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ABSTRACT

Motivation: A number of computational methods have been
proposed that predict protein–protein interactions (PPIs) based on
protein sequence features. Since the number of potential non-
interacting protein pairs (negative PPIs) is very high both in absolute
terms and in comparison to that of interacting protein pairs (positive
PPIs), computational prediction methods rely upon subsets of
negative PPIs for training and validation. Hence, the need arises for
subset sampling for negative PPIs.
Results: We clarify that there are two fundamentally different types
of subset sampling for negative PPIs. One is subset sampling for
cross-validated testing, where one desires unbiased subsets so
that predictive performance estimated with them can be safely
assumed to generalize to the population level. The other is subset
sampling for training, where one desires the subsets that best train
predictive algorithms, even if these subsets are biased. We show
that confusion between these two fundamentally different types of
subset sampling led one study recently published in Bioinformatics
to the erroneous conclusion that predictive algorithms based on
protein sequence features are hardly better than random in predicting
PPIs. Rather, both protein sequence features and the ‘hubbiness’
of interacting proteins contribute to effective prediction of PPIs. We
provide guidance for appropriate use of random versus balanced
sampling.
Availability: The datasets used for this study are available at
http://www.marcottelab.org/PPINegativeDataSampling.
Contact: yungki@mail.utexas.edu; marcotte@icmb.utexas.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Protein–protein interactions (PPIs) underlie many processes
essential to living organisms. Years of small-scale experimental
work, along with genome-wide studies powered by high-throughput
techniques (e.g. Gavin et al., 2006; Ito et al., 2001; Krogan
et al., 2006; Tarassov et al., 2008; Uetz et al., 2000; Yu
et al., 2008) have generated significant numbers of known PPIs,
which provide a good foundation on which to learn protein
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sequence features that distinguish interacting protein pairs from non-
interacting ones. In general, this has been a difficult and largely
unsolved computational problem, exascerbated by strong biases
in available datasets, including redundant interactions and skewed
amino acid compositions in well-represented protein complexes
(e.g. the ribosome). Nonethless, diverse computational methods
have been developed that predict PPIs using protein sequence
features (Ben-Hur and Noble, 2005; Bock and Gough, 2001; Chou
and Cai, 2006; Gomez et al., 2003; Guo et al., 2008; Martin et al.,
2005; Nanni and Lumini, 2006; Pitre et al., 2008; Roy et al., 2009;
Shen et al., 2007; Sprinzak and Margalit, 2001; Yu et al., 2010a).

As with all computational prediction methods, improvements to
datasets used for testing and training can strongly affect the quality of
the predictions. It is thus critical that protein sequence feature-based
PPI prediction methods be validated with appropriate positive and
negative datasets. Since the numbers of high-confidence positive
PPIs are still relatively modest, especially in comparison to the
numbers of potential negative examples, most studies have used
as much of the positive PPI data as possible. High-quality negative
PPI data are equally important for learning and validation processes.
Unfortunately, such data are not widely available, although a new
database has begun to archive such data (Smialowski et al., 2010).
Therefore, a typical strategy has been to employ protein pairs that
are not previously known to interact as the set of negative PPIs.
This is generally a reasonable assumption given that negative PPIs
outnumber positive ones by a factor of hundreds to thousands.

More specifically, let us say that we have P protein pairs known
to interact and the P protein pairs involve K different proteins.
Then, there are K(K −1)/2 possible protein pairs. The P pairs
known to interact serve as positive examples for predicting new
interactions. The remaining N protein pairs, dominated by true
negative interactions, are assumed not to interact (in general) and
serve as negative examples, where N =K(K −1)/2−P. Usually,
P�N and P is of a manageable magnitude whereas N is not.
For many algorithms, cross-validating predictive algorithms on the
complete set of K(K −1)/2 protein pairs (consisting of P positive
PPIs and N negative ones) is not feasible simply because it is too
immense. Thus, sampling subsets, especially of negative PPIs, is
routine practice.

Typically, one might want an unbiased subset of negative PPIs
of size n, where n is of a manageable magnitude. Cross-validated
test results on the set combining P positive PPIs and n negative
ones are then assumed to generalize to the whole set of K(K −1)/2
protein pairs because the negative subset used for cross-validation
is an unbiased representative of the N negative PPIs. This type
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of subset sampling—for cross-validated testing—aims to create
unbiased subsets of negative PPIs such that predictive performance
estimated with them can be safely assumed to generalize to the
population level. Importantly, biased subsets of negative PPIs for
cross-validation will likely fail to generalize to population levels, as
has been previously demonstrated (Ben-Hur and Noble, 2006).

Negative PPI subsampling also arises in a second distinct context:
let us assume that the size of our unbiased negative subset is
100 times larger than the set of positive PPIs (i.e. n=100P).
(Note that this ratio of positive and negative PPIs is conservative
for most organisms, but employing negative subsets of a size
significantly greater than 100P is also not routinely feasible because
of practical computational issues such as memory requirements and
computation time.) In a typical cross-validated training approach,
the training data would be highly skewed, with negative examples
represented 100 times more than positive ones. Such high skew
often adversely affects predictive algorithms, for example, leading
to trivial predictions of all negatives that achieve 99% prediction
accuracy. As algorithms such as support vector machines (SVMs)
scale poorly with the amount of training data (Park, 2009),
subset sampling of negative PPIs for the purposes of training—
a distinct context from cross-validated testing—offers substantial
advantages.

Clearly, the purpose of subset sampling for training differs
from that of subset sampling for cross-validated testing. In
subset sampling for cross-validation, one desires unbiased subsets
representative of the overall population such that predictive
performance estimated with them can be safely assumed to
generalize to that population. In subset sampling for training,
however, one is concerned about getting subsets most suitable for
effective training of prediction algorithms. A lack of bias is the key
to subset sampling for cross-validation whereas it may not be to
subset sampling for training.

Traditionally, random sampling has been used for subset sampling
for cross-validation, in which one randomly and uniformly samples
negative PPIs. Recently, Yu et al. (2010b) argued against the
suitability of random sampling. Instead, they proposed balanced
sampling, in which the number of occurrences of a protein in the
negative PPI subset is forced to match that in the positive PPI set.
Using this approach, they concluded that PPI prediction algorithms
employing protein sequence features perform hardly better than
chance.

In this study, we demonstrate that balanced sampling for cross-
validation generates highly biased negative subsets and that the
predictive performance estimated with them does not generalize
to populations. We demonstrate that, as a result, the predictive
performances of PPIs estimated using balanced sampling are
considerable underestimates, and the conclusions of Yu et al. (2010b)
regarding PPI algorithm performance are invalid. Nonetheless,
balanced sampling does offer advantages for the purposes of
training, as we show with tests that isolate these distinct applications
of sampling. In particular, we measure the relative contribution of
representational bias of hub proteins in PPI sets to training, versus
the contribution of protein sequence features themselves, and we
show using balanced sampling that both contribute to effective PPI
predictive performance. We conclude that protein sequence features
are indeed informative for predicting PPIs, and we provide some
guidance for implementing random versus balanced sampling in this
context.

2 DATA AND METHODS

2.1 Datasets
Yeast PPI data were collected from the Saccharomyces cerevisiae core subset
(‘Scere20080708.txt’) of the Database of Interacting Proteins (Salwinski
et al., 2004). Human PPI data were collected from release 7 of the Human
Protein Reference Database (Keshava Prasad et al., 2009). The PPI data
were refined as follows: first, a non-redundant subset was generated at the
sequence identity level of 40% by clustering analysis using the CD-HIT
program (Li and Godzik, 2006). Second, proteins with lengths less than 50
amino acids were removed. These filters resulted in 3867 positive PPIs for
yeast and 17 431 for human.

2.2 Cross-validation
For the algorithms employed in this study, a population-level cross-validation
involving all relevant positive PPIs (e.g. 17 431 PPIs for human) was not
computationally feasible. For this reason, we randomly chose three different
independent sets of proteins of comparable sizes. For each set, the population
was defined as all protein pairs in the set. For yeast, the sets involve
approximately 1500 proteins with approximately 2900 positive and 1 119 000
negative PPIs. For human, the sets involve approximately 2000 proteins
with approximately 5000 positive and 2 000 000 negative PPIs. For the
population-level cross-validation results in Table 1, a 10-fold cross-validation
was carried out. In each round of the 10-fold cross-validation, we had >300-
fold more negative than positive examples in the training data. To generate
a training set with reduced skew, random sampling was employed to sample
a negative training subset of equal size to that of the unsampled positive
training dataset (i.e. we used random sampling to sample subsets for training
purposes). For the subset-based cross-validation results in Table 1, a given
sampling technique was used to generate subsets for cross-validation. Then,
the sampled negative subset was combined with positive PPI data for a
10-fold cross-validation. Each analysis in Table 1 includes 30 different test
instances (3 independent protein sets × 10-fold cross-validation).

Predictive performance was estimated by AUC [area under the ROC
(receiver operating characteristic) curve] and recall–precision plots.

Table 1. Similarity of random and balanced subsets with populations and
comparison of population-level predictive performance with that estimated
with sampled subsets

Prediction algorithm Yeast

Population Random subsets Balanced subsets

M1 0.71 ± 0.02 0.70 ± 0.02 0.42 ± 0.02
M2 0.67 ± 0.02 0.66 ± 0.02 0.52 ± 0.02
M3 0.57 ± 0.01 0.57 ± 0.02 0.53 ± 0.02
M4 0.71 ± 0.02 0.71 ± 0.02 0.62 ± 0.02
Similarity to population 0.00 ± 0.03 −0.71±0.01

Prediction algorithm Human

Population Random subsets Balanced subsets

M1 0.72 ± 0.01 0.72 ± 0.01 0.45 ± 0.01
M2 0.67 ± 0.01 0.67 ± 0.01 0.49 ± 0.02
M3 0.58 ± 0.01 0.58 ± 0.02 0.51 ± 0.02
M4 0.72 ± 0.01 0.71 ± 0.01 0.63 ± 0.02
Similarity to population 0.02 ± 0.01 −1.00±0.00

Similarity is reported in the form of the average correlation coefficient ± the standard
deviation. Predictive performance is reported in the form of the average AUC ± the
standard deviation.

3025

 at U
niversity of T

exas at A
ustin on N

ovem
ber 29, 2011

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


[10:56 3/10/2011 Bioinformatics-btr514.tex] Page: 3026 3024–3028

Y.Park and E.M.Marcotte

2.3 Method implementation
Four different protein sequence feature-based PPI prediction methods were
used for the study:

M1: the signature product-based method proposed by Martin et al.
(2005).

M2: the method developed by Guo et al. (2008). A feature vector
of a protein sequence comprises its auto-correlation values of seven
different physicochemical scales.

M3: the method introduced by Shen et al. (2007). In this method,
a protein sequence is represented by a reduced set of amino acids.
Then, the normalized counts of each possible conjoint triad become
its feature vector.

M4: PIPE2 developed by Pitre et al. (2008). For a pair of proteins,
PIPE2 looks for the co-occurrences of subsequences in protein pairs
that are known to interact. PIPE2 does not require negative examples
for its learning.

M1 and M3 were implemented using SVMlight as modified by Martin et al.
(2005) and Joachims (1999). M2 was implemented by modifying the code
of libsvm (Chang and Lin, 2011). M4 was implemented by downloading the
source code of PIPE2 from the developers’ website.

3 RESULTS AND DISCUSSION

3.1 The balanced sampling technique produces highly
biased subsets

For a given set of positive PPIs, the space of negative PPIs is formed
by pairing proteins appearing in the positive set and for which there
is no interaction information yet. Thus, the number of times a protein
appears in positive PPI data is inversely correlated with the number
it appears in negative PPI data. The balanced sampling technique
enforces the number of times a protein appears in positive PPI data
to match that in negative PPI data. Hence, balanced sampling is
guaranteed to produce biased subsets.

We first measured the extent of this bias by sampling negative
subsets twice—once using the random sampling technique and the
other time using the balanced sampling technique. The similarity
between a sampled subset and the corresponding population was
then measured as follows. A set of protein pairs (e.g. either sampled
subsets or populations) was characterized by the frequencies of
appearance of proteins in the set, as proposed by Yu et al.
(2010b). The similarity between two sets of protein pairs was
defined as the Pearson’s correlation coefficient between their
protein-appearance frequency vectors. The similarity of subsets
sampled by the random sampling technique (random subsets) with
corresponding populations was close to 0 for both yeast and human
data (Table 1). Note that this similarity is not close to one because
subsets are by definition much smaller than populations and thus
many proteins present in populations are absent in subsets. In
contrast, the similarity of subsets sampled by the balanced sampling
technique (balanced subsets) with corresponding populations was
close to −0.7 and −1.0 for the yeast and human data, respectively
(Table 1). Thus, the balanced subsets have substantially greater bias,
as expected.

Given this bias, we might expect that predictive performance
estimated with balanced subsets would not generalize well to the
population level. To directly address this issue, population-level
predictive performance was obtained by performing cross-validation
on the full set of protein pairs (see Section 2.2) and compared with

Table 2. Correlation between the lack of bias in the subset used for cross-
validation and the estimated predictive performance

Method Yeast Human

Correlation P-value Correlation P-value
coefficient coefficient

M1 0.98 <2.0×10−39 0.98 <6.0×10−41

M2 0.98 <3.0×10−43 0.98 <2.0×10−41

M3 0.90 <5.0×10−22 0.98 <4.0×10−40

M4 0.96 <2.0×10−32 0.97 <2.0×10−35

The similarity of the subset used for cross-validation with the population was measure
in Table 1 and correlated with estimated predictive performance. The more similar
the subset to the population (i.e. the less biased the subset), the higher the predictive
performance estimated.

predictive performance estimated with sampled subsets. Table 1
and Supplementary Figure S1 show that predictive performance
estimated with random subsets agrees well with population-level
predictive performance for four prominent PPI prediction algorithms
(M1–M4). In contrast, there are significant differences between
population-level predictive performances and those estimated with
balanced subsets for all four methods. These differences are all both
statistically significant (P<2×10−6) and large, and apply to both
SVM-based (M1–M3) and non-SVM-based (M4) methods. Taken
together, the analyses in Table 1 indicate that balanced sampling
produces highly biased subsets of negative PPIs and predictive
performance estimated with balanced subsets does not generalize
to the population level.

While Yu et al. (2010b) also observed good and poor predictive
performance with random and balanced subsets, respectively, this
analysis clarifies that the predictive performance estimated with
random subsets is the genuine one, demonstrating that poor
predictive performance estimated with balanced subsets cannot
be taken as evidence supporting that protein sequence features
are hardly informative for predicting PPIs, because predictive
performance estimated with balanced susbsets fails to generalize
to the population level.

3.2 Cross-validated subset bias artificially deflates
predictive performance

Table 1 suggests that there exists an anti-correlation between
the degree of bias of the subset used for cross-validation and
the estimated predictive performance. To test this, we generated
subsets with intermediate levels of bias by randomly mixing random
and balanced subsets at varying ratios, then estimated predictive
performance as in Table 1. Table 2 shows that there is indeed a strong
correlation between the lack of bias of the subset used for cross-
validation—measured as the similarity of the sampled subset to the
overall population—and the estimated predictive performance for all
four methods. At least 80% of the variability in estimated predictive
performance (in terms of AUC) can be explained by the degree
of bias of the cross-validation subset. Thus, the poor predictive
performance estimated with balanced subsets is explained by the
strong bias inherent to balanced subsets.
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Table 3. Acomparison of predictive performances obtained by using random
sampling versus balanced sampling for training reveals that both protein
representational biases and sequence features contribute to PPI predictions

The subset
sampling for
training

Yeast Human

Random Balanced Random Balanced

M1 0.71 ± 0.02 0.65 ± 0.01 0.72 ± 0.01 0.63 ± 0.01
M2 0.67 ± 0.02 0.60 ± 0.02 0.67 ± 0.01 0.57 ± 0.01
M3 0.57 ± 0.01 0.55 ± 0.01 0.58 ± 0.01 0.54 ± 0.01

3.3 Does representational bias-driven learning
dominate over learning on protein sequence
features in predicting PPIs?

Hub proteins in PPI networks are proteins that possess many
interaction partners, a property that can lead to hubs dominating
PPI prediction algorithms. In principle, the prediction score
of a test pair of proteins may correlate with the number of
appearances of the test proteins in the positive data, and anti-
correlate with their appearances in the negative training data.
Although part of a legitimate learning process, this representational
bias-driven learning may dominate over learning on the protein
sequence features themselves, and it was this possibility that
inspired the balanced sampling technique, which specifically blocks
representational bias-driven learning. Thus, although this sampling
technique is not suitable for cross-validated estimates of prediction
performance, as shown above, it has legitimate applications in a
training context. We therefore asked if this approach was justified,
by controlling for these two distinct sources of learning and thereby
measuring the contributions of representational bias versus protein
features to PPI predictions.

We estimated the overall contributions of representational bias-
driven learning to the overall learning process as follows: For
the yeast data in Table 1, the ratio between negative and positive
PPIs was approximately 385, and that for the human data was
approximately 395. The population-level predictive performances
reported in Table 1 were obtained by using the random sampling
technique to sample subsets for training as explained in Section
2.2 and thus are the results of the representational bias-driven
learning combined with learning on protein sequence features. We
thus compared these values with predictive performances obtained
by using balanced subset sampling for training. Table 3 reports
the results for M1 ∼ M3 in terms of AUC. (M4 does not employ
negative data for training, and thus cannot be assessed in this fashion.
See below) For all three methods, excluding representational bias-
driven learning significantly lowers predictive performance (all
P<4×10−5), although to different degrees. As AUC values may
be problematic if the two ROC curves cross (Hand, 2009), we also
confirmed these results in terms of recall–precision plots (results not
shown). In all but one case, the recall–precision plots also indicated
that the exclusion of the representational bias-driven learning lowers
predictive performance. For M4, we indirectly assessed the impact of
representation bias-driven learning by plotting the numbers of times
that test pair proteins appear in training data and their prediction
scores (Fig. 1). It is apparent in the plots that test pairs that are more
represented in training data do not necessarily get higher prediction

Fig. 1. Plots of the numbers of times that test pair proteins appear in training
data and their prediction scores for PIPE2.

scores that those that are not. Thus, it seems that the representation
bias-driven learning does not play a dominant role in the predictive
performance of M4.

Thus, we conclude that representational bias-driven learning
contributes significantly to PPI predictions, at least for M1 ∼
M3. Nonetheless, Table 3 shows that learning on protein sequence
features alone still leads to predictive performance significantly
better than random. Thus, both representational bias-driven learning
and learning on protein sequence features significantly contribute to
the overall learning for predicting PPIs.

4 CONCLUSION
In this study we clarified a critical distinction between subset
sampling for algorithm training and for cross-validated estimates
of predictive performance. We showed that a balanced sampling
technique, recently proposed by Yu et al. (2010b) to prevent
representational bias-driven learning of protein–protein interactions,
is suitable for subset sampling during training but not for cross-
validated testing, and that its use for cross-validation leads
to significant underestimates of predictive performance and to
erroneous conclusions regarding the value of protein sequence
features for predicting PPIs. In contrast, when used only for training,
use of the balanced sampling technique allows for estimates of
the relative contributions of representational bias-driven learning
as compared to learning based on protein sequence features. We
observe both to contribute significantly to the prediction of PPIs.
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