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ABSTRACT
Motivation: A central problem in bioinformatics is how
to capture information from the vast current scientific
literature in a form suitable for analysis by computer. We
address the special case of information on protein–protein
interactions, and show that the frequencies of words in
Medline abstracts can be used to determine whether or not
a given paper discusses protein–protein interactions. For
those papers determined to discuss this topic, the relevant
information can be captured for the Database of Interacting
Proteins. Furthermore, suitable gene annotations can also
be captured.
Results: Our Bayesian approach scores Medline ab-
stracts for probability of discussing the topic of interest
according to the frequencies of discriminating words found
in the abstract. More than 80 discriminating words (e.g.
complex, interaction, two-hybrid) were determined from
a training set of 260 Medline abstracts corresponding to
previously validated entries in the Database of Interacting
Proteins. Using these words and a log likelihood scoring
function, ∼2000 Medline abstracts were identified as
describing interactions between yeast proteins. This
approach now forms the basis for the rapid expansion of
the Database of Interacting Proteins.
Contact: marcotte@icmb.utexas.edu;
ixenario@mbi.ucla.edu; david@mbi.ucla.edu

INTRODUCTION
Mining biological literature for information is essential
for transforming discoveries reported in the literature into
a form useful for computation. Already, databases of
protein–protein interactions (Xenarios et al., 2001; Bader
et al., 2001) and signaling pathways (Kanehisa and Goto,
2000; the Signal Transduction Knowledge Environment:
http://www.171.66.122.61/) are generating new insights
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into how cells are organized, such as demonstrating that
protein–protein interactions link many proteins in the cell
into just a few, large, connected interaction networks
(Marcotte, 2000; Xenarios et al., 2001).

Efforts to expand such databases have been hindered
in part by the sheer volume of biological literature:
over 10 million entries exist in Medline, the archive
of abstracts of biological articles (http://www.ncbi.nlm.
nih.gov/PubMed/). Since many databases, such as the
Database of Interacting Proteins (DIP, Xenarios et al.,
2001, http://www.dip.doe-mbi.ucla.edu/) and SwissProt
(Bairoch and Apweiler, 2000), are hand-curated to assure
valid entries, evaluating literature normally becomes the
rate limiting step in the growth of the database. Thus,
automatic methods are needed to speed up this step of
database construction.

Protein interactions have been discovered automatically
in the literature by methods involving natural language
processing to parse sentences in abstracts into gram-
matical units (Thomas et al., 2000; Humphreys et al.,
2000) and by methods analyzing sentences discussing
interactions using frequency analysis of individual words
(Blaschke et al., 1999). Due to the complexity and variety
of the English language, such approaches are inherently
difficult. Even the language used to describe specific
proteins is ambiguous, such that efforts are required
to collect synonymous protein names into databases
(Yoshida et al., 2000). Also, simple regular expression
searches for abstracts containing relevant words, such as
‘interact*’, poorly discriminate true hits from abstracts
using the words in alternate senses and miss abstracts
using different language to describe the interactions. For
example, searches of a small test set of interaction and
non-interaction abstracts for the word root ‘interact*’
are 65% accurate and recover 65% of the interaction
articles. However, given that we desire a curated database,
each article must be manually evaluated, and the high

c© Oxford University Press 2001 359



E.M.Marcotte et al.

false positive rate (35%) greatly reduces the efficiency of
database entry. Looking for specific Medline MESH terms
fares no better: searches for the most effective MESH
term (‘protein binding’) are 73% accurate but have only
33% coverage. Most importantly, such simple searches
provide no criterion for prioritizing hits. For a database
in which a curator examines each article prior to entry
of an interaction into the database, we find the following
approach most useful.

Here, we introduce a method to scan the biological liter-
ature and select and rank just those abstracts discussing a
given topic. Our approach is based on that used to identify
James Madison as the author of 12 of the Federalist papers
of disputed authorship, written in 1787–1788 (Mosteller
and Wallace, 1984). Discriminating words are identified
that appear at unexpectedly high or low frequencies in ab-
stracts discussing the topic of interest. Using a Bayesian
approach, each of the many Medline abstracts can then be
scored for its probability of discussing the topic of interest
according to the frequencies of the discriminating words
observed in the abstract. We apply the method to Med-
line abstracts to identify and rank-order several thousand
abstracts discussing protein–protein interactions; interac-
tions in these abstracts are now being incorporated into
the Database of Interacting Proteins.

METHODS
For this analysis, we chose to focus on yeast, a well-
studied system with many known protein interactions and
for which the Medline entries were available to us. 88 921
Medline entries were acquired from PubMed that contain
the term ‘Saccharomyces cerevisiae’ in the title, abstract,
or MESH terms. Of these 88 921 Medline entries, only
65 807 contained abstracts. All analyses in this paper use
the abstracts from this subset of Medline entries, termed
‘Yeast Medline’. As of June 2000, the Database of Inter-
acting Proteins cited 260 papers reporting protein–protein
interactions involving yeast proteins; these 260 Medline
abstracts were set aside as a training set of positive
examples of interaction abstracts. All analyses are case
insensitive, and all punctuation marks other than hyphens,
apostrophes, and plus and minus signs were substituted
by spaces.

First, a dictionary was constructed containing the fre-
quencies of the 60 000 most common words in Yeast Med-
line abstracts, which includes every word used more than
three times in Yeast Medline. Next, words from the train-
ing set of ‘interaction’ abstracts were tested for frequen-
cies unexpectedly higher or lower than calculated dictio-
nary frequencies, indicating words that would be useful for
discriminating the training abstracts from other abstracts.
For each word in the training abstracts, the number of oc-
currences n was counted, and the probability p(n|N , f )

of finding the word the observed number of times given
the known dictionary frequency f and the total number of
words N in the training abstracts, was calculated from the
Poisson distribution as

p(n|N , f ) ≈ e−N f (N f )n

n! . (1)

This approximation is valid when the total number of
words used to generate the dictionary is much greater than
N and when f is small. In practice, to avoid floating
point errors, the log of the probability was calculated as
ln p(n|N , f ) ≈ −N f + n ln(N f ) − ln(n!), where n! was
estimated using Stirling’s approximation for large n.

The 500 words in the training abstracts with the most
negative log probability scores were selected as discrimi-
nating words. A property of any discriminating algorithm
is that it will be biased by its training set. However, we
attempted to minimize the most obvious source of bias
by removing gene and protein names (e.g. actin, tup1,
sup35p, etc.), as well as names of specific cellular systems
or pathways (e.g. cytoskeleton, anaphase-promoting,
bud-site), thereby making the approach general to any
abstracts describing protein interactions. This curation
step left 83 general words that discriminate abstracts dis-
cussing protein–protein interactions from other abstracts.
These discriminating words were all statistically signif-
icant (all had ln p < −13) and included both under- and
over-represented words. In practice, most discriminating
words were over-represented in interaction abstracts.

Armed with these discriminating words, each abstract
in Yeast Medline could then be scored for its likelihood
of discussing protein–protein interactions in the following
manner: in an abstract with N total words, the number of
occurrences ni of each discriminating word i is counted.
Given ni , we would like to know if the abstract is likely to
discuss interactions. Casting this in Bayesian form gives
the following two probability expressions:

p(InteractionAbstract|ni )

= p(ni |InteractionAbstract) ∗ p(InteractionAbstract)

NormalizationFactor
p(NonInteractionAbstract|ni )

= p(ni |NonInteractionAbstract) ∗ p(NonInteractionAbstract)

NormalizationFactor

The normalization factor, equal in each equation, is the
sum of the numerators of the two equations.

To evaluate which is more likely, that the abstract dis-
cusses interactions or does not discuss interactions, the
ratio of the two probability expressions is evaluated, al-
lowing the normalization factors to be cancelled. The ob-
served number of occurrences ni is then tested for its prob-
ability of being drawn from the distribution characterized
by the frequency f I,i of the discriminating word i in the
training abstracts, or from the distribution characterized
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by frequency fN ,i , the dictionary frequency of discrimi-
nating word i . Assuming flat prior probabilities of having
interaction or non-interaction abstracts means that these
terms cancel as well, and modeling p(ni |AbstractSet) with
a Poisson distribution gives the expression:

p(InteractionAbstract|ni )

p(NonInteractionAbstract|ni )
= e−N fI,i ( f I,i )

ni

e−N fN ,i ( fN ,i )ni

= e−N ( f I,i − fN ,i )

(
f I,i

fN ,i

)ni

.

To convert this into an additive score, the log of the
probability ratio is taken, giving:

ln

(
p(InteractionAbstract|ni )

p(NonInteractionAbstract|ni )

)
= ni ln

f I,i

fN ,i

−N ∗ ( f I,i − fN ,i ).

Finally, the expression is summed for all of the 83 dis-
criminating words to give a log likelihood score S that the
abstract discusses protein–protein interactions:

S =
∑

i

(
ni ln

f I,i

fN ,i
− N ∗ ( f I,i − fN ,i )

)
(2)

in which the sum is over discriminating words. The first
term is positive when the frequency of the discriminating
word i is larger in abstracts discussing interactions than
in those abstracts not discussing interactions. The second
term is negative under the same circumstances. The
sharpness of the distribution of log likelihood scores as a
function of f I,i increases as the observed frequency ni/N
of the discriminating word i increases.

RESULTS
As described in the Methods, words that discriminated
interaction abstracts from other abstracts were identified.
The discriminating words with the 20 most negative (most
discriminating) ln p-scores are listed in Table 1. Among
the 83 discriminating words are those clearly related to
interactions, such as ‘binds’, ‘interacts’, ‘complexes’ and
‘associates’, and those words related to experimental
methods that measure interactions, such as ‘2-hybrid’
and ‘co-immunoprecipitation’. Other words are related
to the language used to describe interactions, such as
‘with’ and ‘together’. Some of the words, such as ‘pro-
tein’, ‘domain’, and ‘[in] vitro’, simply insured that the
abstract was concerned with molecular studies, rather
than topics such as clinical or microbiological studies.
Most of the discriminating words were over-represented
in the interaction abstracts, although a few, such as
‘enzyme’, ‘sequences’ and ‘cDNA’ were significantly
under-represented.

Table 1. The 20 words that most discriminate abstracts discussing protein
interactions from other abstracts include words describing interactions,
names of experimental methods, and general molecular terms. The ln p-
scores are calculated from equation (1)

Discriminating Word frequency in Frequency in ln p-score
word interaction abstracts (n/N ) yeast Medline ( f )

Complex 6.1e−03 1.1e−03 −245
Interaction 3.6e−03 7.0e−04 −141
Two-hybrid 2.1e−03 2.2e−04 −133
Interact 2.1e−03 2.6e−04 −124
Proteins 7.0e−03 2.6e−03 −121
Protein 1.1e−02 5.3e−03 −103
Domain 3.6e−03 1.2e−03 −75
Interactions 1.9e−03 3.9e−04 −73
Required 3.0e−03 9.2e−04 −68
Kinase 2.8e−03 8.9e−04 −60
Interacts 1.1e−03 1.7e−04 −57
Complexes 1.4e−03 3.2e−04 −49
Function 3.0e−03 1.2e−03 −49
Essential 2.1e−03 6.6e−04 −49
With 1.5e−02 1.0e−02 −45
Binding 3.6e−03 1.7e−03 −41
Component 1.1e−03 2.7e−04 −35
Suggesting 1.5e−03 5.0e−04 −35
From 3.2e−03 5.8e−03 −35
Demonstrate 1.3e−03 3.7e−04 −35

The prediction of abstracts discussing interactions was
tested first on the set of abstracts from the Database of
Interacting Proteins used to choose the discriminating
words. The scores of these training abstracts are plotted in
Figure 1, along with the scores of 10 000 randomly cho-
sen yeast Medline abstracts. Although the set of 10 000
abstracts certainly contain abstracts discussing protein
interactions, most abstracts do not discuss interactions,
providing a fairly representative negative set. As seen in
Figure 1, the log likelihood score predicts interaction ab-
stracts very effectively. More than 88% of the interaction
abstracts have positive scores. The mean log likelihood
score for interaction abstracts is 11.1 ± 9.9, compared
with −5.9±9.9 for the 10 000 randomly chosen abstracts.

To perform an independent test of the method, 325 Yeast
Medline abstracts were manually evaluated for their de-
scription of protein interactions. The abstracts were cho-
sen as a sequential run of abstracts from an intermediate
year of Medline abstracts. Seventy discussed interactions;
255 did not. The log likelihood scores for these two sets of
abstracts are plotted in Figure 2a. Again, the scores effec-
tively discriminate abstracts discussing interactions from
those that do not. More than 77% of the interaction ab-
stracts receive positive scores. The mean log likelihood
score for the 70 interaction abstracts is 6.8±9.3, compared
with −8.5 ± 7.6 for the 255 abstracts not discussing inter-
actions. When the scores for this data set are re-plotted as
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Fig. 1. Medline abstracts that discuss protein interactions (filled
circles) receive considerably higher log likelihood scores (from
equation (2)) than 10 000 randomly chosen Medline abstracts
(open diamonds), which largely do not discuss abstracts. Here, the
interaction abstracts are for the 242 articles available in June 2000
describing yeast protein interactions in the Database of Interacting
Proteins (Xenarios et al., 2001). For both Figures 1 and 2, data sets
with <300 entries are analyzed in bins of size 2.

in Figure 2b, these independent test data show the cover-
age and accuracy of the method as evaluated on this test
set of abstracts. More than 77% of abstracts receiving a
log likelihood score of 5 discuss protein interactions, and
100% of the abstracts scoring 10 or higher discuss inter-
actions.

The algorithm was trained on abstracts reporting only
yeast protein interactions. As a second independent check
on the method we tested the algorithm’s performance
on abstracts reporting non-yeast protein interactions.
Abstracts reporting interactions where neither protein
partner was from Schizosaccharomyces, Candida, or
Saccharomyces were taken from the DIP database; in the
353 such abstracts, the majority of interactions involved
human proteins (58%), mouse proteins (19%), or fly
proteins (11%). More than 71% of these abstracts receive
positive log likelihood scores; the mean log likelihood
scores for these abstracts is 6.2 ± 9.1. The distribution
of scores, plotted as a dashed line in Figure 2a, closely
resembles the distribution of yeast interaction abstract
scores plotted as a bold line in the same figure.

To identify abstracts discussing protein interactions,
to facilitate the addition of entries to the Database of
Interacting Proteins, we calculated log likelihood scores
for all 65 807 Yeast Medline abstracts and rank-ordered
the abstracts by their scores. 7021 abstracts receive a
score of one or more, potentially discussing protein–
protein interactions. Many of these abstracts are high-
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Fig. 2. Good discrimination between interaction and non-interaction
abstracts is found for an independent test set of abstracts not used
either to choose discriminating words or to generate the frequencies
of words tallied in the frequency dictionary. A set of 325 abstracts
was divided among the 70 which discuss protein interactions (filled
circles) and the 255 which do not (open diamonds). In (a), the
log likelihood scores of these abstracts are plotted. For comparison
of the method’s performance on abstracts from systems other
than yeast, accompanying the scores of these abstracts are the
scores of 353 non-yeast abstracts discussing protein interactions
(dashed line). In (b), the scores of the 325 abstracts are re-plotted
to show the coverage and prediction accuracy of the algorithm.
Above a log likelihood score of ∼10, virtually all abstracts discuss
protein interactions. The performance of an algorithm that randomly
categorizes abstracts is plotted as a vertical dashed line.

scoring, with 1747 abstracts scoring higher than 10.
These 7000 abstracts now provide curators a ready source
of protein interactions for entry into the Database of
Interacting Proteins.
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DISCUSSION

In summary, we describe a method to sort through the
large number of scientific articles and to choose those that
are relevant to protein interactions. By first statistically
identifying words that discriminate relevant abstracts from
other abstracts, each new abstract can then be assigned
a log likelihood score for discussing protein interactions.
Although we chose to hand curate the discriminating
words, thus limiting ourselves to the top-scoring 500
words, this curation step could have been automated and
all statistically-significant words included in the analysis.

The method can easily be generalized to other topics,
and should prove useful to other groups recovering data
from scientific literature on a large scale. We find that once
the frequency dictionary is calculated, the method can be
rapidly applied to scan for other topics, for example cell
signaling or protein–DNA interactions. The method could
potentially be used to flag new articles of interest as they
appear in Medline.

We also find that the calculation of discriminating
words is useful for generating annotation about a specific
topic, and we have used this method to automatically
annotate yeast genes in the following manner: each gene
is annotated by the over-represented discriminating words
that appear in abstracts citing that gene. This method
of annotation has the benefit of: (1) being as current
as the set of abstracts used; (2) being unbiased; and
(3) automatically including the names of many genes
which are co-cited with the gene of interest, thereby
including functional linkages (Stapley and Benoit, 2000)
as part of the annotation.

For example, in a trivial but more general application
of this method of generating annotation, we identified
words that discriminate abstracts of articles published in
1999 from older abstracts. Beyond the obvious changes
in experimental techniques and systems, this analysis
reveals that the use of the past tense (‘was’, ‘were’) is
underrepresented relative to older abstracts (ln p = −64
and −95) and that the personal pronouns ‘we’ and ‘our’
are over-represented, as are currently popular words like
‘novel’ and ‘database’ (ln p = −147, −35, −72, and
−42, respectively).

Finally, we have applied the method to choose several
thousand Medline abstracts that discuss protein inter-
actions. Following calculation of log likelihood scores,
the abstracts are sorted by score and written directly to
an HTML file that contains the abstract, the Medline ID

code hyper-linked to Medline, and hyper-links from gene
names appearing in the abstract to sequence databases.
This output file can be opened by a web browser and
then be rapidly scanned by curators of the Database of
Interacting Proteins to speed entry of protein interactions
into the database.
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