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Abstract

Correctly estimating the age of a gene or gene family is important for a variety of fields, including molecular evolution, comparative

genomics, and phylogenetics, and increasingly for systems biology and disease genetics. However, most studies use only a point

estimate of a gene’s age, neglecting the substantial uncertainty involved in this estimation. Here, we characterize this uncertainty by

investigating the effect of algorithm choice on gene-age inference and calculate consensus gene ages with attendant error distri-

butions for a variety of model eukaryotes. We use 13 orthology inference algorithms to create gene-age datasets and then charac-

terize the error around each age-call on a per-gene and per-algorithm basis. Systematic error was found to be a large factor in

estimating gene age, suggesting that simple consensus algorithms are not enough to give a reliable point estimate. We also found

thatdifferent sourcesoferror canaffectdownstreamanalyses, suchasgeneontologyenrichment.Our consensusgene-agedatasets,

with associated error terms, are made fully available at so that researchers can propagate this uncertainty through their analyses

(geneages.org).
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Introduction

From their inception, whole genome datasets have been used

to infer the evolutionary history of gene families (Mushegian

and Koonin 1996). The age of a gene family, its provenance,

and its evolutionary history, such as loss and duplication

events, can inform us about its function (Capra et al. 2013).

For instance, gene age has been found to correlate with dis-

ease association (Domazet-Lošo and Tautz 2008; Maxwell

et al. 2014), evolutionary rate (Wolf et al. 2009), and the

number of associated protein-interaction partners (Kim and

Marcotte 2008), and a gene’s phylogenetic distribution can

be used to infer aspects of its function (Pellegrini et al. 1999).

Gene ages can also be used to estimate the gene content of

ancient organisms, such as the last universal common ances-

tor (LUCA, Mushegian and Koonin 1996), or the last eukary-

otic common ancestor (LECA, Thiergart et al. 2012;

Koumandou et al. 2013). Accordingly, an analysis of gene

family ages on a genomic scale can inform the phylogenetic

history of important phenotypes, such as eyes or the nervous

system (Rivera et al. 2010; Liebeskind et al. 2016). In more

recent years, gene age has been used to annotate systems

biology datasets (Conaco et al. 2012; Alié et al. 2015; Wan

et al. 2015), with the promise of elucidating the evolutionary

history of core cellular machinery.

Such studies rely first and foremost upon the correct iden-

tification of homologs and/or orthologs. These two relation-

ships form the basis of the gene-age determination in nearly

all studies, with orthology being the more common criterion

(Gabaldón 2008; Maxwell et al. 2014). Orthology is a pairwise

relationship between two genes that occurs when their most

recent common ancestor (MRCA) lies at a speciation event in a

phylogenetic gene tree. This is in contrast to paralogs, whose

MRCA lies at a gene duplication event (nodes on gene trees

represent either speciation or gene duplication events, barring

horizontal gene transfer) (Fitch 1970, 2000). Orthologs tend

to display higher functional conservation than paralogs

(although perhaps only weakly, Chen and Zhang 2012, –

see Gabaldón and Koonin 2013, for a review), hence their

use as a basis of cross-species comparison. Typically, studies

of gene age will consider an orthologous group to be all the

descendent lineages of the deepest speciation node, or the

divergence between the two most distant homologs, if that is
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the criterion being used, as in “phylostratigraphy” (Domazet-

Lošo and Tautz 2008). Then, the age of the gene group is

defined as the MRCA of the species found in that group.

Inferring a gene family’s age thus relies on the accuracy of

orthology assignment, but inferring correct orthologs is notori-

ously difficult, with no one of the more than 30 algorithms out-

performing all others (Sonnhammer et al. 2014; Altenhoff et al.

2016). In particular, algorithms differ strongly in the tradeoff

between recall and precision (Altenhoff et al. 2016). And many,

perhaps all, algorithms may underestimate the size of ortholo-

gous groups due to inherent sensitivity limits in homology

searches, thereby underestimating gene age (Moyers and

Zhang 2015, 2016). Yet most studies on gene age rely on

only one kind of algorithm, either using a pre-existing

method or establishing an ad hoc protocol, most of which re-

semble one of the pre-existing algorithms (Maxwell et al. 2014).

Although methods for probabilistic orthology assignment do

exist (Ullah et al. 2015), available methods are not currently

scalable to large genomic datasets using protein sequences,

and at any rate still rely on a preliminary clustering step to

infer gene families. Consensus algorithms also exist, some of

which seem to substantially improve performance on estab-

lished benchmarks (Pereira et al. 2014; Maher and Hernandez

2015). However, these methods still give only a point estimate.

Another approach is to propagate the uncertainty that neces-

sarily arises in orthology inference through subsequent analyses.

However, it is unclear what the relevant sources of uncertainty

are in orthology inference, and most consensus algorithms do

not keep track of the different sources of error.

To remedy this situation, we characterized the error struc-

ture of gene-age estimation using 13 popular orthology infer-

ence algorithms. In doing so, we identify common types of

errors and, after correcting these, present consensus gene-age

calls for several model organisms (table 1). We provide these

gene-age estimates along with a detailed analysis and anno-

tation of the uncertainty associated with each age call so that

this uncertainty can be propagated through future analyses,

as we show for functional term enrichment. The consensus

gene ages we calculate can be used for annotating genomic

datasets in a variety of fields, and the analysis of error will help

to prioritize genes for manual annotation and aspects of

orthology inference for future study.

Methods

Data Collection

In order to fairly consider the range of orthology algorithms, we

took advantage of the reference datasets managed by the

Quest for Orthologs (QFO) consortium. QFO researchers have

established community standards and benchmarks for orthol-

ogy inference and have made their benchmarking results pub-

licly available (Sonnhammer et al. 2014; Altenhoff et al. 2016).

Fifteen algorithms have submitted their orthology estimates on

66 reference proteomes (http://www.ebi.ac.uk/reference_

proteomes, last accessed 19 May 2016) to QFO’s benchmarking

tool (http://orthology.benchmarkservice.org/cgi-bin/gateway.pl,

last accessed 19 May 2016) (Altenhoff et al. 2016).

Importantly, these algorithms are widely used and capture a va-

riety of methods commonly used in the literature to infer orthol-

ogy and gene age (Vilella et al. 2009; Huerta-Cepas et al. 2008;

Pryszcz et al. 2011; DeLuca et al. 2012; Mi et al. 2013; Altenhoff

et al. 2015; Huerta-Cepas et al. 2016; Sonnhammer and Östlund

2015; Linard et al. 2015). It is, therefore, expected that nearly

every study of gene age, regardless of the method used, will

closely resemble the results of at least one of the algorithms we

explore here. We omitted two of these because they either did

not have full taxon coverage (RBH), or their results were so dif-

ferent from all the others that it dominated the variance in all

downstream analyses (OMA_GETHOGS). Pairwise orthology

calls for the 13 remaining algorithms were converted into

tables for each gene, which were then used for subsequent

analyses. The reference species tree was downloaded from

SwissTree (Boeckmann et al. 2015) on 2015 Jun 15 (ftp://ftp.

lausanne.isb-sib.ch/databases/SwissTree/speciestree.nhx, last

accessed 19 May 2016) and was pruned to match the taxa in

the Quest for Orthologs reference proteomes (http://www.ebi.

ac.uk/reference_proteomes, last accessed 19 May 2016). The

results below are with reference to the human proteome, but

the same methods were applied to a variety of model organism

proteomes (table 1).

Custom programs were written to perform the analyses

below, and these are publicly available, as are iPython notebooks

used for plotting. These, and the datasets supporting the con-

clusions in this article, are available at geneages.org, and the

associated GitHub repository (https://github.com/marcottelab/

Gene-Ages, last accessed 19 May 2016) with the following

commit id: fee8d009d4d5ee24c3ae3cb0763439c48d4705e6.

Scripts relied heavily on the python packages dendropy

(Sukumaran and Holder 2010), BioPython (Cock et al. 2009),

and pandas (McKinney 2013).

Protein Age Calls

We inferred the ages for each gene by mapping the species in

that gene’s ortholog group onto a reference species tree from

SwissTree, which was derived from a consensus of trees found

in the literature (Boeckmann et al. 2015). The age of a protein

is calculated on the species tree by finding the MRCA node of

the taxa that have orthologs of that protein. This node is the

“node age.” We use the node age to calculate a simple sta-

tistic that captures the uncertainty around the age-call, called

the “node-error.” This is the average number of branches

(patristic distance, with equal weights of 1 for all branches)

between the age calls any two algorithms. We also used the

average node-error between pairs of algorithms as input for a

heuristic search in PAUP (Swofford 2003) to cluster algorithms

by similarity (see below).
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To simplify the comparison of algorithm performance on

human genes, we broke the reference species tree into eight

age categories – the “binned age” (fig. 1). These categories

form nested clades, with the exception of the category

“Euk + Bacteria.” This non-phylogenetic category captures

the substantial number of eukaryotic genes that were hori-

zontally transferred from bacteria after eukaryotes diverged

from the rest of archaea (Méheust et al. 2015; Pittis and

Gabaldón 2016), and is defined as genes present in eukary-

otes and bacteria but not archaea. These “binned ages” con-

form to the interior labels given by SwissTree.

Filtering False Positives and Negatives

Before calculating a consensus, we flag algorithms that may

have committed false-positive or false-negative errors on a

per-gene basis. These algorithms are then removed from con-

sideration of that gene’s age. False positives are orthology calls

that are substantially more distant than orthology calls by

other algorithms, and have the effect of driving age deeper

in the tree. These are found as follows. For each algorithm and

each protein: (1) the node age is calculated, (2) the number of

taxa in the species tree descended from this node is found,

and (3) the number of taxa containing orthologs of the focal

protein is subtracted from the number of descendant taxa.

This number is the number of taxa without the orthogroup

that are descended from an ancestor that putatively had the

orthogroup, and is, therefore, proportional, but not identical,

to the number of inferred losses of the orthogroup. For each

algorithm and each protein, if this number is two standard

deviations above the pooled algorithm mean for the focal

protein, that algorithm’s age call is considered a false positive

and is thrown out.

False negatives are cases where an algorithm fails to make

an orthology call, driving the inferred age to shallower nodes

in the species tree. We identify one possible cause of this,

which we call “over-splitting.” This is when a group of co-

orthologs is not correctly recognized by an algorithm and only

one or a few of its members are found as orthologs to a more

distant species, while the others are split off into their own

orthogroups. The members that are split off would then be

called at an incorrectly young age. To identify these errors, we

used PhylomeDB’s (Huerta-Cepas et al. 2008) orthogroups as

a standard. For each protein and each algorithm (except for

PhylomeDB), if the focal algorithm called a younger age than

PhylomeDB and a co-ortholog of the focal protein could be

found where the focal algorithm called the same node age as

PhylomeDB did on the focal protein, then this algorithm was

considered to be over-splitting the focal protein, and was not

considered in this protein’s age call. This error calculation was

not performed on proteins where PhylomeDB was flagged as

a false positive.

We also investigated the correlation between several intrin-

sic properties of proteins and their node error statistic. These

included protein length, number of domains (as annotated by

HMMER, Eddy 1998), and evolutionary rate. Rate was calcu-

lated for each protein by performing pairwise Needleman–

Wunsch alignments for all one-to-one orthologs (annotated

by PhylomeDB) between human and mouse, and human and

yeast.

Consensus Ages

We generated consensus binned ages after removing algo-

rithms flagged with false positives and negatives as described

above. The number of algorithms favoring each binned age is

counted and then normalized by the number of contributing

algorithms to give a distribution over age calls. For subsequent

analyses, we used the mode of this distribution as the consen-

sus age.

Table 1

Species for which final consensus tables were constructed. Tables are

available at https://github.com/marcottelab/Gene-Ages

Common name Uniprot ID False-negative

analysis

Anopheles gambiae (Mosquito) ANOGA No

Bos taurus (Cattle) BOVIN No

Branchiostoma floridae (Lancelet) BRAFL No

Caenorhabditis elegans (Worm) CAEEL Yes

Candida albicans CANAL Yes

Canis lupus familiaris (Dog) CANFA No

Gallus gallus (Chicken) CHICK Yes

Ciona intestinalis (Tunicate) CIOIN No

Cryptococcus neoformans CRYNJ No

Danio rerio (Zebrafish) DANRE Yes

Drosophila melanogaster (Fly) DROME Yes

Homo sapiens (Human) HUMAN Yes

Ixodes scapularis (Tick) IXOSC No

Macaca mulatta (Rhesus macaque) MACMU No

Monosiga brevicollis (Choanoflagellate) MONBE No

Monodelphis domestica (Opossum) MONDO No

Mus musculus (Mouse) MOUSE Yes

Nematostella vectensis (Sea anemone) NEMVE No

Neurospora crassa NEUCR No

Ornithorhynchus anatinus (Platypus) ORNAN No

Pan troglodytes (Chimp) PANTR No

Phaeosphaeria nodorum PHANO No

Rattus rattus (Rat) RAT Yes

Saccaromyces cerevisiae

(Budding yeast)

YEAST Yes

Schistosoma mansoni (Blood fluke) SCHMA No

Schizosaccharomyces pombe

(Fission yeast)

SCHPO Yes

Sclerotinia sclerotiorum SCLS1 No

Takifugu rubripes (Pufferfish) TAKRU No

Ustilago maydis (Corn smut/Huitlacoche USTMA No

Xenopus tropicalis (Frog) XENTR No

Yarrowia lipolytica YARLI No
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Results

The Effect of Algorithm Choice on the Distribution of
Human Gene Ages

We investigated the effect of algorithm choice on gene-age

estimation by assigning each human gene to the “binned”

age category in which the MRCA of the species in its

orthogroup fall. We then calculated the distributions over

the different age categories for the human proteome inferred

by each algorithm. The algorithms fell into two distinct groups

with respect to the distribution of age classes (fig. 2).

Hierarchically clustering the algorithms by the average

number of branches between their per-gene age calls recapit-

ulated this grouping, and we define the two groups based on

the midpoint root of this tree. One group tended to find that

most orthogroups could be traced to the MRCA of verte-

brates, whereas the other group found a much older mode

age dating back to LECA. We call these two groups, the

“young” and the “old” group, respectively, although, of

course, there are many more subtle and interesting distinc-

tions between the algorithms.

Orthology inference algorithms are typically classed into

graph-based and tree-based methods (Sonnhammer et al.

2014). However, we found that even though tree-based

methods tended to fall in the “old” group, this was not uni-

versally the case, or were all graph-based methods found in

the “young” group. The use of species tree information was

not a determining factor either (fig. 2). The bimodal nature of

the age calls, either “young” or “old”, is, therefore, not

simply a reflection of the graph/tree distinction, although it

is clearly correlated. What is the source of this bimodality? One

obvious answer is systematic error in the “young” group al-

gorithms, the “old” group, or both. Systematic error in the

young group would be equivalent to false negatives, that is,

missing orthology assignments, whereas systematic error in

the old group is equivalent to false positives, or spurious

orthology assignments. This would have the effect of pushing

FIG. 1.—The reference species tree and age categories used for gene-age inference. This tree is based on SwissTree (Boeckmann et al. 2015) and reflects

a consensus of recent large-scale phylogenies. Tip names are Uniprot species identifiers.
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the age of the group away from or towards the root of the

tree, respectively.

Identifying Systematic Error

We first investigated whether the bimodality of age-calls

played out on the single gene level or whether the two

groups apparent in figure 2 were due to the effects of aver-

aging across genes, with error being randomly distributed

among proteins. To do so, we calculated a simple statistic

that captured how bimodal a protein’s age calls were be-

tween the two groups of algorithms (“old” and “young”).

This statistic, which we call bimodality, is the difference be-

tween node-error within the two groups and between them,

with more highly bimodal proteins having more variation be-

tween groups. Over 80% of proteins had some degree of

bimodality corresponding to these two age groups, or none,

as is expected given the hierarchical clustering in figure 1. The

remaining genes were anti-correlated with the “old”/

“young” groupings. Furthermore, the degree of bimodality

between the “young” and “old” algorithm groups correlates

well with the amount of error associated with each protein

(Spearman’s �: 0.69) (fig. 3). That is, proteins with a large

amount of error tend to be more bimodal. The bimodality

between algorithms is, therefore, a systematic phenomenon

and a major source of error in these datasets. Unfortunately, in

the case of highly polarized genes, we cannot know a priori

whether the “old” or “young” age is the correct one. It is,

FIG. 2.—Distribution of age categories in the human proteome inferred by 13 different orthology inference algorithms. Algorithms were clustered

according to the average pairwise distance between their age-calls, counted in units of braches (patristic distance with equal weights of 1 for all branches).

The distance tree is rooted at the midpoint. Algorithms are colored by the methods they use to infer orthology. They either use a graph-based or a gene tree-

based strategy, either with, or without, the use of a species tree (dotted outline).
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therefore, important to propagate this uncertainty through

further analyses, and the bimodality statistic is included with

our consensus age estimates.

We also investigated whether aspects of the individual pro-

teins contributed to systematic error. For instance, it may be

difficult to infer correct evolutionary relationships for small

proteins, or those with many domains. At least one orthology

inference algorithm uses this idea to “correct” for protein

length (Emms and Kelly 2015). However, we found that pro-

tein length has a weak positive correlation with age-call error,

and that the number of domains also correlates weakly

(Spearman’s �:< 0.2 in both cases). Several simulation studies

have found that increased evolutionary rate can lead to false-

negatives in phylostratigraphic studies (Moyers and Zhang

2015, 2016). We found that similarity of one-to-one orthologs

and node error have a negative correlation, as predicted by

these studies, but weakly for human–mouse orthologs

(Spearman’s �=�0.13) and only slightly stronger for

human–yeast orthologs (�0.36). We did find, however, that

proteins in the youngest age class, “Mammalia,” tended to

have a higher rate of evolution than older age-classes. We

cannot, therefore, rule out the possibility that some of the

“youngest” proteins may be due to the limited sensitivity of

the homology searches (see also supplemental iPython note-

book “errorCorrelation_plotting” (Supplementary Material

online) at https://github.com/marcottelab/Gene-Ages/tree/

master/Notebooks).

Systematic False Negatives

What are the causes of systematic false negatives and can we

identify them without a priori knowledge of the true

orthogroup? One clue comes from the different age-category

distributions between PANTHER8_all and PANTHER8_LDO (Mi

et al. 2013). These two sets of orthology calls are based on the

same set of gene trees, but differ in their definition of

FIG. 3.—Error statistics. (A) The distribution of average node error, a measure of disagreement among the algorithms for a given gene, is given, along

with a plot of the average bimodaliy in each bin. Genes with more error tend to be more bimodal between “old” and “young” algorithms. (B) Example of a

strongly bimodal and weakly bimodal gene with a few representative algorithms. The ages are given as categories for clarity, but the bimodality statistic is

calculated according to the number of branches between node age-calls (see the Methods section).
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orthology. “LDO” stands for “least diverged ortholog,” and

only considers the least diverged among a set of co-orthologs

to be the true ortholog of an outgroup. This can be contrasted

to the traditional phylogenetic definition of orthology where

all co-orthologs are equally orthologous to the outgroup

(fig. 4; Fitch 2000). Although it may be useful to split co-

orthologous groups, as the LDO definition does, in cases

where orthology is being used for, for example, gene function

annotation, it is inappropriate for defining the age of a

gene or gene family because the age must be in reference

to the topology of the phylogenetic tree. The fact that

PANTHER8_LDO’s age category distribution resembled that

of several graph-based methods, and the fact that it clustered

with them based on its per-gene age calls (fig. 2), suggests

that these methods may be splitting up co-orthologous

groups as well.

There is no gold standard set of co-orthologs in this dataset,

so we used the database PhylomeDB as a reference for iden-

tifying co-ortholog over-splitting. PhylomeDB was chosen be-

cause it infers gene trees under Maximum-Likelihood with

well-characterized models, and is, therefore, similar to how

most researchers infer orthologs when analyzing one gene

family at a time. We nevertheless recognize the limitation in-

herent in choosing a single, imperfect set as a reference.

PhylomeDB summary files for 10 species in PhylomeDB’s

model species collection (PhyC2) that overlapped with species

in our tree (table 1) were downloaded, and we determined

groups of co-orthologs that were then used for the analysis.

Briefly, for protein (A), if an algorithm called a younger age (Y)

and PhylomeDB an older age (O), and if in the co-orthologs of

(A) we could find a protein (B) which that algorithm called at

age (O), then (B) was identified as the LDO, age (O) was as-

sumed to be the true age, and that algorithm was determined

to be over-splitting the co-ortholog group (fig. 4). This was not

carried out for proteins on which PhylomeDB’s age call was

determined to be a false positive (see below). We note that

this method for identifying co-ortholog over-splitting is not

ideal, because it relies on a single, imperfect algorithm

(PhylomeDB). It is conservative, however, because algorithms

will only be trimmed if they give a member of the co-orthologs

the exact same age on the species tree as that called by

PhylomeDB on the focal gene. More thorough analyses of

whether graph-based methods are consistently missing co-

orthologs will be necessary in the future.

Identifying False Positives

If genes of distant organisms are incorrectly inferred to be part

of an orthology group, it will drive the age of the orthogroup

towards the root of the tree. Recent HGT events are a biolog-

ical source of such errors, but some algorithmic error is ex-

pected to play a role as well. Such problems are perhaps more

likely to occur in tree-based algorithms, where slight re-

arrangements that do not strongly affect the likelihood of

the tree can have an outsized effect on the inference of

gene gains and losses (Hahn 2007). In such cases, the large

number of taxa that fall between the true in-group taxa and

the false positive out-group taxa will be inferred to have lost

the orthogroup. We used this criterion on a per-gene basis to

identify algorithms that were likely to have false positives and

genes that were likely to be the result of recent HGT events.

Algorithms that had an outsized number of taxa missing from

an orthogroup were considered false positives and removed

from downstream analysis of that orthogroup’s age. After

trimming these outliers, genes that were in the 95th percentile

of inferred losses were flagged as being potential recent HGT

events (i.e., horizontally transferred long after LECA). These

potential HGT genes are an interesting set in themselves: 66%

are from the Euk + Bacteria category, they are hugely enriched

for metabolic genes (gProfiler P value = 9.08e�116), and sev-

eral are associated with human diseases.

We found that, as expected, algorithms in the “old” group

tended to commit more false positive errors, and algorithms in

the “young” group committed more false negative errors

(fig. 5). Because PhylomeDB was used as a basis for identifying

false negatives, its false negative rate could not be quantified.

Consensus

These analyses suggested a way to more robustly estimate

consensus gene ages and to calculate a posterior distribution

over the estimate. We used the methods described above to

identify algorithms that may have committed false positive or

false negative errors and then removed these algorithms from

the consideration on a per-protein basis. After doing so, we

generated consensus tables based on the remaining algo-

rithms for the human proteome and for a number of other

model eukaryotes (table 1), and we make these tables avail-

able. Because our tree is best sampled within the opisthokonts

(fungi, animals, and closely related protists), we restricted our

analyses to this lineage. These tables contain a consensus age

category for each protein based on the mode age call of non-

trimmed algorithms. Older genes were found to be involved in

key components of cell biology. Genes in the Euk + Bac group

were found to be highly enriched for mitochondrial function,

and genes that date back to the Euk_Archaea node were

enriched for translational machinery, as has been shown pre-

viously (Thiergart et al. 2012; Koumandou et al. 2013). Many

of these older genes are also associated with hereditary dis-

eases that represent a deficiency in a cell function associated

with that evolutionary epoch. For instance, the cytoskeletal

system and cilium date to LECA (Koumandou et al. 2013),

and genes in this age category are enriched for diseases af-

fecting the cilium, such as primary ciliary dyskinesia and

Bardet–Biedl syndrome (fig. 6).

These enrichment terms are derived from the point esti-

mates of consensus ages, but we also provide other data

that can be used to propagate uncertainty to downstream
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analyses. For each gene, the distribution over age-calls from

the non-trimmed algorithms is given, as well as the number of

contributing algorithms and the entropy of the age call distri-

bution. About 87% of human proteins had at least five algo-

rithms contributing after trimming, and 59% had at least 10

out of a total of 13 original algorithms. In addition, the tables

contain information on whether the protein was flagged as

being a potential horizontal gene transfer event. Finally, we

include the node error and bimodality statistics, both of which

are measures of uncertainty that reference the reference spe-

cies tree.

We note that in several cases, we have made ad hoc deci-

sions during the building of the consensus. For instance, algo-

rithms were flagged as false positives if the number of taxa

inferred to have lost the orthogroup was two standard devi-

ations above the mean of all algorithms. These decisions were

informed by the underlying distributions of values.

Nevertheless, we supply the source data files, scripts used

for these analyses, as well as interactive iPython notebooks,

and we invite researches to explore and change parameters if

they desire (https://github.com/marcottelab/Gene-Ages).

Error Propagation

How can our error annotations be used in downstream analy-

ses? Here we give an example of a simple stability analysis for

gene ontology enrichment that uses these error terms. It has

previously been shown that eukaryotic genes vertically acquired

from archaea are enriched for translation and RNA processing,

whereas genes acquired horizontally from bacteria at the root

of eukaryotes are enriched for metabolic processes (fig. 6;

Thiergart et al. 2012; Koumandou et al. 2013). This conclusion

relies on functional term enrichment, but what is the effect of

different sources of error on these sorts of enrichment analy-

ses? To investigate the robustness of this conclusion to different

sources of error, we used the program g:Profiler (Reimand et al.

2007) to perform functional enrichment analysis on the two

age classes “Euk_Archaea” and “Euk+Bacteria” after filtering

the datasets at varying levels of stringency (fig. 7A). We found

that removing genes that were flagged as a possible late HGT

event had a strong effect on the average P values of functional

annotation terms in the Euk+Bacteria age class but not the

Euk_Archaea class (fig. 7B). This may be due to these genes

being more commonly lost or to many bacterial genes being

more recent HGT events (and hence being filtered out). The

latter possibility would mean that many genes in this age cat-

egory could be misidentified as being present in LECA, so these

genes are good candidates for manual curation. Notably, filter-

ing on different error terms can increase or decrease the sig-

nificance of different terms, and, depending on the filtering

strategy, the significance ranking of terms can be switched

(fig. 7C and D). Analyses that rely on smaller test-sets of

genes are likely to be much more strongly affected that these

proteome-wide searches.

Discussion

Most studies of gene age use a single point estimate arising

from one of a variety of methods. Given our analysis of some

the most popular orthology inference algorithms, we find that

FIG. 4.—Determination of false negatives due to co-ortholog over-

splitting. This tree compares the ages given by least derived orthology

(LDO) and traditional, phylogenetic orthology (Phylo.). Given a group of

co-orthologs in Species 1, LDO will give only the co-ortholog with the

shortest distance to an outgroup (gene in Species 2) the status of ortholog

to this outgroup (red box). All others are put in separate orthogroups.

Hence, LDO produces more genes that are mapped (incorrectly) to a

younger age (Y), whereas traditional, phylogenetic orthology (blue box)

includes all co-orthologs to the orthogroup, thereby mapping more genes

to the older age (O).

FIG. 5.—Errors committed by different algorithms. False positives and

negative are defined in the text. PhylomeDB was used as a standard for

false negative, so its false negative count could not be determined.
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point estimates of gene age will be wrong for (at least) thou-

sands of genes in a human-sized proteome (fig. 4). More

troubling is the fact that algorithms appear to fall into two

classes, each of which presumably has a systematic bias to-

wards either false positives (“old group”) or false negatives

(“young group”). This systematic bias happens on a per-gene

basis, meaning that simple voting methods will not be able to

resolve conflicts. Even with the ideal sampling of algorithms,

which we approximate here by exploring a wide diversity of

popular algorithms, the effective voting population will still

drop to two on highly polarized genes.

Many areas of computational biology have faced a similar

problem, namely, the need to keep track of error in several

components of a workflow, and to correctly propagate this

error through the whole analysis (Guang et al. 2016). One

illustrative example is multiple sequence alignment and phy-

logenetic inference. The former is a necessary precursor to the

latter, and each involves estimation error. Methods have been

developed to infer the posterior distributions of both steps

simultaneously (Suchard and Redelings 2006), which is com-

putationally intractable for all but the smallest datasets, or to

perform each step iteratively in a maximum likelihood frame-

work (Liu et al. 2009). We argue that, eventually, such steps

will have to be taken with orthology inference and gene-age

estimation. Using a point estimate at each step in the analysis

makes the assumption that each inference step has no uncer-

tainty associated with it, which we can clearly reject in the case

of gene-age estimation.

FIG. 6.—Enrichment of gene ontology terms and human disease terms (OMIM) in the different consensus age classes for human and budding yeast

(Saccharomyces cerevisiae). The distribution of age classes are shown for each species. Older genes tend to be enriched for core cellular machinery and

heritable diseases. Newer genes are associated with lineage-specific function, such as nervous system development and olfaction (via G-protein coupled

receptors) in mammals, and DNA integration in yeast. P values are derived from g:Profiler (Reimand et al. 2007).
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Some methods for probabilistic orthology inference do

exist (Ullah et al. 2015). These use gene tree models with

free parameters for gene duplication, loss, and sometimes

HGT, which then contribute to the likelihood along with the

multiple sequence alignment. However, these methods are in

their infancy, and are not usually scalable to large datasets or

widely used. In the meantime, it is important to have an un-

derstanding of common sources of error in gene-age estima-

tion. We provide that information along with consensus age

calls for a variety of model organisms so that researchers can

incorporate error propagation into their analyses in a way that

is appropriate to their question of interest.

Several error terms are likely to be important for a broad

range of analyses. The first and most straightforward is the

entropy of the age-call estimate after filtering false positives

and negatives. This statistic gives a quick idea of how certain

an age-call is, with higher entropies being less certain. It is

defined with reference to our age categories, so if researchers

need to use other age categories, they must use the node age

of the gene, which we also provide. HGT events are also likely

to affect some datasets, especially when genes originating in

Bacteria are involved (fig. 6). A large number of eukaryotic

genes are likely transfers from Bacteria (Thiergart et al. 2012),

but these may have been transferred at any point on the

phylogeny. We define one age category, Euk + Bacteria, to

describe all genes transferred before LECA, with later transfers

hopefully being caught by our flag. If researchers are primarily

interested in HGT, we suggest a much fuller analysis, as our

simple method is likely to miss many HGT events. Finally, the

bimodality of the age-call between “young” and “old” algo-

rithm types is a key statistic. The systematic biases in the dif-

ferent algorithm types mean that many datasets will be

FIG. 7.—Effect of filtering on functional term enrichment analysis. (A) Datasets 1–6 were trimmed based on four sources of error: entropy of age-calls,

whether the genes were flagged as potential horizontal gene transfer (HGT) events, the number of algorithms contributing to the final age call (after filtering

algorithms, as described in the Methods and Results section), and the polarization of each gene. Dataset 6 was filtered on all four criteria (B) Negative log10

P values for the five datasets for two age categories (Euk_Archaea, and Euk+ Bacteria) and two gene ontology terms (biological process, and cellular

compartment). (C and D) Negative log10 P values across datasets for eight functional terms in the two age categories. These terms show a variety of ways that

significance can be affected by filtering.
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radically different and difficult to compare, and it may account

for some of the differences between studies of ancient gene

repertoires that used either graph or tree-based methods.

Genes that are highly polarized are good candidates for

manual curation, because it is unlikely that any ad hoc algo-

rithm will differ substantially enough from those we sampled

here to be decisive.

Our analysis also identifies several areas for further study. In

particular, our analysis of systematic false-negatives suggests

that the way in which orthology inference algorithms handle

co-orthology is a major source of difference among them. We

relied on co-ortholog groups from PhylomeDB because no

gold-standard sets are available, and PhylomeDB’s method

of Maximum-Likelihood gene tree inference without the use

of reference species tree is the most similar to how researchers

infer phylogenies on single gene families. However, a fuller

analysis of co-ortholog oversplitting is clearly wanting, and we

also provide final datasets without the false-negative filter that

relies on PhylomeDB.

Although we have characterized only two components of a

typical computational biology workflow, orthology inference,

and gene-age estimation, it would be ideal to characterize

error distributions for all the steps in an analysis, which has

not been done with gene age data to our knowledge (but see

Thompson et al. (2014) for an interesting example on gene-

expression data, and Guang et al. (2016) for a general review).

The datasets we provide here will hopefully help guide future

research efforts aimed at a more formal, probabilistic way to

handle error in gene-age estimation, perhaps even in the con-

text of an entire workflow. Until such methods are available,

we advocate using our error annotations or a similar analysis in

any study incorporating gene-age data.

Supplementary Material

Supplementary material is available at Genome Biology and

Evolution online (http://www.gbe.oxfordjournals.org/).
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Méheust R, Lopez P, Bapteste E. 2015. Metabolic bacterial genes and the

construction of high-level composite lineages of life. Trends Ecol Evol.

30:127–129.

Mi H, Muruganujan A, Thomas PD. 2013. PANTHER in 2013: modeling the

evolution of gene function, and other gene attributes, in the context

of phylogenetic trees. Nucleic Acids Res. 41:D377–D386.

Moyers BA, Zhang J. 2015. Phylostratigraphic bias creates spurious pat-

terns of genome evolution. Mol Biol Evol. 32:258–267.

Moyers BA, Zhang J. 2016. Evaluating phylostratigraphic evidence for

widespread de novo gene birth in genome evolution. Mol Biol Evol.

33(5):1245–1256.

Mushegian AR, Koonin EV. 1996. A minimal gene set for cellular life de-

rived by comparison of complete bacterial genomes. Proc Natl Acad

Sci. 93:10268–10273.

Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. 1999.

Assigning protein functions by comparative genome analysis: pro-

tein phylogenetic profiles. Proc Natl Acad Sci. 96:4285–4288.

Pereira C, Denise A, Lespinet O. 2014. A meta-approach for improving the

prediction and the functional annotation of ortholog groups. BMC

Genomics 15:S16.

Pittis AA, Gabaldón T. 2016. Late acquisition of mitochondria by a host with

chimaeric prokaryotic ancestry. Nature 531:101–104.

Pryszcz LP, Huerta-Cepas J, Gabaldón T. 2011. MetaPhOrs: orthology and

paralogy predictions from multiple phylogenetic evidence using a con-

sistency-based confidence score. Nucleic Acids Res. 39:e32–e32.

Reimand J, Kull M, Peterson H, Hansen J, Vilo J. 2007. g:Profiler – a web-

based toolset for functional profiling of gene lists from large-scale exper-

iments. Nucleic Acids Res. 35:W193–W200.

Rivera AS, et al. 2010. Gene duplication and the origins of morphological

complexity in pancrustacean eyes, a genomic approach. BMC Evol

Biol. 10:123.

Sonnhammer ELL, et al. 2014. Big data and other challenges in the quest

for orthologs. Bioinformatics 30:2993–2998.
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