
© 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 1

Data and text mining

mspire: Mass spectrometry proteomics in Ruby
John T. Prince1,2 and Edward M. Marcotte1-3,*
1Institute for Cellular and Molecular Biology, 2Center for Systems and Synthetic Biology and 3Department of
Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA

Associate Editor: Prof. John Quackenbush

ABSTRACT
Summary: Mass spectrometry based proteomics stands to gain
from additional analysis of its data, but its large, complex data sets
make demands on speed and memory usage requiring special con-
sideration from scripting languages. The software library 'mspire'—
developed in the Ruby programming language—offers quick and
memory-efficient readers for standard xml proteomics formats, con-
verters for intermediate file types in typical proteomics spectral-
identification work flows (including the Bioworks .srf format), and
modules for the calculation of peptide false identification rates.
Availability: Freely available at http://mspire.rubyforge.org
Contact: marcotte@icmb.utexas.edu
Supplementary information: Additional data models, usage informa-
tion, and methods available at
http://bioinformatics.icmb.utexas.edu/mspire

1 INTRODUCTION
The analysis of mass spectrometry (MS) proteomics data is chal-
lenging on many fronts. Data sets are complex, with information
spanning multi-level hierarchies, and they are also very large―
files are often of near gigabyte size. Access to MS proteomics data
is increasing with the advent of standardized formats such as
mzXML and repositories such as PeptideAtlas (Desiere et al.,
2006), but its analysis remains no less daunting. Strongly typed
languages (e.g., C/C++ and Java) are well suited for intensive
computational tasks, but less so for exploring landscapes of com-
putational possibilities. Scripting languages (e.g., Python, Perl and
Ruby) are ideal for quick prototyping and the exploration of new
ideas but can be too slow or memory inefficient for large data sets.
Thus, a need exists for scripting language tools capable of dealing
with the size and complexity of MS proteomics data.
Ruby is a full-featured programming language created with inspi-
ration from Perl, Python, Smalltalk, and Lisp. It is object oriented
and remarkably consistent in its design. Ruby's syntax encourages
the use of blocks and closures which lend flexibility and concise-
ness to programming style. Also, while it is powerful, Ruby is
relatively easy to learn, making it a natural first programming lan-
guage for budding bioinformaticians. Ruby does not have the same
degree of support for scientific computation as Python (e.g., Num-
Py and PyLab), but it is building significant momentum in this area
(e.g., SciRuby at http://sciruby.codeforpeople.com). These features

*To whom correspondence should be addressed.

encouraged our use of Ruby in the creation of a high-level library
supporting MS proteomics analysis.

A few libraries/tools exist for working with MS proteomics data
outside of Ruby. InSilicoSpectro, the only other scripting language
library, is an open-source library written in Perl for “implementing
recurrent computations that are necessary for proteomics data
analysis”. While there is some overlap with the work described
here (e.g., in silico protein digestion), that library is currently
geared towards the support of the Phenyx and Mascot search en-
gines and low-level spectral computation (Colinge et al., 2006)
while mspire is geared towards supporting Thermo’s Bioworks
software (SEQUEST) and downstream analysis such as false iden-
tification rate determination. The ProteomeCommons.org IO
framework also has the ability to read/write and convert common
data formats (Falkner et al., 2007), but this library is written in
Java and does not provide any higher-level language tools.

2 FEATURES
Mspire is a software package for working with mass spectrometry
proteomics data as outlined in Fig. 1A.

2.1 Memory Usage and Speed
Mspire relies on several memory-saving techniques that are critical
for working with large data files. Large quantities of objects are
implemented as Arrayclass (http://arrayclass.rubyforge.org) ob-
jects, providing highly efficient memory usage (Fig. 1B) while
preserving accessor behavior common to typical Ruby objects.

By default, spectra from mass spectrometry file formats
(mzXML and mzData) are decoded into memory-efficient strings
and are only completely cast when spectral information is ac-
cessed. An option is also available for storing only byte indices of
spectral information that can be used for fast, random access of
spectra or for reading files of essentially unlimited size.

 REXML, Ruby’s standard library XML parser, can be far too
slow when reading large XML files generated in MS proteomics.
Mspire can use either XMLParser or LibXML (both of which have
C/C++ bindings) for rapid parsing of large files.

Performance reading and then accessing two spectra across
thousands of mzXML files from the PeptideAtlas is shown in Fig.
1C. Late evaluation of a spectrum allows files to be read at ~ 20
MB/sec with no file-size limit.

2.2 Reading MS proteomics data formats

 Bioinformatics Advance Access published October 16, 2008

http://mspire.rubyforge.org
http://bioinformatics.icmb.utexas.edu/mspire
http://sciruby.codeforpeople.com
http://arrayclass.rubyforge.org
http://creativecommons.org/licenses/

 Prince et al.

2

Fig. 1. (A) Overview of mspire functionality. Black arrows and grey boxes depict

mspire functionality. From left to right, Mspire creates randomized databases (DBs)

for false identification rate (FIR) determination. MS::MSRun is a unified model for

working with LC-MS/MS data sets. The Bioworks search engine produces peptide

spectral matches (PSMs) in a .srf binary file or XML format. Mspire extracts PSMs

and presents them via a simple interface, SpecID, while preserving access to the

underlying data structures. FIRs can be determined with various downstream software

tools and re-read into SpecID objects. SBV=sample bias validation. (B) Mspire uses

Arrayclass objects for efficient memory usage. GC=garbage collection,

AC=Arrayclass, AF=Arrayfields, class=a traditional ruby object, Sstruct=SuperStruct.

(C) Lazy evaluation of spectra allows very large files to be read quickly. Shown are

the times to read all 7830 well-formed mzXML files from PeptideAtlas and access

two spectra for ‘io’ and ‘string’ lazy evaluation methods. 181 files > 350 MB in size

were not read with the ‘string’ option. (D) Object model for capturing MS runs. (E) 3:

An MSRun object can be instantiated with several lazy evaluation schemes. 4: Typical

instantiation. 6-8: total number of scans, the number of MS scans, and the number of

MS/MS scans. 9: retrieves the start and end m/z values for all MS/MS scans. 11: a

Ruby block that selects only MS/MS scans. 13-16: the scans are mapped to intensities;

the block (designated between the 'do' and 'end' receives the scan object and returns

the value of the last line, which is collected as an array (list_of_intensities). 14-15:

chained method calls (equivalent to calling prc.intensity).

Mspire parses mzXML and mzData formats into a unified object
model to simplify working with liquid chromatography (LC) MS
and MS/MS runs. Figure 1D shows the basic class hierarchy and
Figure 1E demonstrates a simple “use case”.

2.3 Bioworks SEQUEST Results Files (.srf)
Bioworks previously produced separate text files for each spectrum
but now outputs a single SEQUEST results file (.srf) for each set
of searches. This increases the speed of a search, decreases disk
space usage, and is much easier to work with in file system opera-
tions. Unfortunately, because the output is binary, accessing its
contents can be difficult and downstream analysis tools (outside of
Bioworks) do not currently support this format.

We created a reader for .srf files using the Ruby “unpack” func-
tion. It extracts both spectral information and SEQUEST results.
The reader is fast and also works across platforms because it does
not rely on any vendor software libraries.

2.4 Reading/writing spectral identification formats
Even when derived from the same upstream data source, formats
for working with spectra identifications can vary widely. We de-
signed readers and writers for common downstream spectral-
identification software formats for SEQUEST-based data:
pepXML files which are used in the Trans-Proteomic Pipeline
(Protein Prophet) and also the .sqt format, which can be used with
DTASelect and Percolator (Kall et al., 2007).

Readers are tailored to their respective format so that users can
not only extract format-specific information easily but also imple-
ment a common interface so that users can easily extract informa-
tion shared across these formats.

2.5 Determining false identification rates
Bioworks software support for determining false identification
rates (FIRs) is currently nonexistent, and so downstream tools are
necessary. Mspire supports peptide FIR determination from target-
decoy DB searches (both the creation of decoy databases and the
summary of search results), PeptideProphet and Percolator. Known
biases in sample content can also be used to establish an FIR.

ACKNOWLEDGEMENTS
Simon Chiang offered helpful discussion on the implementation of
lazy evaluation of spectrum. This work was supported by grants
from the National Science Foundation, the National Institutes of
Health, the Welch Foundation (F1515), and a Packard Fellowship
(E.M.M.).

Conflict of interest: none declared.

REFERENCES
Colinge,J. et al. (2006) InSilicoSpectro: an open-source proteomics library. J. Pro-

teome Res., 5, 619-24.
Desiere,F. et al. (2006) The PeptideAtlas project. Nucleic Acids Res., 34, D655-8.
Falkner,J.A. et al. (2007) ProteomeCommons.org IO Framework: reading and writing

multiple proteomics data formats. Bioinformatics, 23, 262-3.
Kall,L. et al. (2007) Semi-supervised learning for peptide identification from shotgun

proteomics datasets. Nat. Methods, 4, 923-5.

