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ABSTRACT 
Summary:  Mass spectrometry based proteomics stands to gain 
from additional analysis of its data, but its large, complex data sets 
make demands on speed and memory usage requiring special con-
sideration from scripting languages.  The software library 'mspire'—
developed in the Ruby programming language—offers quick and 
memory-efficient readers for standard xml proteomics formats, con-
verters for intermediate file types in typical proteomics spectral-
identification work flows (including the Bioworks .srf format), and 
modules for the calculation of peptide false identification rates. 
Availability: Freely available at http://mspire.rubyforge.org 
Contact: marcotte@icmb.utexas.edu 
Supplementary information: Additional data models, usage informa-
tion, and methods available at 
http://bioinformatics.icmb.utexas.edu/mspire 

1 INTRODUCTION  
The analysis of mass spectrometry (MS) proteomics data is chal-
lenging on many fronts. Data sets are complex, with information 
spanning multi-level hierarchies, and they are also very large― 
files are often of near gigabyte size. Access to MS proteomics data 
is increasing with the advent of standardized formats such as 
mzXML and repositories such as PeptideAtlas (Desiere et al., 
2006), but its analysis remains no less daunting. Strongly typed 
languages (e.g., C/C++ and Java) are well suited for intensive 
computational tasks, but less so for exploring landscapes of com-
putational possibilities. Scripting languages (e.g., Python, Perl and 
Ruby) are ideal for quick prototyping and the exploration of new 
ideas but can be too slow or memory inefficient for large data sets. 
Thus, a need exists for scripting language tools capable of dealing 
with the size and complexity of MS proteomics data. 
Ruby is a full-featured programming language created with inspi-
ration from Perl, Python, Smalltalk, and Lisp. It is object oriented 
and remarkably consistent in its design. Ruby's syntax encourages 
the use of blocks and closures which lend flexibility and concise-
ness to programming style. Also, while it is powerful, Ruby is 
relatively easy to learn, making it a natural first programming lan-
guage for budding bioinformaticians. Ruby does not have the same 
degree of support for scientific computation as Python (e.g., Num-
Py and PyLab), but it is building significant momentum in this area 
(e.g., SciRuby at http://sciruby.codeforpeople.com). These features 
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encouraged our use of Ruby in the creation of a high-level library 
supporting MS proteomics analysis. 

A few libraries/tools exist for working with MS proteomics data 
outside of Ruby. InSilicoSpectro, the only other scripting language 
library, is an open-source library written in Perl for “implementing 
recurrent computations that are necessary for proteomics data 
analysis”. While there is some overlap with the work described 
here (e.g., in silico protein digestion), that library is currently 
geared towards the support of the Phenyx and Mascot search en-
gines and low-level spectral computation (Colinge et al., 2006) 
while mspire is geared towards supporting Thermo’s Bioworks 
software (SEQUEST) and downstream analysis such as false iden-
tification rate determination.  The ProteomeCommons.org IO 
framework also has the ability to read/write and convert common 
data formats (Falkner et al., 2007), but this library is written in 
Java and does not provide any higher-level language tools. 

2 FEATURES  
Mspire is a software package for working with mass spectrometry 
proteomics data as outlined in Fig. 1A. 

2.1 Memory Usage and Speed 
Mspire relies on several memory-saving techniques that are critical 
for working with large data files. Large quantities of objects are 
implemented as Arrayclass (http://arrayclass.rubyforge.org) ob-
jects, providing highly efficient memory usage (Fig. 1B) while 
preserving accessor behavior common to typical Ruby objects.   

By default, spectra from mass spectrometry file formats 
(mzXML and mzData) are decoded into memory-efficient strings 
and are only completely cast when spectral information is ac-
cessed. An option is also available for storing only byte indices of 
spectral information that can be used for fast, random access of 
spectra or for reading files of essentially unlimited size. 

 REXML, Ruby’s standard library XML parser, can be far too 
slow when reading large XML files generated in MS proteomics.  
Mspire can use either XMLParser or LibXML (both of which have 
C/C++ bindings) for rapid parsing of large files. 

Performance reading and then accessing two spectra across 
thousands of mzXML files from the PeptideAtlas is shown in Fig. 
1C. Late evaluation of a spectrum allows files to be read at ~ 20 
MB/sec with no file-size limit. 

2.2 Reading MS proteomics data formats 
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Fig. 1. (A) Overview of mspire functionality. Black arrows and grey boxes depict 

mspire functionality. From left to right, Mspire creates randomized databases (DBs) 

for false identification rate  (FIR) determination. MS::MSRun is a unified model for 

working with LC-MS/MS data sets. The Bioworks search engine  produces peptide 

spectral matches (PSMs) in a .srf binary file or XML format. Mspire extracts PSMs 

and presents them via a simple interface, SpecID, while preserving access to the 

underlying data structures.  FIRs can be determined with various downstream software 

tools and re-read into SpecID objects. SBV=sample bias validation. (B) Mspire uses 

Arrayclass objects for efficient memory usage. GC=garbage collection, 

AC=Arrayclass, AF=Arrayfields, class=a traditional ruby object, Sstruct=SuperStruct. 

(C) Lazy evaluation of spectra allows very large files to be read quickly. Shown are 

the times to read all 7830 well-formed mzXML files from PeptideAtlas and access 

two spectra for ‘io’ and ‘string’ lazy evaluation methods. 181 files > 350 MB in size 

were not read with the ‘string’ option. (D) Object model for capturing MS runs. (E) 3: 

An MSRun object can be instantiated with several lazy evaluation schemes. 4: Typical 

instantiation. 6-8: total number of scans, the number of MS scans, and the number of 

MS/MS scans. 9: retrieves the start and end m/z values for all MS/MS scans. 11: a 

Ruby block that selects only MS/MS scans. 13-16: the scans are mapped to intensities; 

the block (designated between the 'do' and 'end' receives the scan object and returns 

the value of the last line, which is collected as an array (list_of_intensities). 14-15: 

chained method calls (equivalent to calling prc.intensity). 

 
Mspire parses mzXML and mzData formats into a unified object 
model to simplify working with liquid chromatography (LC) MS 
and MS/MS runs. Figure 1D shows the basic class hierarchy and 
Figure 1E demonstrates a simple “use case”. 

2.3 Bioworks SEQUEST Results Files (.srf) 
Bioworks previously produced separate text files for each spectrum 
but now outputs a single SEQUEST results file (.srf) for each set 
of searches. This increases the speed of a search, decreases disk 
space usage, and is much easier to work with in file system opera-
tions. Unfortunately, because the output is binary, accessing its 
contents can be difficult and downstream analysis tools (outside of 
Bioworks) do not currently support this format. 

We created a reader for .srf files using the Ruby “unpack” func-
tion. It extracts both spectral information and SEQUEST results.  
The reader is fast and also works across platforms because it does 
not rely on any vendor software libraries. 

2.4 Reading/writing spectral identification formats 
Even when derived from the same upstream data source, formats 
for working with spectra identifications can vary widely. We de-
signed readers and writers for common downstream spectral-
identification software formats for SEQUEST-based data: 
pepXML files which are used in the Trans-Proteomic Pipeline 
(Protein Prophet) and also the .sqt format, which can be used with 
DTASelect and Percolator (Kall et al., 2007).  

Readers are tailored to their respective format so that users can 
not only extract format-specific information easily but also imple-
ment a common interface so that users can easily extract informa-
tion shared across these formats. 

2.5 Determining false identification rates 
Bioworks software support for determining false identification 
rates (FIRs) is currently nonexistent, and so downstream tools are 
necessary. Mspire supports peptide FIR determination from target-
decoy DB searches (both the creation of decoy databases and the 
summary of search results), PeptideProphet and Percolator. Known 
biases in sample content can also be used to establish an FIR. 
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