here for low-resolution ion trap spectra, broadly matches that of
leading de novo programs on high-resolution MS/MS spectra.
Due to the full sequence coverage provided through UVPD,
our workflow offers unprecedented capability for full-length
peptide de novo sequencing. Further refinement of the UVnovo
algorithm is underway and will capitalize on integrating CID
and UVPD paired spectra.
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