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ABSTRACT

Motivation: Tandem mass spectrometry (MS/MS) offers fast and
reliable characterization of complex protein mixtures, but suffers
from low sensitivity in protein identification. In a typical shotgun
proteomics experiment, it is assumed that all proteins are equally
likely to be present. However, there is often other information
available, e.g. the probability of a protein’s presence is likely to
correlate with its mRNA concentration.
Results: We develop a Bayesian score that estimates the pos-
terior probability of a protein’s presence in the sample given its
identification in an MS/MS experiment and its mRNA concentration
measured under similar experimental conditions. Our method,
MSpresso, substantially increases the number of proteins identified
in an MS/MS experiment at the same error rate, e.g. in yeast,
MSpresso increases the number of proteins identified by ∼40%.
We apply MSpresso to data from different MS/MS instruments,
experimental conditions and organisms (Escherichia coli, human),
and predict 19–63% more proteins across the different datasets.
MSpresso demonstrates that incorporating prior knowledge of
protein presence into shotgun proteomics experiments can
substantially improve protein identification scores.
Availability and Implementation: Software is available
upon request from the authors. Mass spectrometry
datasets and supplementary information are available from
http://www.marcottelab.org/MSpresso/.
Contact: marcotte@icmb.utexas.edu; miranker@cs.utexas.edu
Supplementary Information: Supplementary data website:
http://www.marcottelab.org/MSpresso/.

1 INTRODUCTION
The measurement of all mRNA and protein expression levels
in organisms is a fundamental biological goal. Though mRNA
expression levels are now routinely measured on large scale,
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methods of high-throughput protein identification like western
blotting, 2D gel electrophoresis and green-fluorescent protein
(GFP) fusion tagging are very expensive in labor, time and
resources. Mass spectrometry (MS) based shotgun proteomics is
a simple alternative to these methods. With sensitive tandem
mass spectrometry (MS/MS) instruments or extensive biochemical
fractionation, several thousand proteins can be identified (Brunner
et al., 2007; Graumann et al., 2007; Peng et al., 2003; Washburn
et al., 2001). However, less costly approaches only identify a few
hundred proteins in a complex protein sample.

A shotgun proteomics experiment typically proceeds by MS/MS
analysis of peptides from proteolytically digested proteins, followed
by in silico matching of the MS/MS spectra against a database of
theoretical peptide spectra derived from protein sequences (Fig. 1).
Proteins are identified from combined evidence for their composite
peptides, resulting in a list in which each protein is associated with
a confidence score of correct identification. We refer to this score
as the ‘original’, ‘primary’ or ‘raw’ protein identification score, e.g.
here using ProteinProphet (Nesvizhskii et al., 2003). All proteins
with scores greater than a chosen threshold are labeled ‘present’
(Fig. 1).

Protein identification in an MS/MS experiment is hindered by a
number of factors: noisy spectra, low-concentration proteins, post-
translational modifications and chemical properties that interfere
with efficient peptide ionization. For complex samples such as
cell lysates, current MS search algorithms typically match a
disproportionately small percentage (<20%) of all MS/MS spectra
to peptides in a database, and only a small fraction of the expected
proteins is identified. In other words, despite their presence in
the biological sample, raw MS/MS identification scores of many
proteins fall below a given confidence threshold and the proteins
are incorrectly labeled as ‘not present’.

The vast majority of MS/MS experiments are analyzed without
considering any prior information regarding a protein’s presence
in the sample. MS/MS protein identification scoring schemes, e.g.
BioWorks (ThermoFinnigan) or ProteinProphet (Nesvizhskii et al.,
2003), assume that all proteins are equally likely to be present. In
reality, other information may be readily available and can be used to
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Fig. 1. Boosting protein identifications with prior information on mRNA
concentration. A complex protein sample, e.g. cellular extract, is enzy-
matically digested into peptides and subjected to MS/MS. Raw MS/MS
spectra are searched against a database of sequences using primary protein
identification software, e.g. Bioworks (ThermoFinnigan), PeptideProphet
(Keller et al., 2002) and ProteinProphet (Nesvizhskii et al., 2003), which
produces a list of proteins and scores that signify the probability of
correct identification. In a secondary analysis, MSpresso reexamines protein
identification scores with respect to their mRNA abundance. MSpresso
boosts the protein identification score given sufficient mRNA concentration.
Proteins are then labeled ‘present’ if their MSpresso probability is larger than
a newly determined cutoff. The MSpresso score, P(K = 1|S, M), estimates
the probability of protein presence as the posterior probability of K = 1
given mRNA abundance M and MS protein identification score S. MSpresso
uses three probabilities, P(K|S), P(K) and P(K|M), and their estimation is
discussed in the text. K , protein presence; S, MS/MS identification score; M,
mRNA concentration.

influence the inferred probability of protein presence when evidence
from the MS/MS experiment is weak.

Our method, MSpresso (for MS and exPRESSion data), integrates
data from MS/MS experiments with mRNA expression data in
a Bayesian framework. MSpresso computes a new protein iden-
tification score as the posterior probability of the protein being
present in the sample given both its MS/MS and mRNA scores.

We demonstrate the applicability of MSpresso on a yeast
sample grown in rich medium analyzed on a low-resolution mass
spectrometer (LCQ). We use mRNA concentrations from three
independent experiments (Holstege et al., 1998; Velculescu et al.,
1995; Wang et al., 2002) and corresponding protein data from four
MS experiments (Chi et al., 2007; de Godoy et al., 2006; Peng
et al., 2003; Washburn et al., 2001). We compare the performance
of MSpresso on the yeast sample with the original raw MS/MS
identification scores using ROC (Receiver Operator Characteristic)
plots, and find an increase of ∼40% in the number of proteins
identified at a fixed error rate. We validate 98% of these new
identifications by their presence in at least one of the seven
independent benchmarking datasets. We also generalize the method
and demonstrate its applicability to a data from a high-resolution
MS/MS instrument, different biological conditions, as well as to
other organisms (Escherichia coli, human). To the best of our
knowledge, MSpresso is the first integrative approach to analysis
of shotgun proteomics data.

2 METHODS

2.1 MSpresso uses a Bayesian probability framework
Primary protein identification is an essential step in the procedure to derive an
initial list of proteins and their MS/MS identification scores. The process is

outlined in Figure 1. Starting from the MS/MS analysis of a complex protein
sample, we used Bioworks (ThermoFinnigan), PeptideProphet (Keller et al.,
2002) and ProteinProphet (Nesvizhskii et al., 2003) to derive an initial
list of proteins and their corresponding protein identification scores. We
do not require that the raw MS/MS identification score be a probability,
though this is the case with ProteinProphet (Nesvizhskii et al., 2003).
Any other MS analysis software is equally suitable for primary protein
identification. MSpresso also does not affect peptide identifications as it
only uses identifications at the protein level. MSpresso results do not reflect
on the quality of the primary protein identification, they merely produce a
new score based on additional information.

The MSpresso protein identification probability combines both direct
and inferential evidence of protein presence. Direct evidence is generated
by methods that directly measure protein presence e.g. MS/MS analysis.
Inferential evidence refers to data that implies protein presence but does not
directly measure it, e.g. mRNA abundance.

More formally, K is a Bernoulli variable where K = 1 is the event that
the protein is present in the sample, and P(K = 1) is the probability of
that event. The MSpresso probability is the posterior probability P(K|S = s,
M = m) that a protein is present in the sample given its associated mRNA
abundance M = m, and its raw MS/MS protein identification score S = s.
Using Bayes’ law,
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Using a conditional independence assumption between M and S given K , we
set P(M|K , S) = P(M|K). In other words, we assume that observed mRNA
abundance M is independent of S given that the protein is present (see
Supplementary Material for discussion and detailed derivation). P(K|M) and
P(K|S) are the posterior probabilities of a protein existing in the sample,
given only its mRNA abundance M and primary identification score S,
respectively. P(K) is the prior probability of the protein being present.
Rewriting and normalizing, we obtain the MSpresso score:
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2.2 Evaluation methodology
To compare primary and MSpresso protein identifications, we estimated true
positive rate (TPR), false positive rate (FPR) and precision, given the proteins
known to be in the sample (positive instances) and known not to be in
the sample (negative instances). TPR at score threshold t is the fraction of
positive instances with scores ≥ t. FPR at score threshold t is the fraction
of negative instances with scores ≥ t. False negative rate at score t is the
fraction of all positive instances with score < t, and is equal to (1 – TPR).
Precision at score threshold t is the fraction of all identifications with scores
≥ t that are positive instances. Note that FPRs are computed differently from
false discovery rates (FDR = 1 – precision) (Nesvizhskii et al., 2003), and
the number of reported proteins can vary depending on the error model.
Supplementary Section 2.5 has a discussion on different error estimates.

We evaluated results using ‘protein reference datasets’ of large-scale
protein identification. Reference sets act as an empirical estimate of the
ground truth of proteins truly present in the sample. Proteins present in the
reference set were labeled as positive instances. The reference sets were used
as training data to estimate the probabilities in Equation (2), and in evaluation
to validate the reported proteins and generate ROC plots. Since we typically
used the same set for training and evaluation, probability estimates were
averaged across 10 runs of 10-fold cross-validation, using a different fold
partitioning per run. We constructed protein reference sets by gathering high-
confidence protein identifications from published large-scale experiments
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run on similar sample conditions. When such data was unavailable, we
generated a reference set by pooling high-confidence protein identifications
from several technical replicates of our MS/MS experiment e.g. human data
(Section 2.3.4). Reference sets for each experiment are given in Section 2.3.
In Section 3.4.2, we discuss evaluation without protein reference sets, where
we used decoy proteins to represent negative instances.

In each experiment, we generated MSpresso scores for all proteins in the
test set of proteins with non-zero primary identification score and mRNA
abundance. Since the samples were cytosolic, we expected a bias in sample
composition against membrane proteins and therefore excluded all proteins
predicted to have one or more membrane helices (Kall et al., 2004). In rich-
medium yeast, this resulted in a test set of 4165 genes and 3443 proteins in
the mRNA and protein reference datasets, respectively. All numbers quoted
in Section 3 refer to proteins without membrane helices; analysis of the full
proteome gives similar results (Supplementary Fig. S7C).

2.3 Datasets and sample preparation
We applied MSpresso to a variety of organisms, experimental conditions
and mass spectrometers: yeast grown in rich and minimal medium, E.
coli grown in minimal medium and a human cell line. We analyzed each
dataset on one or two different mass spectrometers: a ThermoFinnigan
Surveyer/DecaXP+ (LCQ) or ThermoFinnigan LTQ-OrbiTrap (ORBI).
MS/MS protein identification was conducted using the Bioworks 3.3.
(ThermoFinnigan), PeptideProphet (Keller et al., 2002) and ProteinProphet
(Nesvizhskii et al., 2003) pipeline. Details for each dataset are given below,
with more details in the Supplementary Material (Section 1).

2.3.1 Yeast (rich medium) Cell lysate from wild-type yeast grown in rich
medium was analyzed on both the LCQ and ORBI mass spectrometers. The
LCQ data has been published before (Lu et al., 2007). For the fractionation
data, cellular lysate was separated in a 7–47% sucrose gradient and fractions
were monitored by UV for RNA content. We chose the fraction containing
80S ribosomes for further liquid chromatography (LC) MS/MS analysis on
the LCQ.

The mRNAdata is the average of at least two of three independent absolute
expression measurements, all derived from wild-type yeast grown to log-
phase in rich medium (Holstege et al., 1998; Velculescu et al., 1995; Wang
et al., 2002). The same dataset was also used in Lu et al. (2007). The protein
reference set was generated from a pool of four independent MS-based
protein datasets from yeast grown in rich medium (Chi et al., 2007; de
Godoy et al., 2006; Peng et al., 2003; Washburn et al., 2001), choosing
proteins present in at least two of the four datasets (‘YP4gte2’). Proteins that
were absent from all four datasets represent the negative instances, i.e. we
assume these proteins are not expressed under the given conditions. Unless
stated otherwise, all rich-medium yeast results in this article use this reference
dataset.

We also compiled a non-MS-based protein reference dataset (YP3,
Supplementary Section 1.2, Fig. S7D). For the fractionation data, we
assembled a list of ribosomal proteins as published in literature (Planta and
Mager, 1998) and proteins annotated as ribosomal, involved in ribosome
biogenesis or translation (Nash et al., 2007).

2.3.2 Yeast (minimal medium) MS/MS data on wild-type yeast grown in
minimal medium (MOPS9) was derived from published work (Lu et al.,
2007), with cell lysate analyzed on an LCQ mass spectrometer. The mRNA
abundance was obtained from one dataset for yeast grown in minimal
medium (YMD) (Smirnova et al., 2005). Protein reference data comprised
of published flow-cytometry analysis of GFP-labeled proteins [2214 proteins
(Newman et al., 2006), 1792 are non-membrane and have detectable mRNA
abundances], combined with two MS-based datasets for a total of 2529
proteins identified at high confidence (2022 non-membrane and with mRNA
abundances). See Supplementary Section 1.2 for details.

2.3.3 Escherichia coli (minimal medium) We performed shotgun MS/MS
analysis on trypsinized, soluble proteins extract from E.coli grown in
minimal medium using the LTQ-OrbiTrap mass spectrometer [details in
Supplementary Material and Lu et al. (2007)]. Three datasets provided
information on mRNA concentration (Allen et al., 2003; Corbin et al., 2003;
Covert et al., 2004). Reference data comprised of two published 2D-gel
electrophoresis datasets (Link et al., 1997; Lopez-Campistrous et al., 2005)
for a total of 370 non-membrane proteins that also had detectable mRNA
abundances.

2.3.4 Human We analyzed two human datasets generated by MS/MS
analysis on two mass spectrometers (LCQ, LTQ-OrbiTrap). Experimental
preparation of human data from the Daoy medulloblastoma cell line is
described in the Supplementary Section 1.4. As no matching published large-
scale human proteomics dataset was available for use as a reference set, we
generated one by combining high-confidence protein identifications (≤5%
FDR defined by ProteinProphet) from 10 technical replicates (injections) of
MS/MS analysis on the LTQ-OrbiTrap mass spectrometer. We used this as a
reference set for the LCQ dataset. For the LTQ-OrbiTrap dataset, we pooled
nine replicates into a reference set, and used the 10th replicate as the test set.

2.3.5 Functional analysis of reported proteins Functional analysis of
yeast proteins was conducted with saccharomyces genome database (SGD)
(Nash et al., 2007), FunSpec (Robinson et al., 2002) and FuncAssociate
(Berriz et al., 2003), applying Bonferroni corrections for multiple hypothesis
testing. There was no bias towards phosphorylated proteins among MSpresso
identifications (Chi et al., 2007; Ptacek et al., 2005). Functional analysis of
E.coli proteins was conducted using annotations from GenProtEC (Serres
et al., 2004).

2.3.6 Data availability Yeast LCQ and E.coli data have been
published (Lu et al., 2007). Other MS/MS data is available at
http://www.marcottelab.org/MSpresso/.

3 RESULTS
We first present results on a rich-medium yeast sample, followed
by results on E.coli and human datasets. We then describe
generalizations of the method that apply in the absence of
high-quality training data. Finally, we discuss evaluation without
reference sets (decoy databases).

3.1 Knowledge of mRNA levels can improve
identification of the expressed yeast proteome

We show that incorporating prior evidence of protein presence
into the protein identification score can significantly increase the
probability of correct protein identification in MS/MS experiments.

To compute the MSpresso score in Equation (2), we must estimate
three probabilities (Fig. 1): (i) the prior probability P(K = 1) of
protein presence in the sample; (ii) the posterior probability P(K|S)
of protein presence given only its primary MS/MS identification
score S; and (iii) the posterior probability P(K|M) of protein
presence given only its mRNA concentration M.

We assume P(K) follows the uniform distribution, and set the
probability P(K = 1) = constant for all proteins. Under this model,
P(K) acts as a proportionality constant which does not change the
ranking of MSpresso scores, but just their value. For the expressed
yeast proteome, we estimate P(K) = 2/3, as suggested by the size of
a reference dataset (Chi et al., 2007; de Godoy et al., 2006; Peng
et al., 2003; Washburn et al., 2001).

The posterior probability P(K|S) is learned using a logistic
regression classifier on the primary identification score [from
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ProteinProphet (Nesvizhskii et al., 2003)]. The posterior probability
P(K|M) is estimated by binning experimentally determined mRNA
concentrations (Holstege et al., 1998; Velculescu et al., 1995; Wang
et al., 2002). We used the protein reference set YP4gte2 described
in Section 2.3.1 as ground truth for training and evaluation. We
generated a histogram of mRNA abundances (log-scale) and set
P(K|M) to the fraction of proteins present in the protein reference
dataset per bin (Fig. 2). We chose bin width to maximize the area
under ROC curve (AUC) using cross-validation. AUC was not very
sensitive to bin size variation (data not shown).

In general, we expect proteins with high levels of mRNA
expression to have a better chance of being present in a proteomics

Fig. 2. Experimental data describes the relationship between the probability
of protein presence given that the corresponding mRNA is observed at a
certain abundance, P(K|M = m). The relationship is modeled by a histogram
of the fraction of proteins present in the protein reference set per bin of mRNA
concentration, generated from a rank ordered list of mRNA abundances using
225 proteins per mRNA bin. The protein reference dataset contains four MS-
based proteomics datasets (Chi et al., 2007; de Godoy et al., 2006; Peng et al.,
2003; Washburn et al., 2001); the mRNA data is an average of three datasets
(Holstege et al., 1998; Velculescu et al., 1995; Wang et al., 2002).

experiment. Indeed, we find that the probability of protein presence
in the reference dataset, P(K = 1|M), increases with increasing
mRNA concentration (Fig. 2). Note that the relationship in Figure 2
refers to the relationship between mRNA abundance M and protein
presence K , which is different from the relationship between protein
abundance and mRNA abundance that has been studied elsewhere
(Futcher et al., 1999; Greenbaum et al., 2003; Gygi et al., 1999;
Lu et al., 2007). Figure 2 resembles a step function with linear
interpolation between steps: below a (log-scale) concentration of
∼0.5 mRNA molecules/cell the probability of the protein being
present in the reference set is low (P(K = 1|M) ≤ 0.10), while above
nine molecules/cell the probability is high [P(K =1̇) ≥ 0.90]. The
step function is conserved for yeast grown in minimal medium, E.
coli and human (Supplementary Fig. S2).

3.2 Results on rich-medium yeast sample
3.2.1 MSpresso identifies up to 63% more proteins than the primary
identification Using Equation (2), we calculated the MSpresso
protein identification score for each protein in the rich-medium yeast
LCQ dataset. A protein that is present in the YP4gte2 reference set
(Section 2.3.1) is labeled as true identification (positive instance),
and a protein that is absent from it is labeled as a false identification
(negative instance). We report the MSpresso score for each protein
and a 5% FPR cutoff over all identified proteins.

Table 1 summarizes the results at 5% FPR for yeast and other
experiments. MSpresso identifies more proteins at the same error
rate than the primary identification.

Figure 3A and B illustrate performance via ROC (TPR versus
FPR) and precision–recall plots (TPR versus precision). The
MSpresso ROC curve dominates the primary identification curve at
a wide range of FPRs. This observation implies that using MSpresso
scores is better than just lowering the primary score threshold
(choosing a threshold with higher FPR) to obtain more predictions.

Table 1. MSpresso performance in different experiments

Experiment Test set Area under the ROC (AUC) Number of proteins identified at 5% FPR

MS/MS MSpresso Percentage
increase

MS/MS MSpresso Percentage
increase

Yeast-YPD-LCQ Cell lysate, rich medium (YPD), LCQ (five
injections)

0.75 0.89 19 234 327 40

Yeast-YPD-ORBI Cell lysate, rich medium (YPD), ORBI (eight
injections)

0.80 0.84 5 428a 618 63

Yeast-YMD-LCQ Cell lysate, minimal medium (YMD), LCQ
(six injections)

0.73 0.84 15 229 278 21

Yeast-Fraction-LCQ Cell lysate, fractionated in polysomal
gradient, rich medium (YPD), LCQ (three
injections)

0.72 0.77 7 21a 34 62

Escherichia coli-ORBI Cell lysate, minimal medium (MOPS9),
ORBI (three injections)

0.69 0.80 16 63a 87 38

Human-LCQ Cell lysate from Daoy, LCQ (two injections) 0.71 0.75 6 99 121 22
Human-ORBI Cell lysate from Daoy, ORBI (one injection) 0.79 0.81 3 105 125 19

In each experiment, we generated MSpresso scores for each protein with observed mRNA abundance and MS/MS identification score. The better the MSpresso-based scoring,
the higher the ‘Percentage AUC increase’ and ‘Percentage increase in number of identified proteins’. These experiments use the ‘self’ MSpresso model: trained and evaluated on
experiment-specific reference data. MSpresso results using the ‘reuse’ model are presented in the Supplementary Material (Table S10).
aData as extrapolated from the ROC curve where there was no data at 5% FPR.
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Fig. 3. Performance of MSpresso in yeast grown in rich medium.
We evaluate the performance of MSpresso, the original MS/MS
identifications (ProteinProphet), and MSpresso using a random P(K|M)
model using a ground-truth reference set to determine true and false
identifications. (A) ROC plot (TPR versus FPR): MSpresso identifies more
true positives at a given FPR than the MS/MS identifications, and has a 19%
higher AUC. (B) Precision–recall plot (TPR versus precision): MSpresso
increases precision at fixed recall across different score thresholds.

Similarly MSpresso outperforms the primary identification in
Figure 3B, with higher TPR at the same precision.

The AUC is equal to the probability that the classifier will rank a
randomly chosen positive instance higher than a randomly chosen
negative one (Fawcett, 2006). MSpresso, with AUC = 0.89, provided
a 19% increase in AUC compared with the primary MS/MS-based
protein identification (AUC = 0.75), and a 27% increase compared
with MSpresso with random P(K|M) (AUC = 0.70) (Fig. 3A,
Table 1).

3.2.2 Functional analysis of MSpresso identifications At a
5% FPR cutoff, MSpresso identifies ∼40% more proteins than
ProteinProphet (Table 1)—327 versus 234. Of these identifications,
100 were not identified by the primary analysis, and are
new MSpresso identifications. These proteins had sub-threshold
ProteinProphet scores and were hence labeled ‘not present’. Due
to their high-mRNA concentration (>9 molecules/cell), their scores
were increased above threshold and they were marked ‘present’.
The 100 newly identified proteins were not biased in their functions
compared with the background: the union of all proteins identified
by ProteinProphet and MSpresso (Berriz et al., 2003). Both
ProteinProphet- and MSpresso-predicted proteins were enriched for
molecules of high concentration, e.g. ribosomal proteins, proteins
of biosynthesis and metabolism (P-value < 0.001).

We also analyzed the intersection of MSpresso 5% FPR
proteins with the two yeast reference datasets described
in Section 2.3.1. [YP4gte2 and YP3; see Supplementary
Fig. S7 (P-value < 0.001), hypergeometric distribution]. Only two
MSpresso-identified proteins were neither present in the reference

sets, nor identified by the primary identification: GTO3, glutathione
transferase (Nash et al., 2007)—a protein not unusual for cells
growing (and dividing) in rich medium, and GCN4, a transcription
activator of the amino acid starvation response (Lee et al., 2007).
We did not expect GCN4 to be expressed in rich medium, and it is
either a false positive or indicates a weak-starvation response.

MSpresso can also negatively influence protein identification, i.e.
low-mRNA concentration shifts MSpresso scores below threshold
even if the primary identification labeled such proteins ‘present’.
There were 15 such proteins in the yeast dataset. They were
not enriched for any functional category and had low-mRNA
concentration [≤0.88 molecules/cell; median P(K|M) = 0.26] in
contrast to the median mRNA concentration across all genes
[16 molecules/cell; median P(K|M) = 0.80]. All but three proteins
were as present in the reference sets: two cell cycle proteins (SWE1,
SSN3) and a protein of unknown function (MUK1).

3.3 Results on other yeast datasets and other
organisms

We tested MSpresso for other biological conditions, organisms and
mass spectrometers as detailed in Section 2.3. MSpresso increased
the number of identifications at 5% FPR by 19–63% across all
datasets (Table 1), while maintaining constant or higher precision
than the primary identification (data not shown). MSpresso increased
AUC by 3–19% across experiments; a substantial increase since
AUC is related to the probability of correct classification. ROC plots
are in the Supplementary Figure S8.

3.3.1 Yeast We applied MSpresso to three other yeast
datasets: rich-medium yeast reanalyzed on a high-resolution
mass spectrometer LTQ-OrbiTrap (Table 1: Yeast-YPD-ORBI),
yeast grown in minimal medium (Table 1: Yeast-YMD-LCQ),
and a sample from a sucrose gradient experiment (Table 1: Yeast-
Fraction-LCQ). MSpresso-predictions for OrbiTrap and YMD
experiments were strongly enriched for metabolic and ribosomal
functions (P-value < 0.001) (Berriz et al., 2003)—proteins of
these functions are typically in high concentration in growing and
dividing yeast cells. In addition, MSpresso-predicted proteins from
yeast grown in minimal medium are enriched for small molecule
metabolism (P-value < 0.001), which is expected for growth in
minimal medium.

3.3.2 Escherichia coli We applied MSpresso to cytosolic protein
extract from E.coli grown in minimal medium analyzed on an
LTQ-OrbiTrap (Section 2.3.3; Table 1, Escherichia coli-ORBI). The
MSpresso-predicted proteins were enriched for the same functions
as proteins from primary analysis: biosynthesis and translation
[P-value < 0.001 using a background of all 3503 E.coli proteins with
function annotation (Serres et al., 2004)]. The reference dataset was
very small (∼370 proteins) and hindered immediate verification of
the newly identified proteins.

3.3.3 Human We applied MSpresso on two human datasets
described in Section 2.3.4 (Table 1: Human-LCQ, Human-ORBI).
We found ∼20% more proteins in both datasets than the primary
identifications, and these proteins were enriched for functions in
metabolism, translation and biosynthesis (P-value < 0.001) (Berriz
et al., 2003).
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3.4 General applicability of the method
So far, we have discussed MSpresso models trained on high-quality
protein reference sets available for the respective organism (dubbed
the ‘self’ model). However, the method can be generalized to cases
where little or no protein reference data is available. For example,
the P(K|M) estimates for E. coli (Supplementary Fig. S2) are much
smaller than those in yeast, because the protein reference dataset
comprises only ∼370 proteins. For this reason, we developed models
that reuse P(K|M) and P(K|S) relationships learned from available
datasets, albeit in different sample conditions or organisms. Our
aim was to investigate the degree to which these relationships can
be reused across datasets. The ‘reuse’ model for P(K|S) involves
applying the P(K|S) logistic regression classifier, which was learned
on high-quality data (e.g. rich-medium yeast), to other datasets. We
now describe ‘reuse’ models for P(K|M) based on the yeast model
(or the best organism-specific model).

3.4.1 Generalizing P(K|M) First, we approximated P(K|M)
by a simple step function from Figure 2, estimating
P(K|(log10M < 0.5)) = 0.10 and P(K|(log10M > 9)) = 0.90 (results
not shown). Next, we derived two ‘scaled’ models: SCALE-UP
scales the P(K|M) values in Figure 2 to a [0,1] interval, and SCALE-
DOWN scales P(K|M) to half of the original values (results not
shown). The mRNA concentrations from the rich-medium yeast
model were also scaled to a [0,1] interval.

A SCALE-UP reuse model derived from Figure 2 (rich-medium
yeast data) resulted in 3–14% AUC increase when applied to
the other yeast datasets (Supplementary Table S10). We also
derived SCALE-UP models from the P(K|M) distributions learned
on other organisms (E.coli, human) and applied them to the
respective organism’s datasets. Selected results are presented in the
Supplementary Material (Table S10).

In general, we recommend using the self model if a high-quality
experiment-specific protein reference set is available. When such
data is unavailable, we recommend using an organism-specific
SCALE-UP model or using the yeast SCALE-UP model.

3.4.2 Evaluation without a protein reference set So far, we have
used protein reference sets as ground truth to define true and false
identifications. Though we expect our canonical reference dataset
for yeast in rich medium to cover most of the expressed yeast
proteins (2/3 of the genome), such large-scale protein datasets are
mostly unavailable for other organisms. Thus we need to define false
identifications to estimate null score models (Choi and Nesvizhskii,
2008; Choi et al., 2008) and error estimates without a reference set.

There have been recent efforts in standardizing null models for
peptide identifications; however, no general consensus has yet been
reached at the protein level (Elias and Gygi, 2007; Fitzgibbon
et al., 2008; Kall et al., 2008; Kim et al., 2008). In general, a set
of ‘null’ or ‘decoy’ proteins is appended to the sample organism
database (‘target’) before the MS/MS search. Decoy proteins are
considered to be negative instances. Proteins from another organism
or shuffled/reversed protein sequences have been used as decoys
(Kall et al., 2008).

To investigate evaluation without using a ground-truth reference
set, we applied MSpresso to both real (target) and shuffled (decoy)
yeast protein sequences, labeling any identified decoys as false
identifications. We first ran the MS/MS analysis on rich-medium
yeast, matching experimental spectra against a concatenated

database of real and shuffled sequences. This procedure resulted in
protein identification scores (S) for both target and decoy proteins,
letting us estimate P(K|S) as before. However, P(K|M) cannot be
estimated for decoy proteins in the same manner as for the targets,
since decoys are artificial proteins and do not have associated mRNA
abundances. Hence, we investigated different random P(K|M)
distributions for the decoy proteins: e.g. random sampling from
the target P(K|M) distribution, random sampling from the P(K|M)
values of target proteins that are absent from the reference set
(negative instances) and constant at the minimum of the target
P(K|M) distribution (Supplementary Section 2.6.2). We measure
the increase in AUC and the number of proteins identified using
multiple error measures (FPR, FDR, q-value: see Supplementary
Section 2.5). Running MSpresso on yeast with five shuffled decoy
databases results in up to 5% AUC increase and up to 14% more
identified proteins at 5% FPR. We also experimented with different
shuffled database sizes ranging from 0.25 to 20 times the size of the
real database (Supplementary Section 2.6.1). Detailed results are
presented in Supplementary Section 2.6 and Table S6.

3.5 Conclusions
We present a method called MSpresso that improves our ability
to identify proteins in large-scale shotgun proteomics experiments.
MSpresso learns the relationship between mRNA concentration and
the probability of protein presence in a sample, and then applies
this relationship to boost sub-threshold protein identifications in
data from MS/MS experiments. We assess MSpresso performance
with ROC curves over a large range of FPRs, and show a boost
of 19% AUC in a yeast sample, as well as 40% increase in
protein identifications at 5% FPR, at the same or higher precision.
We also generalize the method to other experimental conditions,
mass spectrometers and organisms, even in the absence of a
high-quality training dataset. By integrating mRNA evidence into
the MSpresso score, we improve the confidence in our predicted
proteins, which leads to more identifications at similar error rates.
MSpresso is not restricted to particular MS-based methods of
primary protein identification but could be applied to any large-
scale proteomics dataset that contains scores signifying confidence
in correct identification.

Our results have interesting biological implications. For
example, the relationship between mRNA concentration and protein
identification (Fig. 2) is different from what we would expect
given a strong correlation between mRNA concentration and protein
abundance [R2 = 0.73 (Lu et al., 2007)]. In general, yeast proteins
are very easily identifiable in shotgun proteomics experiments if
their corresponding mRNA is present at 9 molecules/cell (or higher)
on average, and at around 1 molecule/cell mRNA, current high-
throughput methods largely fail to detect proteins. This empirical
relationship between mRNA abundance and protein identification
may be refined with increasing experimental sensitivity.

Further, given that we now have several large-scale datasets
available, we can attempt to describe the expressed yeast proteome
as comprehensively as is currently possible and answer the simple
but fundamental question: ‘How many proteins are expressed in
yeast growing in log-phase under nutrient rich conditions?’. The
union of our two MSpresso-predicted datasets (LCQ, ORBI) and
the protein reference datasets comprises 3797 cytosolic proteins
expressed in yeast growing in rich medium at log-phase; 2364
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(62%) of these proteins occur in two or more datasets, and may thus
form a core set of reliably identified proteins. Given that there are
4962 non-membrane yeast proteins in total, we can estimate upper
boundaries of observed transcription and translation products—and
these estimates are impressively high. The majority of all yeast
genes, 84% (4165) have observed mRNA, and for 70% (3512)
we observe both mRNA and protein. Interestingly, there are 282
genes for which no mRNA but protein is observed: mRNA may
exist at only very low levels or is rapidly degraded. Together, these
numbers indicate that even in an unperturbed, comparatively simple
unicellular eukaryote, a very large number of proteins are expressed
and form a complex cellular machinery.
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