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Supplementary Notes 

Parameters and Datasets 
Unless specified otherwise, the results presented in the Supplement use the same data as described in 

the main text. In our study, we analyzed three different parameters. 1.) The probability of survival P(S) of 
a cell or organism upon knockout (KO) or knockdown (KD) of a single gene or of two genes.  P(S) 
represents the dispensability of a gene, it is calculated as 1-(fraction of essential genes) in a set of genes.  
2.) The probability of having a duplicate gene, calculated as the fraction of genes with at least one 
duplicate (D≥1) in a genome.  3.) The conditional probability P(S|D=x) of survival given a certain number 
of paralogs. P(S|D=0) signifies survival chances amongst singletons (in single-gene KO/KDs).  P(S|D≥1) 
signifies survival chances of genes with at least one duplicate.  4.) The contribution of duplicates to 
survival of gene KOs/KDs (buffering capacity) C = P(S|D≥1)/P(S|D=0) – 1.   

We ask whether these parameters change depending on the organism of study, the expression levels of 
genes, and their functions.   

1. Estimation of gene duplicates (paralogs) 
To validate our prediction of paralogs (gene duplicates), we examined gene family size distributions of 

the resulting groups of gene duplicates, and we tested several alternative approaches and compared our 
results to previous studies by Tong et al. [1, 2] and to the gene families obtained using a single E-value 
cutoff (10-10).  

Figure S1. Gene family size distribution for all genomes in our analysis  
Gene families are defined by BLAST E-value<10-10 (3x10-10 for worm, fly, 1x10-9 for Mycoplasma). 

(A) absolute numbers; (B) fraction of genome. The distributions are as expected: small gene families are 
more frequent than large families. The fraction of gene families (compared to singletons) increases in 
eukaryotes compared to prokaryotes and in multi-cellular compared to uni-cellular organisms. There is no 
obvious enrichment of two-gene families (D=1) in yeast. These results confirm the validity of our method 
of paralog estimation.  

Paralog estimation based on E-value cutoffs 
First, we tested different E-value thresholds for homology estimation in yeast. For all three different E-

values (10-10, 10-20, 10-30), we observe a significant enrichment in homologous genes amongst double 
knockout mutants with an SSL phenotype. When applying the same E-value cutoff used by Tong et al. [1, 
2] of 10-8, we obtained ~2% of homologous genes. This result is identical with what Tong et al. report, 
confirming our estimate.  In the paper, we use a threshold of 10-10, as this proved to be the best 
compromise between conservative homolog estimation (low false-positive rate) but sufficiently many 
gene families for statistically meaningful analysis.   

In addition to use of an E-value threshold, we tested several other constraints on paralog estimation: a) 
bidirectionality of the hit; b) length of the match region between two alignments; and c) single-linkage 
clustering. The results of these tests were examined manually with respect to the gene family size 
distribution, and sequence alignments of selected gene families.  
a) We tested whether gene family sizes would change when requiring both genes (query gene and its 

match) to have their match’s E-values below the threshold, instead of just requiring the query gene 
to have an E-value<threshold to its match.  This method represents a stricter paralog definition, 
decreasing gene family sizes and increasing the number singletons. As this additional requirement 
did not introduce any obvious advantage we decided against its use.  

b) Sequences can match across their whole length or along only part of their length.  This behavior is 



 

expressed by the ‘alignment match length’ which denotes the fraction of the shorter sequence that is 
aligned to the other sequence. We tested match length requirements of 0.6, 0.7 and 0.8, but did not 
observe significant changes to the gene family size distributions. The E-value itself is partially a 
function of match length, thus a relatively stringent cutoff (such as 10-10) indirectly requires 
substantial match length. For our analysis of buffering capacity of homologous genes we did not 
require the genes to match over their entire length, as even parts of the gene (protein) could buffer 
for the function of the other.  

c) Gene-families can be reconstructed by grouping genes with common paralogs into one family. As 
our method includes local matches (matches along only part of the sequence, see b), a single-linkage 
clustering algorithm bears the danger of combining genes, via common homologs, that have no 
sequence similarity at all and are not paralogs. In addition, for our analysis we were interested in the 
number of paralogs per gene (effective gene family size D) rather than the actual gene family sizes, 
thus gene family clustering again did not seem a feasible step to do.  

In sum, all three variations did not visibly improve our paralog estimation, and in the spirit of 
parsimony we decided for simple application of one E-value cutoff. Note that, as described in the 
paper, this E-value cutoff has been adjusted in genomes much smaller or larger than yeast.   

Paralog estimation based methods other than E-value cutoffs 
We tested additional methods of paralog estimation independent of the absolute E-value between two 
sequences.  
a) In the ‘drop’ method, we examined for each gene the difference in –log(E-value) to its rank-ordered 

hits, with the minimal -log[E-value]>3. For each gene, we counted a hit as homolog if the difference 
between its –log[E-value] and the –log[E-value] of the next better hit was smaller than 2, 3 or 5. In 
other words, we counted all hits as homologs of a particular gene if their -log[E-value]s were similar 
to each other and significantly better than the -log[E-value]s of all other hits. We produced gene 
families from these groups of homologs using single linkage clustering. The ‘drop’ method resulted 
in a similar gene family size distribution as the E-value ‘cutoff’ method.  

b) In the ‘bidirectional best hit’ method, gene pairs qualified as paralogs if they had each other as their 
best hit, independent of the actual E-value, but requiring a minimum –log[E-value]>5.  The 
disadvantage of this method is that it only produces pairs of paralogs, but not larger gene families.  

c) For yeast we also estimated paralogs using the Inparanoid database [3].  In this approach, each yeast 
gene was defined as a paralog of a query gene if its BLAST score is better than the BLAST score to 
an ortholog of the query gene.  Estimating yeast paralogs with Arabidopsis, C.elegans, and human as 
reference genome did not result in sufficiently high numbers of paralogs for meaningful statistical 
analysis.  

A simple E-value cutoff proved to be as good as or better than the methods discussed above, hence we 
decided to use it as our primary method of paralog estimation. 

 

2. The number of duplicates per gene and the distance to the 
nearest duplicate 

Figure S2. Survival rates of single-gene knockouts as function of effective gene family size and 
sequence distance (E-value) to the closest paralog. 

A. The effective gene family size is defined by BLAST E-value cutoff 10-10 as described in the main 
text (Methods).  The effective gene family size D denotes the number of paralogs available for a given 
gene.  Except for E.coli and worm, there are no or only weak correlations between D and the probability 
of survival P(S) of single-gene KOs.  

B. The sequence distance is estimated as the E-value between the bait gene (targeted for single-KO) 
and its closest paralog.  The histogram shows –log10(E-value) bins, with bin “0-5” denoting the least 



 

closely, bin “30+” denoting the most closely related genes.  For some organisms, i.e. P. aeruginosis, 
E.coli, yeast, and worm, there is moderate to good correlation between –log10(E-value) and the probability 
of survival P(S) of single-gene KOs.   

Figures S3, S4, S5.  The influence of ribosomal and WGD genes on single-KO survival rates in yeast.  
As ribosomal genes and genes originating from the whole-genome duplication (WGD) have 

characteristics different to genes of other duplications, we compared survival rates of single- and double-
gene knockouts (SKO, DKO) in the whole yeast genome (Figure S3) with those in the yeast genome 
without the WGD genes [4] (Figure S4) and those in the yeast genome without predicted ribosomal genes 
[5] (Figure S5). In each figure, the top (A) and middle panel (B) show the relationship between SKO 
survival rates and the E-value and effective gene family size, respectively. The bottom panel (C) shows 
the DKO survival rates in relationship to the effective gene family size. Note that an effective gene family 
size of D=1 in SKO represents a two-gene family, for example, but in DKO it represents a three-gene 
family.  

The enrichment of two-gene families in yeast in which both genes buffer for each other can in part be 
explained by the two-gene families originating from the WGD.  However, when removing all WGD 
duplicates, trends are similar to those amongst all genes. Removal of ribosomal genes does not change any 
of the trends.  

3. Expression analysis 
To test for the influence of expression level on buffering by gene duplicates, we tested three different 

measures: i) experimental expression data; ii) Codon Bias Index (see main text); and iii) Codon 
Adaptation Index.  

Experimental expression data 

Figure S6. Chances of survival, fraction of genes with duplicates, and contribution of duplicates to 
survival in genes of different expression levels  

Information on gene expression was collected for each organism from different sources (Table S1), 
filtering for experiments which used conditions (strain, medium) similar to those of the KO/KD screens. 
The figures shows survival P(S), the fraction of genes with duplicates P(D≥1) and the contribution of 
duplicates to survival C for the different subsets.  * P-value < 0.01; ** P-value < 0.001 

Figure S7. Survival P(S) and the effective gene family size D or the E-value between the target gene 
and its nearest duplicate at different expression levels  (yeast) 

At the example of yeast, we illustrate that within subsets of (highly) expressed genes the correlation 
between survival P(S) and the effective gene family size D (A) or the E-value between the target gene and 
its nearest duplicate (B) is similar to that of all genes.  This trend is the same for E.coli and worm (not 
shown).   

Codon Adaptation Index 

Figure S8. Chances of survival, fraction of genes with duplicates, and contribution of duplicates to 
survival in genes of high or low CAI 

To validate the findings from the experimental expression data, we used sequence-based 
approximations of expression levels, Codon Bias Index (CBI, main text) and Codon Adaptation Index 
(CAI). Both CBI and CAI were obtained from the CodonW server [6], using standard settings, but 
adjusting parameters for the respective organism. Calculation of CAI requires a reference data set of 
expressed genes for calculation of the index, whereas calculation of CBI is purely based on nucleotide 



 

sequence. Both measures are expected to work less well in multi-cellular than in single-cellular organisms 
due to tissue-specific expression levels which cannot be captured by a single sequence feature.    

We rank-ordered the values and selected subsets of genes with the highest or lowest CAI, respectively.  
The sizes of the subsets varied according to the organism’s genome size.  The figure shows survival P(S), 
the fraction of genes with duplicates (D≥1), and the contribution of duplicates to buffering C in the top, 
middle and bottom panel, respectively.  Both CBI and CAI show similar trends with respect to survival 
P(S), the fraction of genes with duplicates (D≥1) and the buffering capacity C as the experimental 
expression data (main text and Figure S7).    

 

4. Function analysis 

Figure S9.  Gene ontology annotation 
Function annotation using the Gene Ontology vocabulary was downloaded from the GO website [7] 

and mapped to a generic GO Slim vocabulary from the same website.  GO annotation was only available 
for yeast, worm, fly and mouse. The figures include functional categories with very few members (<30 
genes) which have little statistical power.   

A. The probability of survival P(S) for genes of different functions.  
B. The contribution of duplicates to buffering C for genes of different functions.  
Survival rates and buffering capacity vary widely across the different functional categories in the four 

organisms – function is not a correlate of buffering by duplicates. Similar to highly expressed genes, 
function categories of low P(S) tend to have higher contributions of duplicates to survival and vice versa. 
No bias for certain functions towards high or low buffering capacity occurs consistently across all 
organisms.   

In yeast, duplicates do not buffer genes of growth and reproduction, but duplicates buffer kinases. In 
contrast, kinases and other cell cycle proteins in worm are hardly buffered by duplicates, while ribosomal 
proteins have a contribution of duplicates much higher than average. Due to multiple hypothesis testing, 
only P-values<0. 01 should be considered significant; none of the functional categories meet this threshold 
(Z-score across distribution of functional categories).   

S – survival upon gene deletion; aa and derivative metab. – amino acid and derivatives metabolism; 
cellular component org. /biogen. – cellular component organization/biogenesis 

Figure S10.  Function annotation based on protein domains 
Function annotations based on protein domains were obtained from the SUPERFAMILY database [5] 

using its domain predictions and the domain function annotation.  The function annotation scheme 
consists of seven major categories which map to 50 smaller categories.  The annotation was available for 
all organisms of our analysis. Probability of survival P(S) (top) and contribution of duplicates to buffering 
C (bottom) shown separately for seven organisms, shown for the major functional categories. Function 
categories of low P(S) tend to have higher contributions of duplicates to survival and vice versa. 

  

5. Two-gene families as a model for buffering by duplicates 
Previous studies reported that the contribution of duplicates to buffering when examined in double 

gene-KOs is very small (~2%)[1, 2]; however, this contribution is an underestimate for two reasons. First, 
those studies did not account for different gene family sizes. For example, if both genes of a two-gene 
family are knocked-out, the phenotype is more likely to be lethal than if two genes of a larger family are 
knocked-out and additional duplicates are available to buffer for loss of function. Second, two genes, 
which are unrelated by sequence similarity, can produce a viable double-KO phenotype i) because one or 
both genes are members of separate gene families in which the duplicates buffer for the KO; ii) because 
one or both genes are of functions that are not essential under tested conditions. This ambiguity with 



 

double-KOs of unrelated genes inflates their chances of survival and makes them less valuable for analysis 
of buffering by duplicates.  

Thus, in our analysis we explicitly distinguish between double-KOs of related and unrelated genes 
(Figure S11, middle/right). We also distinguish between different effective family sizes. We find that 
overall chances of survival of double-KOs are similar to that of single-KOs (P(S)=0. 93 vs. P(S)=0. 82) 
when focusing on double-KO targets which are sequence-related (Figure S11, middle) and excluding 
double-KOs of unrelated genes (Figure S11, right). In double-KOs of sequence-related genes (Figure 
S11, middle), overall survival rates are slightly elevated compared to those of single-KOs. This is most 
likely due to the a priori bias of double-KO experiments towards non-essentials genes - all genes tested by 
double-K0 screens where non-essential in single-KO screens.  

We observe that the yeast genome is enriched for two-gene families whose members are likely to 
buffer for each other (Figures S11B). In single-KOs (Figure S11B, left), chances of survival are higher 
amongst two-gene families (D=1) than amongst singletons (D=0) and larger gene families (D≥2).  In 
double-KOs of sequence-related genes (Figure S11B, middle), yeast two-gene families (D=0) have 
drastically reduced chances of survival. Two-gene families in yeast are enriched for duplicates originating 
from the whole-genome duplication (WGD)[4, 8], however, the observation from Figure S11B holds true 
even if members of the WGD are removed (Figure S12). Survival of all 609 two-gene families in our set 
(P(S|D=1)=0. 51; Figure S11B middle panel) is even lower than survival of the all WGD gene pairs 
(P(S)=0. 86, from ref. [8]). The enrichment of buffering two-gene families in yeast is also not due to 
preferential duplication of ribosomal genes (Figure S12), nor do we observe it in worm (Figure S11C).  

 

Figure S11. Yeast two-gene families are enriched for buffering duplicates 
Two-gene families play a special role in yeast. Survival upon single gene-KO is higher in two-gene 

than in larger families (left), i. e. the two-gene families are enriched for families in which both genes 
likely buffer for each other.  If both genes of a two-gene family are knocked out, chances for survival are 
low (middle).  The trends hold true even when accounting for whole-genome duplicates [8] or ribosomal 
genes (see Figure S12).  

A. When examining survival upon single and double gene-KO in yeast, we distinguish between 
different buffering scenarios. The cartoons depict genes (circles) and their homologous relationships 
(lines) as predicted by sequence similarity.  Filled circles (black) denote knocked-out genes. Left: single-
KO of a singleton, a gene in a two- or three-gene family leaves zero, one or two additional duplicates, 
respectively, which can buffer for the KO. In the case of double gene knockouts, the two genes can either 
be sequence-related (i. e. homologous; middle) or unrelated (right). Middle: depending on the family size 
(two, three, four), after double-KO zero, one or more duplicates remain. Right:  if the two double-KO 
genes are unrelated, zero (one, two) additional paralogs can be achieved if the genes are singletons 
(members of two-gene or three-gene families).  In each group of buffering/KO scenarios (left, middle, 
right), the number of additional duplicates D is zero, one or more, while the actual family size varies.  

B. Chances of survival upon gene-KO in yeast are comparable for single gene-KOs (left) and double 
gene-KO of sequence-related genes (middle). Survival is generally much higher in double gene-KOs of 
unrelated genes (right) since those two genes are unlikely to buffer for each other. Two-gene families in 
yeast are enriched for genes that buffer for each other: chances of survival are higher in single gene-KOs 
of two-gene families than of larger families. When both genes of a two-gene family are knocked-out, 
survival chances are low (middle). The red arrows point to the unusual behavior of yeast two-gene 
families. Numbers printed in the columns report the total number of tested genes (single gene-KO) or 
tested pairs (double gene-KO).  

C. In worm, we observe trends similar to those in yeast (B).  Duplicate genes increase chances of 
survival in single gene-KDs. For double gene-KDs, the situation is less clear, partly due to lower numbers 
of genes with KD information. In worm, there is no enrichment in buffering two-gene families as 
observed for yeast. Numbers printed in the columns report the total number of tested genes (single gene-
KO) or tested pairs (double gene-KO).  



 

 

Figure S12.  Yeast two-gene families are enriched for buffering duplicates 
Two-gene families play a special role in yeast, as explained in the main text.  The families are enriched 

for duplicates which buffer for each other’s loss of function, as can be seen in the comparatively high 
survival rates of two-gene families (D=1) in single-gene KOs and the low survival rates in of two-gene 
families (D=0, related genes) in double-KOs (both marked by arrows)(A). The trend holds true even if 
removing ribosomal genes (B) or genes of the whole-genome duplication (WGD) (C) [4].  Genes of the 
WGD are enriched for buffering two-gene families [8], but possibly not all WGD pairs have yet been 
identified. We also observe enrichment in buffering two-gene families in yeast in a set of predicted genetic 
interactions [2] (not shown).  

 

Yeast 
Two-gene families, when targeted for single- and double-gene KO, are a good set for studying 

characteristics of buffering by gene duplicates (see main text). Large- and small-scale double gene-KO 
tests identified 50 two-gene families with an SSL phenotype (buffering genes).  The characteristics of 
these families are compared to characteristics of the 559 remaining two-gene families in yeast, and to the 
characteristics of nine two-gene families with viable phenotypes in double-KOs (Table S3).  

Table S3B, D also describe the comparison of buffering and non-buffering two-gene families in terms 
of similarity of vectors describing their interactions. The vectors describe single gene-KO phenotypes [9], 
function [10], genetic interactions (from the large scale screens described in the main text as well as single 
SSL interactions listed in BioGRID [11]) and physical interactions (as listed in BioGRID [11]). The table 
lists several measures of vector similarity, of which the Jaccard index is used in the main text.  

Duplicates from the WGD are known to have properties different to those of other duplicates [8, 12]. 
We tested some of the properties listed in Table S3 for all 108 WGD two-gene families in comparison to 
the 501 two-gene families not identified to originate from the WGD [4] (Table S4). All tested properties 
are consistent with the findings on buffering in comparison to non-buffering genes. While there is a link 
between buffering capacity and origin of duplicates in the WGD (reflected in distinct protein 
characteristics), we cannot resolve causality. We hypothesize, however, that WGD gene pairs are strongly 
enriched in duplicates that buffer for each other’s loss of function in single-gene deletions.  

Worm 
 We extracted the 143 worm two-gene families tested in double-RNAi knockdowns by Tischler et al. 

[13] which resulted in 16 pairs of synthetic sick or lethal (SSL) phenotypes. We calculated the Codon 
Adaptation Index for the worm genes using a webserver, http://www.evolvingcode.net/codon/cai/cais.php 
[14], and found a significant bias similar to that in yeast (see main text), suggesting that buffering genes 
are more efficiently translated than non-buffering genes.  



 

 

Tables 

Table S1. Number of genes in subsets of expressed genes.   
The table lists the number of genes in each subset as well as the number of essential genes in the 

subsets. Information on gene expression was collected for each organism from different sources (Table 
S1), filtering for experiments which used conditions (strain, medium) similar to those of the KO/KD 
screens.  

For dual channel microarray experiments, we estimated expression levels based on the spot intensities 
in the microarrays. In all organisms (except for M. genitalium and mouse), we rank-ordered the 
quantitative expression levels and selected a subset of genes of the highest and lowest expression levels. 
Subsets were chosen proportional to dataset size. We tested different cutoffs for subset selection, all with 
the same qualitative results (not shown). In M. genitalium and mouse only protein identifications but no 
quantitative data was available, thus we divided the data into sets of ‘expressed’ (observed) and ‘not 
expressed’ (not observed) genes. The set of ‘NOT Expressed Genes’ is the set of all genes without the 
expressed genes. ‘NOT Expressed Genes’ can also be expressed, although at lower levels. 

  
* - expression estimated from spot intensity; GEO – reference [15]; MGD – reference [16]; SMD – 

reference [17] 
 
 

Organism 

Source of expression 
data 

All Genes 

Genes identified 
to be expressed 
or expressed at 
high levels  

Genes identified to 
be not expressed 
or expressed at 
low levels 

H. pylorii n/a 1559 n/a n/a 
M. genitatlium Protein identification [18] 480 102 378 
H. influenzae GEO GSE5061 1704 600 600 
M. tuberculosis GEO GSE7588 3920 1200 1200 

P aeruginosa 

Avg. of four datasets 
GEO GSE2430, 
GSE3090, GSE4152, 
GSE5443 5566 1542 1440 

B. subtilis GEO GSM49830 4105 1430 368 
E. coli SMD dataset 15206 4234 1395 172 

S. cerevisiae 
Avg. of three datasets 
[19-21] 5318 2708 512 

C. elegans 
Gene expression at 
young adult * [22] 13891 170 1415 

D. melanogaster GEO GSM6159 12145 3635 250 

M. musculus 
From MGI TS26 Newborn 
Mouse 4267 2005 2262 



 

 

Table S2. Sources of 14 yeast double-gene knockout screens 
In addition to the main SGA screen by Tong et al. [1], several other large-scale studies have been 

conducted to-date.  We compiled a list of 14 studies marked as ‘systematic deletion screen’ in GRID [11], 
which in total describe double-gene KOs of 204 baits against all non-essential yeast genes, resulting in 
12,267 SSL interactions. 

 
Number of SSL 

interactions in GRID 
PubMed ID Authors 

3873     14764870         Tong AH et al. [1] 
1010     16487579         Pan X et al. [23] 

673      14690608         Krogan NJ et al. [24] 
338      11743205         Tong AH et al. [25] 
306      15715908         Lesage G et al. [26] 
272      15766533         Zhao R et al. [27] 
214      16157669         Daniel JA et al. [28] 
191      15166135         Lesage G et al. [29] 
180      15525520         Pan X et al. [30] 
127      15725626         Loeillet S et al. [31] 

94       16394103        Friesen H et al. [32] 
94       15657441         Ingvarsdottir K et al. [33] 
62       15817685         Menon BB et al. [34] 
60       15238513         Suter B et al. [35] 



 

 

Table S3.  Properties of buffering and non-buffering yeast two-gene families 
Yeast two-gene families, when targeted for single- and double-gene KO, are a good set for studying 

characteristics of buffering by gene duplicates. Large-scale and individual double gene-KO experiments 
have identified 50 two-gene families with an SSL phenotype (buffering pairs).  However, only eight two-
gene families tested in double-KOs have been found to have viable phenotypes (non-buffering pairs).  
Hence we also conducted all tests with an extended dataset of all two-gene families in yeast minus the 50 
SSL two-gene families, resulting in 559 pairs.  

The table lists all properties that we have tested for these sets of two-gene families. All properties were 
examined either across all genes in the respective set (A, C), or between the genes (B, D). Features from 
the calculations across genes are calculated between genes as |feature(gene1)-feature(gene2)|. Other 
features, e.g. sequence similarity, only exist between genes. Due to multiple hypothesis testing (~50 tests), 
a t-score>3.26 should be considered significant at an adjusted P-value of 0.05.  Table E lists the numbers 
of orthologs and their essentiality (if known) for buffering and non-buffering gene pairs.  Orthology is 
determined by InParanoid [3].  

avg. – average 

A. 50 buffering pairs vs. 559 two-gene families - Across genes 
 

Source Feature 

Avg. 50 
SSL 
genes 

Count 
– 50 
SSL 

Avg – 559 
backgroun
d genes 

Count – 
559 
backgro
und 
genes 

t-
score 

Protein and mRNA 
expression [36] Protein/mRNA 7142.09 11 7078.15 105 0.02 
 mRNA abundance 4.95 91 4.96 928 -0.01 
 Protein abundance 35040.36 29 56040.43 194 -1.40 
SGD [37] Molecular weight 1023.90 53 1742.84 459 -2.14 
 PIso 7.37 99 7.64 1054 -1.20 
 CAI 0.23 99 0.22 1054 0.59 
 Length 588.26 99 525.54 1054 1.36 
 CBI 0.19 99 0.18 1048 0.36 
 FOP 0.52 99 0.51 1054 0.47 
 GRAVY -0.43 99 -0.40 1054 -0.89 
 Aromaticity 0.09 99 0.09 1054 -0.67 
 PEST_absolute counts 154.67 99 137.19 1054 1.38 
 PEST_frequency 0.26 99 0.25 1054 1.23 
Protein interactions 
[38] No. protein-protein interactions 15.15 84 13.03 818 0.87 
 PPixn_MIPS 23.33 36 31.58 214 -1.61 
Functional network 
[10] Clustering coefficient 0.29 96 0.32 875 -1.08 
 Degree 27.64 98 20.69 946 2.32 
InParanoid [3] No. orthologs in 14 organisms 8.06 94 6.65 1001 2.34 
Sequence features 
[39] dN 0.120 56 0.170 552 -4.43 
 dS (ajdusted) 2.11 56 2.16 552 -1.54 
 dN/dS 0.06 56 0.08 552 -4.39 
Protein production 
[40] Protein production rate  0.63 90 0.55 920 0.50 
 Proteins produced per mRNA 5.73 85 5.06 863 0.74 
 Deletion grwoth rate -0.17 87 -0.14 889 -0.75 



 

 Transcription rate 0.11 85 0.10 863 0.46 
 mRNA abundance 3.98 90 3.40 920 0.66 
 mRNA decay rate 0.061 85 0.059 867 0.61 

 
Transcription rate / rel. 
translation rate 0.36 85 0.31 863 0.96 

[41] Protein half-life 108.5 74 127.7 704 -0.76 
 
 

B. 50 buffering pairs vs. 559 two-gene families - Between genes  
 

Source Feature 

Avg. 50 
SSL 
genes 

Count 
– 50 
SSL 

Avg – 559 
backgroun
d genes 

Count – 
559 
backgro
und 
genes 

t-
score 

Protein and mRNA 
expression [36] Protein per mRNA 13224.000 2 7258.875 8 0.52 
 mRNA abundance 2.555 43 4.045 431 -1.41 
 Protein abundance 17394.283 7 42128.491 25 -1.21 
SGD [37] Molecular weight 723.833 18 2137.909 143 -1.91 
 PIso 14938.606 33 22291.899 284 -1.15 
 PIso 1.064 50 1.231 545 -0.98 
 CAI 0.047 50 0.064 545 -1.76 
 length 86.280 50 135.552 545 -2.28 
 CBI 0.077 50 0.111 539 -2.80 
 FOP 0.043 50 0.065 545 -2.93 
 GRAVY 0.099 50 0.146 545 -2.99 
 Arom 0.011 50 0.012 545 -0.63 
 PEST_abs 33.140 50 43.431 545 -1.36 
 PEST_rel 0.021 50 0.024 545 -1.03 
Protein interactions 
[38] No. protein interactions 5.351 37 6.045 332 -0.58 
 No. protein interactions (MIPS) 0.941 17 1.358 81 -0.54 
Functional network 
[10] Clustering coefficient 0.162 48 0.202 406 -1.48 
 Degree 14.980 49 14.077 457 0.39 
InParanoid [3] No. orthologs in 14 organisms 1.956 45 2.659 496 -1.01 
Sequence features 
[39] dN 0.038 17 0.086 176 -4.64 
 dS 0.207 17 0.211 176 -0.10 
 dN/dS 0.017 17 0.039 176 -5.00 
Protein production 
[40] Protein production rate  0.304 41 0.447 416 -1.36 
 Proteins produced per mRNA 4.190 36 3.674 369 0.58 
 Deletion grwoth rate 0.217 39 0.172 391 0.77 
 Transcription rate 0.039 36 0.073 369 -2.98 
 mRNA abundance 1.427 41 2.170 416 -1.74 
 mRNA decay rate 0.030 36 0.026 373 0.98 

 
Transcription rate / rel. 
translation rate 8.039 36 8.252 373 -0.14 

 Protein production rate  0.215 36 0.288 369 -1.19 
[41] Protein half-life 91.4 31 174.0 260 -1.93 

 
Characteristics that only exist between genes.  

Source Feature 
Avg. 50 
SSL 

Count 
– 50 

Avg – 559 
backgroun

Count – 
559 

t-
score 



 

genes SSL d genes backgro
und 
genes 

Functional network 
[10] Shortest path 1.271 48 1.898 498 -5.66 
BLAST output Sequence similarity 54.332 50 46.795 555 2.15 
Vector comparison: 
Similarity measure Type of interaction      
Mutual information       
(data see paper) Genetic  0.00 26 0.00 183 -0.28 
[10] Functional 0.01 23 0.00 394 0.79 
[9] Phenotype 0.02 10 0.03 177 -0.77 
[11] Physical 0.00 25 0.00 517 1.30 
Jaccard index       
(data see paper) Genetic  0.01 26 0.03 183 -0.63 
[10] Functional 0.15 23 0.11 394 1.11 
[9] Phenotype 0.17 10 0.23 177 -0.50 
[11] Physical 0.13 25 0.08 517 1.75 
Avg. no. interactions 
per vector       
(data see paper) Genetic  156.46 26 235.26 183 -0.75 
[10] Functional 4678.00 23 4678.00 394 1.00 
[9] Phenotype 100.00 10 100.00 177 1.00 
[11] Physical 5318.00 25 5318.00 517 1.00 
Hamming distance       
(data see paper) Genetic  6.27 26 6.42 183 -0.07 
[10] Functional 27.65 23 24.11 394 0.62 
[9] Phenotype 3.20 10 3.96 177 -0.86 
[11] Physical 24.24 25 19.09 517 1.06 

 
 

C. 50 buffering pairs vs. 8 non-buffering pairs - Across genes 

Source Feature 

Avg. 50 
SSL 
genes 

Count 
– 50 
SSL 

Avg – 8 
non-SSL 
genes 

Count – 
8  non-
SSL 
genes 

t-
score 

Protein and mRNA 
expression [36] Protein/mRNA 7142.091 11 3722.000 1 1.24 
 mRNA abundance 4.948 91 0.906 14 4.04 
 Protein abundance 35040.358 29 2115.875 4 2.84 
SGD [37] Molecular weight 66299.869 99 91885.000 16 -2.33 
 PIso 7.367 99 7.576 16 -0.38 
 CAI 0.232 99 0.134 16 4.97 
 Length 588.263 99 821.625 16 -2.23 
 CBI 0.187 99 0.051 16 5.18 
 FOP 0.519 99 0.438 16 5.36 
 GRAVY -0.430 99 -0.523 16 1.36 
 Aromaticity 0.086 99 0.086 16 -0.01 
 PEST_absolute counts 154.667 99 258.688 16 -1.99 
 PEST_frequency 0.257 99 0.293 16 -1.74 
Protein interactions 
[38] No. protein-protein interactions 15.155 84 4.286 14 4.50 
Functional network 
[10] Clustering coefficient 0.292 96 0.191 16 2.77 
 Degree 27.643 98 21.063 16 1.54 



 

InParanoid [3] No. orthologs in 14 organisms 8.064 94 5.800 15 1.52 
Sequence features 
[39] dN 0.120 56 0.240 8 -1.80 
 dS (ajdusted) 2.112 56 2.111 8 0.01 
 dN/dS 0.056 56 0.113 8 -1.95 
Protein production 
[40] Protein production rate  0.632 90 0.056 12 3.45 
 Proteins produced per mRNA 5.733 85 1.388 11 4.07 
 Deletion grwoth rate -0.168 87 -0.058 12 -2.48 
 Transcription rate 0.109 85 0.040 11 2.87 
 mRNA abundance 3.976 90 1.250 12 3.18 
 mRNA decay rate 15.675 85 13.119 11 1.12 

 
Transcription rate / rel. 
translation rate 0.359 85 0.595 11 -1.67 

[41] Protein half-life 108.5 74 177.1 13 -0.50 
 

D. 50 buffering pairs vs. 8 non-buffering pairs - Between genes 
 

Source Feature 

Avg. 50 
SSL 
genes 

Count 
– 50 
SSL 

Avg – 8 
non-SSL 
genes 

Count – 
8 non-
SSL 
genes 

t-
score 

Protein and mRNA 
expression [36] mRNA abundance 2.555 43 0.430 7 2.43 
 Protein abundance 17394.283 7 4727.490 1 1.35 
SGD [37] Molecular weight 9552.460 50 34705.000 8 -3.45 
 PIso 1.064 50 0.854 8 1.07 
 CAI 0.047 50 0.014 8 3.57 
 Length 86.280 50 305.500 8 -3.45 
 CBI 0.077 50 0.061 8 0.94 
 FOP 0.043 50 0.033 8 0.93 
 GRAVY 0.099 50 0.144 8 -1.39 
 Aromaticity 0.011 50 0.006 8 1.61 
 PEST_absolute counts 33.140 50 93.625 8 -2.65 
 PEST_frequency 0.021 50 0.020 8 0.14 
Protein interactions 
[38] No. protein-protein interactions 5.351 37 3.500 6 1.10 
Functional network 
[10] Clustering coefficient 0.162 48 0.133 8 0.52 
 Degree 14.980 49 11.625 8 0.51 
InParanoid [3] No. orthologs in 14 organisms 1.956 45 2.286 7 -0.26 
Sequence features 
[39] dN 0.038 17 0.006 1 0.00 
 dS (ajdusted) 0.207 17 0.245 1 0.00 
 dN/dS 0.017 17 0.012 1 0.00 
Protein production 
[40] Protein production rate  0.304 41 0.082 5 2.14 
 Proteins produced per mRNA 4.190 36 1.910 4 1.52 
 Deletion growth rate 0.217 39 0.071 5 2.15 
 Transcription rate 0.039 36 0.019 4 2.25 
 mRNA abundance 1.427 41 0.840 5 1.41 
 mRNA decay rate 0.030 36 0.020 4 1.32 

 
Transcription rate / rel. 
translation rate 0.215 36 0.516 4 -1.83 

[41] Protein half-life 91.4 31 407.47 5 -0.90 
 



 

Characteristics that only exist between genes.  

Source Feature 

Avg. 50 
SSL 
genes 

Count 
– 50 
SSL 

Avg – 8 
non-SSL 
genes 

Count – 
8 non-
SSL 
genes 

t-
score 

Functional network 
[10] Shortest path 1.271 48 1.625 8 -1.26 
BLAST output Sequence similarity 54.332 50 32.486 8 4.91 
Vector comparison: 
Similarity measure Type of interaction      
Mutual information       
[11] Physical 0.005 25 0.001 8 2.03 
(data see paper) Genetic  0.003 26 0.028 7 -1.72 
[10] Functional 0.006 23 0.001 7 2.03 
[9] Phenotype 0.022 10 0.010 2 0.45 
Jaccard index       
[11] Physical 0.13 25 0.03 8 2.01 
(data see paper) Genetic  0.01 26 0.07 7 -1.49 
[10] Functional 0.15 23 0.04 7 2.04 
[9] Phenotype 0.17 10 0.11 2 0.27 
Avg. no. interactions 
per vector       
[11] Physical 5318.00 25 5318.00 8 1.00 
(data see paper) Genetic  156.46 26 1389.86 7 -3.23 
[10] Functional 4678.00 23 4678.00 7 1.00 
[9] Phenotype 100.00 10 100.00 2 1.00 
Hamming distance       
[11] Physical 24.24 25 9.75 8 1.92 
(data see paper) Genetic  6.27 26 23.00 7 -3.16 
[10] Functional 27.65 23 11.57 7 1.88 
[9] Phenotype 3.20 10 8.50 2 -3.71 

 

E. 50 buffering pairs vs. 559 two-gene families – Orthologs 
 Buffering 

pairs 
Non-buffering 
pairs 

Single ortholog in fly, worm or mouse    
 - essential 11 55 
 - non-essential 13 116 
Multiple orthologs in fly, worm or mouse 
(inparalogs) 

  

 - all essential 1 2 
 - all non-essential 6 42 
Other (mix of the above) 24 148 



 

 

Table S4.  Properties of yeast WGD two-gene families and non-WGD two-gene families 
Duplicates arising from the whole genome duplication (WGD) are different to other duplicates [8]. 

WGD genes are also enriched in pairs of SSL interaction [8], thus likely to buffer for each other. 
Conversely, some of the properties of the ‘buffering’ genes discussed in our paper (see main text and 
Table S2) may be accounted to the enrichment of WGD genes amongst buffering genes, although the 
enrichment of WGD in buffering genes is not significant (Table S2). We tested some of the properties 
listed in Table S2 for all WGD two-gene families in comparison to two-gene families not identified to 
originate from the WGD. All properties are consistent with the findings on buffering in comparison to 
non-buffering gene.  
 

 

Two-gene 
families 
from WGD  

Two-gene 
families 
not from 
WGD df 

t-
scor
e P-value 

N= 501 108    
Protein degradation (protein half life) [41] 104 124.4 561 0.97 0.335 
Protein abundance – APEX [36] 122259.3 107691.1 103 -0.45 0.653 
Average protein abundance (Western, 2D, 
APEX) [36] 27778.3 25229.0 645 -0.41 0.682 
Average mRNA abundance (SAGE, 
genomic, HDA) [36] 6.3 4.3 820 -1.95 0.052 
Protein/mRNA ratio [36] 3570.8 10483.4 640 1.08 0.280 
CAI (Codon Adaptation Index) [37] 0.3 0.2 853 -2.36 0.019 
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Figure S1. Gene family size distribution for all genomes in our analysis
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Figure S2A. Survival rates of single-gene knockouts as function of effective gene family size and
sequence distance (E-value) to the closest paralog
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Figure S2B. Survival rates of single-gene knockouts as function of effective gene family size and
sequence distance (E-value) to the closest paralog
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Figures S3.  The influence of ribosomal and WGD genes on single-KO survival rates
in yeast

A. Yeast SKO (regular data) R2=0.72

B. Yeast SKO (regular data) R2=0.00

C. Yeast DKO (regular data) R2=0.16



Figures S4.  The influence of ribosomal and WGD genes on single-KO survival
rates in yeast

A. Yeast SKO (minus WGD) R2=0.32

B. Yeast SKO (minus WGD) R2=0.00

C. Yeast DKO (minus WGD) R2=0.12



Figures S5.  The influence of ribosomal and WGD genes on single-KO survival rates
in yeast

A. Yeast SKO (minus ribosomal genes) R2=0.77

B. Yeast SKO (minus ribosomal genes) R2=0.00

C. Yeast DKO (minus ribosomal genes) R2=0.16



Figure S6. P(S), P(D>=1) and C in genes of different expression levels (experimental data).
Expression data for H. pylori is missing.



Figure S7. Survival P(S) and the effective gene family size D or the E-value between the target
gene and its nearest duplicate at different expression levels (experimental data)
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Figure S8. P(S), P(D>=1) and C in genes of high or low Codon Bias Index/Codon Adaptation
Index (CBI/CAI)

CAI



Figure S9A. Function annotation -- Gene Ontology



Figure S9B. Function annotation -- Gene Ontology



Figure S10. Function annotation based on protein domains



Figure S11.  Yeast two-gene families are enriched for buffering duplicates
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Figure S12.  Yeast two-gene families are enriched for buffering duplicates

i. Single-gene KO

Number of additional duplicates (effective family size):

ii. Double-gene KO 
(related genes)

iii. Double-gene KO 
(unrelated genes)
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