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In Caenorhabditis elegans, the RFX (Daf19) transcription factor is a major regulator of ciliogenesis, controlling
the expression of the many essential genes required for making cilia. In vertebrates, however, seven RFX
genes have been identified. Bioinformatic analysis suggests that Rfx2 is the closest homologue of the
Daf19. We therefore hypothesize that Rfx2 broadly controls ciliogenesis during vertebrate development. In-
deed, here we show that Rfx2 in Xenopus is expressed preferentially in ciliated tissues, including neural tube,
gastrocoel roof plate, epidermal multi-ciliated cells, otic vesicles, and kidneys. Knockdown of Rfx2 results in
cilia-defective embryonic phenotypes and fewer or truncated cilia are observed in Rfx2 morphants. These re-
sults indicate that Rfx2 is broadly required for ciliogenesis in vertebrates. Furthermore, we show that Rfx2 is
essential for expression of several ciliogenic genes, including TTC25, which we show here is required for cilio-
genesis, HH signaling, and left–right patterning.

© 2011 Published by Elsevier Inc.
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Introduction

Cilia are microtubule-based organelles that project from the sur-
face of most vertebrate cells and have evolved to play diverse roles
in signaling, motility, and sensory reception (Eggenschwiler and
Anderson, 2007; Marshall and Nonaka, 2006; Pedersen et al., 2008).
Cilia can be generally categorized as either primary cilia or motile
cilia. Primary cilia are short, immotile, have widespread distribution,
and play essential roles in signal transduction. Motile cilia, on the
other hand, are typically much longer and are responsible for gener-
ating directional fluid flows. Therefore, motile cilia are present in
more restricted tissues, such as the ventricles of brain, the airways,
the oviducts, and in a specialized region of the notochord (Gerdes et
al., 2009; Goetz and Anderson, 2010; Roy, 2009).

Widespread essential roles for cilia during vertebrate develop-
ment were first identified by forward genetic screens in the mouse,
which showed that cilia are required for embryonic patterning
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al., RFX2 is broadly required
(Huangfu et al., 2003). Substantial studies have now revealed that de-
fects in cilia structure or function lie at the root of a wide range of
human diseases, such as primary ciliary dyskinesia, polycystic
kidney disease, and Bardet–Biedl and Meckel–Gruber syndromes
(Baker and Beales, 2009; Hildebrandt et al., 2011; Singla and Reiter,
2006; Zariwala et al., 2007). Numerous studies using genetic and bio-
chemical approaches have begun to unravel the protein machinery
underlying cilia structure and function (Gherman et al., 2006; Hayes
et al., 2007; Inglis et al., 2006). By contrast, very little is yet known
about the transcriptional programs that regulate ciliogenesis.

The RFX transcription factor (called Daf19 in Caenorhabditis
elegans) has been identified as an essential regulator of ciliogenesis
in C. elegans and Drosophila (Dubruille et al., 2002; Swoboda et al.,
2000). In vertebrates, seven distinct RFX genes (RFX 1–7) have been
identified based on the highly conserved DNA binding domain
(Aftab et al., 2008; Emery et al., 1996), but it is not until recently
that studies have linked any of these RFX genes to ciliogenesis. Unlike
Daf-19, the reported role for RFX4 is quite circumscribed, modulating
Shh signaling by controlling ciliogenesis, but only in the neural tube
(Ashique et al., 2009). By contrast, RFX3 is more broadly required,
governing nodal ciliogenesis and left–right asymmetry (Bonnafe et
al., 2004), ciliogenesis in pancreatic endocrine cells (Ait-Lounis et
al., 2007), and ciliogenesis of motile cilia in the brain (Baas et al.,
2006; El Zein et al., 2009). Quite curiously, while loss of RFX3 reduces
the number of cilia in some multi-ciliated cell types in the brain, it
for ciliogenesis during vertebrate development, Dev. Biol. (2011),
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actually increases the number of cilia on other cell types, suggesting a
complex role for RFX proteins (Baas et al., 2006). Like RFX3, RFX6 has
been recently shown to be involved in pancreatic development.
Surprisingly however, RFX6 appears not to be required for ciliogen-
esis in pancreas (Smith et al., 2010; Soyer et al., 2010). Finally,
while RFX1 has recently been shown to activate expression of a
known ciliary gene (Purvis et al., 2010), neither RFX1 nor RFX5 is
generally associated with cilia. Rather, these function instead in the
immune system (Reith and Mach, 2001; Steimle et al., 1995; Zhao
et al.).

RFX2 is a crucial factor required for spermatogenesis, but the exact
role for RFX2 in the control of cilia assembly is poorly understood
(Grimes et al., 2005; Horvath et al., 2004; Horvath et al., 2009;
Kistler et al., 2009; Liu et al., 2007; VanWert et al., 2008; Wolfe et
al., 2004; Wolfe et al., 2006; Yu et al., 2008). Nonetheless, RFX2 has
been shown to be expressed in some ciliated tissues (Hellman et al.,
2010; Liu et al., 2007; Ma and Jiang, 2007) and its expression was
reported to be controlled by another ciliogenic transcription factor,
FoxJ1 (Yu et al., 2008).

Here we report that Rfx2 in Xenopus is expressed preferentially in
tissues containing ciliated cells, including neural tube, gastrocoel roof
plate, epidermal multi-ciliated cells, and kidneys. Knockdown of Rfx2
results in phenotypes associated with defective cilia, such as disrup-
tion of neural tube closure and left–right asymmetry. Moreover,
fewer or truncated cilia were observed in Rfx2 morphants, indicating
that Rfx2 is indeed essential for ciliogenesis in vertebrates. Finally, we
found that Rfx2 is essential for the expression of several ciliogenic
genes, including TTC25, which we show here is required for ciliogen-
esis, HH signaling, and left–right patterning.
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Fig. 1. Rfx2 is expressed in ciliated tissues. (A) Early expression of Rfx2 in epidermis. (B) Rfx2
is expressed in the gastrocoel roof plate (GRP) (arrows). BP: blastopore. (D) Transverse sect
neural tube. Dorsal view. (F) Rfx2 is expressed in otic vesicles and kidneys. (G) Punctate
(G). (I) Epidermal ciliated cells are observed by staining with α-tubulin. Ciliated cells are c
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Materials and methods

Bioinformatics

We identified human orthologs of daf-19 as in McGary et al.
(2010) and confirmed the predicted ortholog relationships using
the tree-based database TreeFam, accession TF321340 (Ruan et al.,
2008).

We further re-analyzed the TreeFam sequences to rebuild the
evolutionary tree of RFX homologs in vertebrates using maximum
likelihood (Supp. Fig. 1). Sequences were aligned using MAFFT
(Katoh et al., 2005) with default settings, plus the local pair option
and 1000 maximum iterations, for increased accuracy. This alignment
was then trimmed to remove excess gaps using trimAl (Capella-
Gutierrez et al., 2009) with default settings and the gt option set to
0.7. The maximum likelihood tree was inferred using raxmlHPC
(Stamatakis et al., 2008) using default options, with the model set
to PROTCATWAG. We include a supplemental file treedata.tar.gz,
which includes the input sequences, the alignment and the ML tree
with branch lengths.

Morpholino and RNA injection

Capped mRNA was synthesized using mMESSAGE mMACHINE
(Ambion). mRNA and antisense morpholino were injected into
ventral blastomeres at the 4-cell stage to target the epidermis and
into dorsal blastomeres to target the neural tissues (Moody, 1987).
Embryos were incubated until appropriate stages according to
Nieuwkoop and Faber (1994) and were fixed in MEMFA (Davidson
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is expressed in the neural plate. Dorsal view. (B′) (C) Sagittal sections showed that Rfx2
ion view revealed robust Rfx2 expression in the neural tube. (E) Rfx2 is expressed in the
expression of Rfx2 in the epidermis. (H) Closer view of epidermal Rfx2 expression in
o-localized with Rfx2 in situ pattern in (H).
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and Wallingford, 2005). Embryos were embedded in 2% agarose for
thick (250–300 μm) sections or in 4% low-melt agarose for thin
(50–100 μm) sections, which were cut with a Vibratome series 1000
(Davidson and Wallingford, 2005). The Rfx2 morpholino sequence is:

AATTCTGCATACTGGTTTCTCCGTC

This oligonucleotide was compared to all Xenopus RFX transcrip-
tion factor sequences and is predicted to bind only the Rfx2 mRNA.
The TTC25 morpholino sequence is reported (Hayes et al., 2007)
and was injected at 15 ng.

Immunohistochemistry

Immunostaining was performed as described in Lee et al. (2008).
Briefly, fixed embryos were dehydrated completely in methanol at
−20 °C overnight and were bleached in 10% hydrogen peroxide/67%
methanol for 3 h and rehydrated consecutively with TBS (155 mM
NaCl, 10 mM Tris–Cl, pH 7.4). To reduce autofluorescence of yolk
platelets, the embryos were incubated with 100 mM NaBH4 in TBS
for 4 h at room temperature or overnight at 4 °C and rinsed in TBST
(0.1% Triton X-100 in TBS). Primary antibodies used were: monoclonal
anti-α-tubulin antibody (1:500 dilution, clone DM1A, Sigma), rabbit
anti-GFP antibody (1:500 dilution, Invitrogen), mouse anti-acetylated-
α-tubulin (1:500, clone 6-11B-1, Sigma), and rabbit anti- Arl13b
(1:500, gift of T. Caspary). Antibodies were diluted in fetal bovine
serum (FBS) solution (TBS containing 10% FBS and 5% DMSO). Primary
antibodies were detected with Alexa Fluor 488 goat anti-mouse IgG
(Molecular Probes) and Alexa-555 goat anti-rabbit IgG (Molecular
Probes), 1:500.

Embryos were prepared for confocal imaging as described
(Wallingford, 2010). Embryos were cleared in Murray's Clear solution
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Fig. 2. Rfx2 is required for neural tube closure and proper neural cilia formation. (A–D) Stage
the neural folds. (A) Stage 19 control embryo. The neural tube is almost closed. (B) Embryo
neural tube closure defects caused by disruption of Rfx2 can be partially rescued by co-inje
distance between the neural folds is shown in (E). (F) Transverse section view of neural pla
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1.19±0.021 μm (mean±SEM, n=225). However, the average length significantly reduces
the mean, vertical lines SEM, *** pb0.0001 Mann–Whitney test.
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(benzyl benzoate:benzyl alcohol=2:1), and images were obtained
using a Zeiss LSM5 Pascal confocal microscope. Cilia lengths were
measured with LSM5 Pascal or ImageJ software. Images used
throughout this paper have been enhanced using the Unsharp Mask
filter in Adobe Photoshop.

In situ hybridization

In situ hybridization was performed as described previously (Sive
et al., 2000). Bright field and low magnification fluorescence images
were captured on a fluorescent stereomicroscope, Leica MZ16FA. To
observe multi-ciliated cells on the epidermis, embryos were then im-
munostained with α-tubulin and imaged as mentioned above.

Animal cap explants and reverse transcription PCR

Rfx2 morpholino (10 ng) was injected into the animal pole at the
4-cell stage. Animal cap explants were dissected at stage 8 and
cultured as described previously (Sive et al., 2000). Fifty explants of
each sample were collected for the preparation of cDNA.

PCR was performed with the following primers (5′ to 3′, forward
and reverse):

Ef1α, CAGATTGGTGCTGGATATGC and ACTGCCTTGATGACTCCTAG;
α-tubulin 1b, AGATGCCCAGTGACAAGACC and GGGCTCCAT-
CAAATCGTAGA; Ift122, CCGAAACCTACATGAAGATCG and CGCA-
GACCTTGTAGCCTCTC; Ift172, GGAAATATGGCCAGAGCAAA and
TCCTGTTGCTTCTGTTGCAC;
TTC25, AGAATGTGCCCTGAAGGATG and GCGTGTCCAGGTACAGGATT;
WDPCP, TGGCGATTTTATAACGTCATTC and TCTTCCTTTTGGTCCTGG
AA.
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Results

Phylogeny of vertebrate RFX proteins

Since the daf-19 transcription factor is a central regulator of
ciliogenesis in C. elegans, we reasoned that its orthologs would be
excellent candidates for control of vertebrate ciliogenesis.

In vertebrates, the RFX transcription factor family includes three
phylogenetic sub-groups (Aftab et al., 2008); a tree including mam-
malian and non-mammalian vertebrate RFX proteins is presented in
Supp. Fig. 1). RFX5 and RFX7 are the most distantly related to
daf-19, and so it is notable that neither gene has so far been associated
with ciliogenesis. Curiously, RFX4 and RFX6 are closely related, yet
only RFX4 has a role in ciliogenesis (Ashique et al., 2009).

Finally, RFX1, RFX2, and RFX 3 are co-orthologs of daf-19 (Supp.
Fig. 1; (Aftab et al., 2008)). Given this phylogenetic relationship, it is
these three factors which would be predicted to play the most central
roles in governing ciliogenesis. However, while Rfx3 plays a broad
role in ciliogenesis, the role for RFX1 appears minimal (Ait-Lounis et
al., 2007; Baas et al., 2006; Bonnafe et al., 2004; El Zein et al., 2009;
Purvis et al., 2010). Given its close phylogenetic relationship to
daf-19, we hypothesized that RFX2 may be a broadly required regula-
tor of ciliogenesis. However, no loss-of-function analysis of RFX2 has
yet been reported.
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Rfx2 is expressed in tissues containing ciliated cells

To test the prediction of a broad role for Rfx2 in ciliogenesis, we
first examined its expression pattern by in situ hybridization in Xeno-
pus. We observed that Rfx2 was expressed preferentially in tissues
containing ciliated cells. For instance, Rfx2 expression in the neural
plate was detected from the early neurula stage to the later tadpole
stage (Figs. 1B, D–F). At late gastrula and neurula stages, Rfx2 was
also expressed in the gastrocoel roof plate (GRP), where motile cilia
are responsible for generating directional flow to regulate left–right
asymmetry (Figs. 1B′, C). Moreover, punctate expression of Rfx2 was
observed in the epidermis from the late gastrula stages (Figs. 1A, G).
The in situ staining of Rfx2 on the epidermis co-localized withα-tubu-
lin immunostaining, indicating that Rfx2was expressed specifically in
epidermal multi-ciliated cells (Figs. 1H–I). Expression of Rfx2was also
observed in otic vesicles and kidney, where cilia are required for the
proper tissue functions (Fig. 1F). Rfx2 is broadly expressed in ciliated
tissues, suggesting that Rfx2 may be essential for ciliogenesis in
vertebrates.
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To ask if Rfx2 may act in coordination with other ciliogenic Rfx
genes, we also examined the expression patterns of Rfx1, Rfx3, Rfx4,
and Rfx5 in Xenopus. In situ hybridization showed that all Rfx genes
were expressed in the neural tube (Supp. Figs. 2B, E, I, L), suggesting
potentially redundant roles for these genes in the control of the neu-
ral tube ciliogenesis. Rfx3 shared the most similar pattern with Rfx2,
as they were both expressed in epidermal ciliated cells and GRP
(Fig. 1 and Supp. Figs. 2D, F). However, while the expression of Rfx2
in ciliated epidermal cells was observed as early as stage 12, the low
level transcription of Rfx3 was only observed beginning at stage 14.
This temporal difference of expression might suggest that Rfx2 plays
a higher hierarchic role than Rfx3 in regulating epidermal cilia devel-
opment. Moreover, while Rfx2 was robustly expressed in GRP (Figs.
1B′, C), only weak staining of Rfx3 was observed (Supp. Fig. 2F).
Rfx4 was robustly expressed in the central nervous system (Supp.
Figs. 2H–J), consistent with its role in controlling Shh signaling in
the mouse spinal cord (Ashique et al., 2009). Notably, Rfx4 expression
was never observed in gastrocoel roof plate or epidermal ciliated
cells, suggesting a tissue-specific role in regulating cilia formation.

Rfx2 is essential for neural tube closure and neural ciliogenesis

Many genes associated with ciliogenesis are also required for
neural tube closure, though the mechanistic link between cilia and
the morphogenetic cell movement in the developing neural tube
remains obscure (Murdoch and Copp, 2010). To ask if Rfx2 is required
for neural tube ciliogenesis, we first examined the effect of Rfx2
knockdown on neural tube closure. We designed antisense morpho-
lino oligonucleotides (MO) to block Rfx2 translation, and we used
targeted micro-injection to deliver these specifically to the dorsal
tissues (Moody, 1987). At the end of neurulation (stage 19), the neu-
ral folds are apposed and begin to fuse (Fig. 2A). At an equivalent time
point in Rfx2 morphants, the neural folds failed to close (Fig. 2B), with
the distance between neural folds being five-fold greater in Rfx2 mor-
phants than in control embryos at stage 20 (Fig. 2E). We confirmed
the specificity of our MO by rescue of the neural tube closure pheno-
type with a GFP-tagged form of Rfx2 mRNA that is not recognized by
Rfx2 morpholino (Figs. 2C–E).

Neural tube defects (NTDs) in mammals represent a complex spec-
trum of phenotypes, including “open” defects, in which the neural
tissues remain externally exposed, and “closed” defects in which the
neural tissue is dysmorphic but nonetheless covered by epidermis.
Defects in ciliogenesis in mouse models are generally associated with
exencephaly (an open NTD; (Murdoch and Copp, 2010). However,
some cilia-related mouse models develop encephalocoel, a closed
for ciliogenesis during vertebrate development, Dev. Biol. (2011),
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UNTD (Gray et al., 2009), and patients with the ciliopathic Meckel–Gru-
ber syndrome also present with encephalocoel (Smith et al., 2006). We
therefore further characterized the NTDs in our Rfx2 morphant
embryos.

In most morphant embryos, the neural tube remained open even
many stages after normal tube closure. In some cases, however, clo-
sure did eventually occur. Notably, when these embryos were exam-
ined in cross-section, we found that while dorsal epidermis had fused
over the neural tissue, the neural epithelium had not fused into a tube
(Supp. Fig. 3). As such, manipulations of Rfx2 are associated with both
open and closed NTD in Xenopus.

We next asked whether neural tube closure phenotypes were cor-
related with ciliogenesis defects in Rfx2 morphants by visualizing
cilia in the neural plate with acetylated α-tubulin immunostaining.
Please cite this article as: Chung, M.-I., et al., RFX2 is broadly required
doi:10.1016/j.ydbio.2011.12.029
At neurula stages, we observed small cilia throughout the neural
plate (which is bilayered at this stage in Xenopus), and the length of
these cilia was significantly reduced by the RFX2 MO (Figs. 2F–H).
At later stages, longer cilia are visible, projecting into the neural
tube lumen; these cilia were also fewer in number and shorter than
in Rfx2 morphants as compared to controls (Supp. Fig. 4A–C). Togeth-
er, these data demonstrate that Rfx2 is required for normal neural
tube cilia formation and for neural tube closure.

Rfx2 is required for Sonic Hedgehog signaling in the developing central
nervous system

Previous studies have shown that primary cilia in the neural tube
are essential for Hedgehog signaling (Eggenschwiler and Anderson,
for ciliogenesis during vertebrate development, Dev. Biol. (2011),
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2007; Goetz et al., 2009; Huangfu et al., 2003). We therefore exam-
ined whether Rfx2 morphants exhibit phenotypes consistent with
disrupted Hedgehog signaling. Indeed, Rfx2 morphants developed
with craniofacial defects including close-set eyes and cyclopia in
some cases (data not shown). Moreover, the expression level of the
Hedgehog target gene, Nkx2.2, in the ventral neural tube was dramat-
ically downregulated in morphants, and the reduced expression could
be rescued by co-injection of GFP-tagged Rfx2 mRNA. (Figs. 3A–C and
Supp. Fig. 4D–H). The MO phenotype was specific to the ventral
neural tissue, as Sox3, a marker of general neural tissue, was not
affected (data now shown). Likewise, the expression of a Hedgehog-
responsive gene in the brain, Vax1, was also strongly reduced in
Rfx2 morphants and the reduced expression could be rescued (Figs.
3D–F). Together, these data suggest that Rfx2 is essential for Hedge-
hog signaling through regulation of primary cilia development in
neural tissue.
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Rfx2 is required for gastrocoel roof plate ciliogenesis and left/right
patterning

Rfx2 mRNA is strongly expressed in the GRP by in situ hybridiza-
tion (Figs. 1B′, C), where motile cilia generate a directional fluid
flow that is required for left–right (LR) asymmetry (Blum et al.,
2009). The GRP cilia are thus the functional equivalents of amniote
nodal cilia and Kupffer's vesicle cilia in fishes (Essner et al., 2002;
Schweickert et al., 2007). Using acetylated α-tubulin immunostain-
ing, we observed GRP cilia of an average length of about 8.6 μm in
wild type embryos (Figs. 4A, A′, D). However, GRP cilia in Rfx2 mor-
phants were much shorter, displaying a 3.5-fold reduction in length
as compared to controls (Figs. 4B, B′, D). This reduction in cilia length
could be partially rescued by co-injecting GFP-tagged Rfx2 mRNA
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(Figs. 4C, C′, D), again demonstrating that the MO targets Rfx2
specifically.

Since GRP cilia are essential for LR asymmetry, we next examined
whether LR asymmetry was disrupted in Rfx2 morphants by asses-
sing expression for LR asymmetric marker genes. In control embryos,
Pitx2c is expressed in the left lateral plate mesoderm (LPM), but not
in the right side (Figs. 4E, F). However, right-sided, absent, or bilateral
expression of Pitx2c in the LPM was frequently observed when Rfx2
was disrupted (Figs. 4G–I). Another marker of left–right asymmetry,
Lefty, also showed randomized expression in Rfx2 morphants (Supp.
Figs. 5A–F). In addition to the asymmetric expression of Pitx2c and
Lefty in the LPM, the asymmetric looping of the gut was examined.
In control embryos, the gut loops toward to the left. However, the
guts fail to loop in Rfx2 morphants (Supp. Figs. 5G–H). Together,
these data suggest that Rfx2 is essential for establishing LR asymme-
try by regulating GRP ciliogenesis during vertebrate development.

Rfx2 is essential for ciliogenesis but not specification in multi-ciliated
cells

The epidermal multi-ciliated cells of Xenopus have been shown
recently to share many molecular similarities with mammalian
multi-ciliated cells. Given the role for Rfx3 in both specification and
ciliogenesis in multi-ciliated cells of the mammalian brain (Baas et
al., 2006), we hypothesized that the very early expression of Rfx2 in
epidermal multi-ciliated cells may reflect a role in their early specifi-
cation. However, when we targeted delivery of Rfx2 morpholino into
the epidermis, we observed no reduction in the number of α-tubulin-
expressing cells in Rfx2 morphants at stage 20 (Figs. 6A–B), indicating
that ciliated cell specification is unaffected in Rfx2 morphants. We
did, however, consistently observe that most multi-ciliated cells in
Rfx2 morphants have only a few short axonemes (Figs. 5B, B′), as
Rfx2 MO
B

B’

hmembrane-RFP. Acetylated α-tubulin labels cilia (green) and RFP labels cell boundary
ote that only a few short axonemes are shown in the Rfx morphant.

for ciliogenesis during vertebrate development, Dev. Biol. (2011),
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compared to control epidermis, where dozens of long cilia are assem-
bled on multi-ciliated cells (Figs. 5A, A′). Together, these data suggest
that Rfx2 is not required for multi-ciliated cell specification, but Rfx2
is essential for motile cilia assembly in these cells.

Rfx2 is required for expression of the ciliogenic gene TTC25

In C. elegans, the DAF19 transcription factor is a major regulator of
ciliogenesis, controlling the expression of the many essential genes
required for making cilia (Swoboda et al., 2000). We therefore hy-
pothesized that Rfx2 would be required for the expression of many,
if not all, ciliogenic genes. We previously identified a large set of
genes expressed in ciliated cells by a high throughput in situ hybridi-
zation screen (Hayes et al., 2007). We examined expression of several
of these genes by RT-PCR in epidermal animal cap explants upon MO
depletion of Rfx2. Expression of some, but not all, of these genes
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embryo. (F) Dorsal view of TTC25 expression on neural plate of an Rfx2 morphant. TTC25 exp
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F

required Rfx2 (Supp. Fig. 6). Based on the expression pattern of
Rfx3, we propose that it may play partially overlapping roles in epi-
dermal ciliogenesis.

In our animal cap assays, we found that the PCP effector protein
Fritz (aka: WDPCP: (Kim et al., 2010)) was very strongly downregu-
lated in Rfx2 morphants, while a multi-ciliated cell-specific α-tubulin
was totally unaffected (Supp. Fig. 6). Other RFX factors control expres-
sion of genes encoding retrograde IFT proteins, and we observe a
similar result. Also downregulated in Rfx2 morphants was TTC25
(Supp. Fig. 6), which we have previously shown localizes to cilia axo-
nemes and is required for epidermal ciliogenesis and proper neural
tube closure (Hayes et al., 2007). Because so little is known about this
protein, we selected TTC25 for more in-depth analysis.

First, we further examined TTC25 expression by in situ hybridiza-
tion. Like Rfx2, TTC25 is expressed in the neural tube, epidermal
ciliated cells, GRP, otic vesicle, and kidneys (Supp. Fig. 7). In Rfx2
E
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Rfx2 MO
B
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H

D

fx2 morpholino is injected into one ventral blastomere at the 4 cell stage. (A) α-tubulin
e Rfx2 morpholino-injected side.α-tubulin expression is not significantly changed (also
dization on Rfx2 morpholino-injected side of epidermis. TTC25 expression is reduced in
eres at the 4 cell stage. (E) Dorsal view of TTC25 expression on neural plate of a control
ression is reduced. (G) Sagittal section view of a control embryo. TTC25 is expressed in
sion is reduced in GRP.
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morphants, TTC25 expression is reduced in the neural plate, GRP, and
ciliated epidermis (Figs. 6C–H), suggesting that Rfx2 controls expres-
sion of TTC25 in these tissues. At the same stage, Rfx2 morphants re-
tain α-tubulin expression in the ciliated epidermis, showing that
ciliated cell differentiation is unaffected, and that α-tubulin is not a
transcriptional target of Rfx2 (Figs. 6A, B; Supp. Fig. 6).

We showed previously that TTC25 morphants, like Rfx2
morphants, have open rostral neural tubes, a consequence of cilia
dysfunction in the neural tube, and that cilia were shorter and less
dense in multi-ciliated cells of the epidermis (Hayes et al., 2007).
Whenwe examined Hh target genes, we found that Nkx2.2 in the ven-
tral neural tube was significantly reduced (Figs. 7A–B), while Vax1b
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was not (Figs. 7C–D), consistent with a lack of TTC25 expression in
the eye (Supp. Fig. 7E). These data suggest that TTC25 is required
for normal assembly of neural tube cilia. However, when we exam-
ined neural tube cilia in TTC25 morphants by acetylated α- tubulin
staining, we observed a more specific phenotype than the consistent
loss of cilia observed in Rfx2 morphants (Figs. 7E–G). At wild type
tailbud stages, primary cilia mostly project from the apical surface
of cells into the lumen of the neural tube and ventral cilia are much
longer compared to dorsal cilia (Fig. 7E). In TTC25morphants, howev-
er, we found that primary cilia are quite short throughout the neural
tube (Figs. 7F, G). We could consistently visualize Arl13b protein in
these short cilia (Fig. 7F), indicating that at least some proteins are
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–B) Nkx2.2 expression at stage 24, dorsal view, anterior left. Expression of Nkx2.2 in the
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of stage 24 neural tube sections stained for cilia markers acetylated α-tubulin (green)
e; ventral neural cilia are longer than dorsal ones and express less Arl13b. (F) In TTC25
p). Cilia are fewer, shorter, and stain more intensely with Arl13b. (G) Ventral cilia were
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able to traffic to cilia normally in TTC25 morphants. Our data suggest
that while TTC25 is required for cilia lengthening and Shh signal
transduction through cilia, it is not broadly required for the initiation
of ciliogenesis in the neural tube.

We next looked at the effect of TTC25 knockdown on left–right
asymmetry. Like Rfx2 morphants, TTC25 morphants showed defects
in establishment of LR asymmetry, assayed by expression of Pitx2c
(Figs. 8A–B). We observed a high percentage of TTC25 morphant em-
bryos with situs inversus and symmetric Pitx2c expression (Fig. 8C).
When we examined GRP cilia structure by acetylated α-tubulin stain-
ing, we found a significant shortening of GRP cilia in TTC25 mor-
phants (Figs. 8D–F), though this phenotype was less severe than
that of Rfx2 morphants. Again, these data are consistent with TTC25
being required for nodal cilia extension and/or function, but not for
initiation of ciliogenesis.
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While the protein machinery controlling ciliogenesis has been ex-
tensively studied, the transcriptional control of cilia formation re-
mains far more poorly understood (Gherman et al., 2006; Inglis et
al., 2006; Thomas et al., 2010). FoxJ1 has been well-characterized as
a regulator of motile ciliogenesis (Cruz et al., 2010; Stubbs et al.,
2008; Yu et al., 2008); Rfx4 has been shown to govern the growth
of primary cilia; and Rfx3 has been shown to regulate the formation
of both primary and motile cilia (Ait-Lounis et al., 2007; Ashique et
al., 2009; Baas et al., 2006; Bonnafe et al., 2004; El Zein et al., 2009).
Here, we report that another Rfx gene, Rfx2, is expressed in ciliated
tissues of the body and is required for proper development of primary
cilia in the neural tube, motile cilia in the node, and motile cilia on
epidermal multi-ciliated cells in Xenopus. We find that defects in cilio-
genesis following Rfx2 knockdown are associated with developmen-
tal defects in neural tube patterning and morphogenesis as well as
left–right asymmetry. Rfx2 has also recently been shown to be
Please cite this article as: Chung, M.-I., et al., RFX2 is broadly required
doi:10.1016/j.ydbio.2011.12.029
Erequired for ciliogenesis and left–right patterning in the zebrafish
(Bisgrove et al., in press).

These data thus establish Rfx2 as a critical and broadly employed
regulator of vertebrate ciliogenesis. We note that Rfx2 and Rfx3
have almost identical expression patterns in most tissues, and more-
over, Rfx4 and Rfx5 overlap with specific regions of the Rfx2 and Rfx3
patterns. These overlapping patterns of expression are especially
noteworthy because RFX2, RFX3, and RFX4 can heterodimerize
(Iwama et al., 1999; Morotomi-Yano et al., 2002; Reith et al., 1994),
but the extent to which these proteins cooperate in vivo remains en-
tirely unknown. We therefore suggest that further studies of the Rfx
transcription factors will be crucial for an understanding of the
developmental control of ciliogenesis.
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