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What can recent methodological advances help us
understand about protein and genome evolution?
Christine Orengo
University College London
A structural lens on evolution
Dramatic advances in protein structure prediction (e.g., AlphaFold) have expanded

structural data massively. A large proportion is good enough for meaningful and

substantial evolutionary analyses. This vastly increased catalog will bring deep insights

into biochemical and biophysical constraints and reveal evolutionary mechanisms to

aid protein design and interpretation of variants.

The quantum leap in accuracy was powered by advances in AI/deep learning (DL),

validated by independent assessment (CASP) and enabled by steady, exponential

accumulation of structure and sequence data in standardized formats (PDB, UniProt).

A landmark in scientific culture saw the public release of commercially developed

algorithms together with hundreds of millions of models.

Proteins comprise one or more globular ‘‘domains’’—building blocks of life. Early

work exploiting DL-methods detected >300 million domain models. Powerful

approaches (FoldSeek), accelerating structure comparison by >3 orders of magni-

tude, rapidly assigned these to known evolutionary families and revealed structural

novelty. Remarkably few new families are found (<0.01% of models). Instead, much

of the treasure is the amazing structural innovation across families during evolution,

likely bringing functional novelty. The challenge now is to understand when and

how function changes. To aid this, protein language models have enhanced the

prediction of protein functional sites and surfaces. Comprehensive data on diverse

domain combinations will illuminate evolutionary trajectories and help to rationalize

modified functions. Prediction of protein-protein interactions remains challenging

but the vast data now available on predicted domain-domain packings will accel-

erate progress. Mystery still surrounds the disordered regions of proteins ,but the

new DL tools and much expanded structural data will shine a strong light on

protein evolution.
Ian M. Ehrenreich
University of Southern California
Building networks to study evolution
Key questions about how genetic network properties impact adaptive evolution, muta-

tional and environmental robustness, evolvability, and the diversification of organisms

have yet to be conclusively answered. Addressing these questions in a definitive way

requires experiments in which we design, build, and test the entire genetic networks

of living cells. While such experiments were not historically possible, recent work on

chromosome-scale synthetic biology (or ‘‘synthetic genomics’’) suggests they will be

feasible in the not-distant future.

Whole chromosomes can now be built by progressively assembling small DNA

pieces into increasingly large molecules. Currently, chromosomes with sizes from

hundreds of kilobases to around ten megabases can be synthesized, and this upper

limit will only continue to increase. Once synthesized, these chromosomes can be acti-

vated inside living cells to study their biological characteristics.

By enabling the specification of entire genetic networks in living cells, synthetic

genomics should make it possible to directly probe how network features impact

evolution. For example, genetic network designs can be built and tested that explore

how changes in connectivity and redundancy within networks impact phenotypic

expression and adaptive evolution across environments. As another example,

genetic networks can be rationally or randomly reconfigured to map the relationship

between network topology and the adaptive landscape or the expression of novel

traits. Experiments like these will advance understanding of the mechanisms that
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produce life’s diversity and improve our ability to predictively engineer living

systems.
Edward M. Marcotte
University of Texas at Austin
Seeing farther into deep time
By far, the biggest recent breakthrough for studying protein evolution has been the

advent of new computational methods for predicting protein structures and assem-

blies. This development is proving transformational for evolutionary studies because

proteins’ amino acid sequences evolve faster than their 3D structures. Predicting 3D

structures with accuracy lets us see farther back into evolutionary time and find more

distant homologs by structure-structure matching.

For perhaps the first time, our ability to study protein structures has nearly caught up

with our ability to sequence DNA, thanks to tools like AlphaFold, RosettaFold, ESMfold,

and others. Within just 3 years, we’ve moved from having detailed structures for

hundreds of thousands of proteins to predicting hundreds of millions with reasonable

accuracy. This leap has been enhanced by new, fast structure comparison algorithms,

such as FoldSeek, that let us use these vast datasets effectively. With these tools in

hand, we can explore deep time, uncovering entirely new protein families, 3D folds,

and higher-order complexes.

However, I’m most excited by the fact that these same tools open up studies of the

least understood organisms on the planet: think of all of the strange fungi, uncultivatable

microbes from deep sea core samples, extremophiles, and vast collections of phage

and viruses, known only by DNA sequencing. We’ve essentially just been given entirely

new computational lenses to peer into their proteomes and begin understanding some-

thing of how they are put together, molecularly speaking.
Rachel Kolodny
University of Haifa
A revolution of protein comparison
Recent methodological developments offer new and improved ways to compare

proteins—a foundational tool used in bioinformatics to study molecular evolution.

The classical example of a comparison tool is the BLAST implementation for

sequence alignment, which was designed with biological intuition and few

learned parameters to search for homologues in large databases. Using AI, we

can instead compare the so-called protein embeddings: learned fixed-size

vector representations for proteins. Learned embeddings for sequences are called

protein language models. Trained to predict masked, or hidden, parts (in a self-

supervised manner), an embedding learns a distilled form of the amino acid

sequence.

Intuitively, that embeddings learn an ‘‘internal grammar’’ allows them to model

proximities in protein space in a meaningful manner. Thus, embeddings can be

used to compare pairs, or larger sets, of proteins and to efficiently search in large

databases. Even embeddings that were trained only on sequences capture informa-

tion beyond sequence, as evidenced by their utility in predicting structural and even

functional properties. However, embeddings can be further improved by co-embed-

ding alongside the sequences, structural and functional information (see Ben-Tal’s

Voice). This will not only render ways to compare the different facets of proteins

but also lead to a better holistic comparison. Contemporary AI tools can revolu-

tionize comparison, and just imagine the effect this will have on our understanding

of the world.
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Tel Aviv University
AI-based view of protein space
In proteins, sequence determines structure and function, and yet, in spite of decades of

intensive research, we still lack full understanding of the interplay between sequence,

structure, function, mechanism, and dynamics. Recent advances in AI may aid in

this. AlphaFold, which effectively solved protein structure prediction from sequence,

has demonstrated its power in capturing sequence-structure relationship. Further

demonstration of the power of AI is the success of protein language models (PLMs).

PLMs capture the essence of proteins, in a form called ‘‘embeddings.’’ In other disci-

plines, co-embeddings, i.e., concerted embeddings of multiple facets in the same

space, revealed non-trivial connections, e.g., between images and text describing

them. By analogy, it should be possible to co-embed protein sequence, structure,

and function, as well as other information like mechanism. Embeddings describe

objects as vectors, such that the vectors of similar objects are near each other.

In PLMs, vectors corresponding to evolutionarily linked sequences are near each

other in sequence latent space (see Kolodny’s Voice). Similarly, embeddings of proteins

sharing structural similarity would cluster together in structure latent space and those of

proteins of similar function (e.g., a shared ligand) in function latent space. Co-embed-

ding the three types of vectors, would provide a unified view of protein space. Such

a learned co-embedding of sequence, structure, and function would offer the most

holistic and comprehensive view that one can hope for of protein space, with multiple

practical and conceptual implications.
Carl G. de Boer
University of British Columbia
DNA synthesis writes the next chapter
While sequencing DNA has provided us snapshots into the products of evolution, our

ability to synthesize DNA is driving our ability to understand its functional conse-

quences. DNA synthesis has been around for decades, but the last few years has

seen the cost of DNA synthesis go down to the point where new types of experiments

are becoming feasible. For instance, one can now purchase libraries of millions of short

(150–400 nt) single-stranded oligos or even assemble desired >100 kb sequences from

3 kb gene synthesis clones. And the pace of DNA synthesis technological improvement

is poised to continue. Soon, our progress will be limited more by our abilities to design

the best experiments.

DNA synthesis technology has already enabled us to test the effects of genetic vari-

ation, in both proteins and cis-regulatory DNA (e.g., enhancer/promoter), and to test the

functions of distant orthologs. But the genetic variation within extant organisms reflects

only an infinitesimal proportion of the variation that ever existed or could exist. Explo-

ration of these unseen possibilities will enable us to learn better sequence-function

maps across cellular systems, including cis-regulatory DNA and proteins, and their

interactions that result in cellular and ultimately organismal phenotypes. In the longer

term, computational models trained on these synthetic DNA sequences will enable

us to design sequences for our benefit, enabling us to bypass evolution entirely.
Claire D. McWhite
Princeton University
Protein interactions decoded
The recent advent of protein language models has opened fresh pathways for under-

standing proteins and their interaction networks. These models are generated through

processing millions of protein sequences, capturing the inherent rules and patterns that

define what sequences are possible in the language of proteins. Language model-

based protein structure predictors, such as AlphaFold2, have enabled the prediction

of interactions across the entire human proteome, revealing numerous candidate novel

stable protein complexes.

Furthermore, protein language models have granted unprecedented control over

designing protein interactions. This includes creating entirely new peptides and anti-

bodies that bind specific target proteins.

Looking ahead, there will be potential to engineer variants of interacting proteins with

altered binding affinities. The ability to modify or destroy a specific interaction with

minor sequence changeswill pave theway for deeper inquiries into the functional signif-

icance of protein proximity within cells. As we harness languagemodels to reveal amino
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acids critical to interactions, we can begin to follow the evolutionary paths that shape

interaction specificity and functionality.
Rama Ranganathan
University of Chicago
‘‘Statistics before physics’’ in biology
A basic goal in biology is to understand how evolution works as a design process to

build machines from the scale of atoms to ecosystems that operate in living systems.

A remarkable characteristic of such ‘‘natural machines’’ is that they can approach theo-

retical limits of performance while maintaining two key properties—robustness and

adaptability—that ensure fitness as environments change. The co-existence of high-

performance, robustness, and adaptability is not obvious in man-made systems and

seems to originate from two unique characteristics of evolved systems: (1) strong

heterogeneity, such that parts make unequal or even distinct contributions, and (2)

strong non-linearity, such that global behaviors emerge from the cooperative actions

of the parts.

How can we learn the design principles of the kind of large, nonlinear dynamical

systems that occur in living things? A direct mechanistic approach often fails us

because it is hard to have intuition about the right effective variables that control global

behaviors. We end up learning local details but not fundamental design principles, and

potential simplifications go unnoticed. A major advance at the current time is to take

a ‘‘statistics before physics’’ approach to biology, using machine learning tools to learn

low-dimensional representations of seemingly complex biological systems from

sequence and experimental data. From the scale of proteins to microbial communities,

this approach is producing models that are both interpretive (providing new mecha-

nistic insights) and generative (capable of designing synthetic systems). Most impor-

tantly, the low dimensionality of these models inspires confidence that we can now

make real progress to learn how these systems work and why they are built the way

they are through the process of evolution.
Barry Honig
Columbia University
The centrality of 3D structure
As someone who has, for many decades, used computational biophysics to study

protein structure and function, the past few years have been both exciting and a bit

overwhelming. In particular, the AlphaFold revolution in protein structure prediction

and the continuing explosion of sequence information offer great opportunity but also

a new set of challenges: how best to exploit the new technologies and the massive

amount of data they produce; how best to gain conceptual understanding from AI

methods whose insights are buried in black boxes; do we need to ‘‘understand’’ for

progress to be made? Obviously, there are many areas where deep understanding

may not be necessary, but scientific progress is often fueled by conceptual advances,

and if this is to continue, we need to leverage the dramatic developments we are

witnessing without sacrificing the quest for concepts, global principles and deep

understanding of biological phenomena.

I believe that macromolecular structure offers a way forward. Cryo-electron micros-

copy has revolutionized structure determination while Cryo-electron tomography is

providing increasingly detailed images of sub-cellular structures. AlphaFold has

provided us with fairly accurate structure of millions of individual proteins and structural

similarity methods, ‘‘Structural BLAST,’’ allow us to leverage these structures to predict

which proteins interact on a proteome-wide scale and to discover relationships not

evident from sequence. Sequence relationships have been themain driver of our under-

standing of protein evolution, but it seems likely that cross-genome comparison among

protein structures, and protein networks, will become increasingly dominant. Similarly,

the ability to predict which proteins interact physically, and in multi-protein complexes,

will allow a far more insightful description of biological networks than one dimensional

signaling pathways that still dominate our thinking. Thus, 3D structure appears to be an

increasing central component in the new high-throughput era we have entered.
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Back to the future
Organismal evolution is driven by functional changes encoded in genomic shifts. Over

the years, we have come to rely on genetic or protein sequence differences as proxies

of evolutionary patterns. But can we really read these ‘‘blueprint’’ differences accumu-

lated over billions of years of history of life on Earth?

Recently, the field of sequence analysis has gotten a boost from the advances in

machine learning and, specifically, from transformer architectures. In the 1990’s,

hidden Markov models (HMMs) had significantly improved our ability to recognize

sequence motifs and, thus, remote homologs. Today’s large language models

(LLMs) hold similar promise of finding even further out homologs. For example,

protein 3D-structure similarity may help infer homology. Coincidentally, sequence

defines structure and can be read as such with the right LLM. Moreover, the

multi-dimensional encoding of protein sequences generated by such models may it-

self be a good representation of the faint signatures of similarity. It’s hard not to get

excited—novel discoveries await!

Onemust be cautious, of course, of attributingmagic tomodels. It remains to be seen

if their structure predictions, or sequence embeddings, can capture evolutionary rela-

tionships well. Furthermore, as all models model what is currently known, they may not

work for novel sequences. Also, what to do with disordered proteins?

LLMs also hold promise beyond describing history. For example, the current gener-

ation of models can act as agents of digital evolution to generate novel structures of

putatively functional proteins. But at what resolution does predicted structure capture

function? Understanding whether LLMs actually ‘‘speak’’ protein-ish will be important

in figuring out the next breakthrough.
Joseph W. Thornton
University of Chicago
Deep and ancient
Evolutionary biochemists want to know how modern proteins evolved their structures

and functions and why they took this path in history. We are now advancing on this

goal by combining ancestral sequence reconstruction with deep mutational scanning.

As a protein evolves, it wanders through the vast space of all possible sequences,

mostly via single-residue changes. It may also duplicate within a genome and

speciate along with its host, yielding a family of proteins that follow diverging paths.

Using computational phylogenetics and large sequence alignments, we can recon-

struct the likely historical paths that led to modern proteins and infer the ancestral

amino acid sequences that existed at each branchpoint during history—with good

confidence even hundreds of millions of years into the past if sampling is dense rela-

tive to the rate of evolution. These reconstructed ancient proteins can then be

synthesized and experimentally characterized to identify the precise changes in

sequence, structure, and other physical properties that caused the family’s diversity

to evolve.

But why did evolution follow this one set of breadcrumb paths? Deep mutational

scanning enables biochemists to experimentally assay huge libraries of protein vari-

ants. By applying this method to reconstructed ancestral sequences, we can now char-

acterize the roads not taken by a protein family. Do modern proteins represent the

optimal endpoints of a selection-driven process, or are they one of many possible rolls

of the evolutionary dice? If ‘‘better’’ proteins were possible, were they even accessible,

or did interactions among protein resides constrain evolution to suboptimal regions?

Was history shaped by functionally inconsequential steps that opened doors to new

possibilities and closed paths to others? How many different structures and func-

tions—alternative lifeforms at the molecular level—were once accessible, and has

this world of unrealized possibility become broader, narrower, or simply different

from what existed in the deep past? Deep questions like these and the mechanisms

that underlie the answers are now becoming experimentally tractable.
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