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Networks are invaluable models for bettering our under-

standing of biological systems. Whether its constituent parts

are molecules, cells, or living organisms, a network provides

an organizing framework amenable to modeling the complex

events that emerge from interactions among the parts. In

functional genomics, concerted efforts over the past decade

or so have produced rudimentary maps of the networks of

genes, proteins, and metabolites controlling cells and, with

these maps, have offered the promise of predictive, rather

than just descriptive, models of molecular biology. Already,

the network of physical interactions (the ‘interactome’)

among yeast proteins, generated through a succession of

experimental and algorithmic reconstructions, has proved

its usefulness for discovering protein function [1,2], predic-

ting cellular behavior [3,4], and the analysis of complex gene

regulation [5-7]. Similar efforts for protein-interaction

networks for Caenorhabditis elegans and Drosophila

melanogaster are ongoing. We expect the human protein-

interaction network to be equally informative; like the

sequencing of the human genome, the construction of this

map will represent a major step along the path towards

understanding the functions of our genes.

Even in its current incomplete state, with interactions com-

piled from the literature, focused screens, and first-generation

high-throughput interaction maps, the human protein-protein

interaction network should be able to provide information

about gene function and relevance to human health. For

example, the emergent properties of proteins that are

revealed in networks, as opposed to considering each protein

in isolation, may identify genes and proteins critical to

disease. Such a trend has been observed in yeast: a yeast

gene’s tendency to be essential correlates with the count of

the encoded protein’s interaction partners (the ‘degree’) [8].

Although not without its critics [9,10], this correlation would

be exciting if present in animals. We have examined the

current human protein-interaction network and find that this

trend does indeed hold in humans (Figure 1). Among many

other contributions, the human protein-interaction network

will therefore focus attention on important hub proteins.

Such proteins are likely to be essential to cell function and

their disruption will often be lethal. Likewise, the network

may focus attention on particularly important interactions:

not all interactions are equally critical to the cell, and we

might expect the network context of interactions (such as

their centrality or association with essential proteins) to allow

essential interactions to be identified.

Although maps of both the yeast and human protein-

interaction networks are well under way, their completion

poses many problems, not least because of the anticipated

scale of the human network, which could require multiple
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might help separate true from false interactions.



testing of all possible pairs of around 20,000-25,000 human

proteins - roughly 200 million to 300 million pairs. The

scale of this effort raises many questions. How do we even

measure completion? The network is, after all, unknown.

How close are we to completing the networks? How do we

assess errors in the maps? Would maps obtained using only

a single technique suffice?

In this article, we discuss the techniques used up to now,

describe strategies for recognizing network completion, and

estimate our progress towards finished yeast and human

protein-interaction maps. Even though large numbers of

interactions have been mapped, we argue that assay false-

positive rates are so high that only about half of the expected

yeast network has been defined to date, and considerably

less for the human one. Like whole-genome shotgun

sequencing [11], interaction networks will require multiple-

fold coverage for completion. We argue that raw interaction

data should be released, pooled, and analyzed as a set, as

was the case for the human genome sequence. Coverage is

low enough and errors common enough in individual

datasets to mean that the human interactome will only be

fully mapped through integration of repeated analyses from

many groups.

Current interaction mapping strategies and
their potential for scaling
The primary approach to mapping human protein inter-

actions is the same one that initiated the yeast interactome -

the yeast two-hybrid assay [12,13]. This classic assay involves

the creation of two fusion proteins, the ‘bait’ protein fused to

a DNA-binding domain and the ‘prey’ protein fused to a

transcriptional activator domain. An interaction between

bait and prey reconstitutes a complete transcription factor,

detected by transcription of a reporter gene. This approach

has already identified more than 5,000 interactions between

human proteins [14,15].

The second major approach is affinity purification followed

by mass spectrometry [16,17]. Here, epitope-tagged proteins

are purified by affinity chromatography, and their co-

purified interaction partners are identified by mass spectro-

metry. This assay excels at identifying in vivo protein

complexes in yeast and other systems [18], particularly when

used with tandem affinity purification (TAP) [19] and

genomic knock-in of tags [16] rather than overexpression of

transgenes. Most importantly, this technique bypasses

exhaustive trials of all binary protein pairs and may scale up

well to the size of the human interactome. On the downside,

the assay may be biased toward abundant proteins [20].

Also, human cells present more difficulties than yeast,

especially in expressing tagged libraries of human genes and

the need to grow large volumes of cells. Initial screens in

human cells [21] have used transgenes, rather than genomic

knock-ins, to simplify cloning.
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Figure 1
The tendency for a human gene to be essential correlates well with the
number of its protein-interaction partners, suggesting that essential
human genes can be identified directly from protein-interaction networks.
(a) For a set of around 31,000 human protein interactions [49], the
number of interactions per protein (the ‘degree’) is plotted for 907
essential vertebrate proteins known from mouse knockouts [50], human
small interfering (si)RNA screens [51,52], and zebrafish random
mutagenesis [53] and for the remaining 6,661 proteins in the network,
considering only the largest connected network component. (b) The
likelihood of being essential increases with increasing degree. Proteins
were sorted by degree and divided into bins of 100 proteins each (filled
diamonds). The observed frequency of essential genes in the bin is plotted
against the average degree of the proteins in the bin, showing high
correlation (R2 = 0.78) between degree and essentiality.
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The remaining main approaches to mapping yeast and

human protein interactions are computational - inferring

protein interactions by integrating evidence from

comparative and functional genomics (see, for example

[20,22-25]). Although these are in silico rather than in vivo

or in vitro interaction assays, they use experimental data

such as DNA microarrays or genome sequences to infer

protein interactions, and are, therefore, ultimately based on

experimental observations [26]. As large amounts of data

are available, these data-mining methods scale-up easily and

offer both in vivo relevance and the ability to detect stable

and transient interactions. Disadvantages include the

importance of measuring associated error rates and the need

for independent validation to verify error rates.

Although the approaches described above are complemen-

tary, the differences between them have caused some confu-

sion within the scientific community. The term ‘protein-

protein interaction’ carries two meanings: direct physical

binding or membership of the same multiprotein complex.

The latter usage is common in the field at large: for example,

both major efforts to map protein complexes in yeast

describe “interactions” between co-complexed proteins

[27,28]. Part of the ambiguity in usage arises from the fact

that few biochemical assays, apart from in vitro binding

assays, truly distinguish the two cases. Currently, only yeast

two-hybrid assays are regarded as measuring direct physical

interaction between proteins and, at least in principle, even

these interactions might occasionally be mediated through

other members of a nuclear protein complex. Protein co-

immunoprecipitation, often considered a definitive test of

direct physical interactions, more typically measures co-

complex interactions, much like the closely related affinity

purification/mass spectrometry interaction assays. In

addition, for the mass spectrometry interactions, one can

consider the bait-prey interactions (the ‘spoke’ model [29])

as well as the prey-prey interactions (the ‘matrix’ model),

with the latter typically of lower accuracy.

Estimating the scale of the yeast and human
protein interaction networks
Computational and experimental approaches have now

mapped a great many yeast and human protein interactions,

but how many interactions should we expect? We argue here

that the sizes of the complete yeast and human protein

interaction networks will be larger than most early estimates.

We do not yet know the size of any complete protein-

interaction network. We can, however, roughly estimate the

expected sizes for the yeast network using two different

approaches that agree reasonably well. These estimates are

derived from considering the interactions shared between each

pair of large-scale protein interaction assays published so far.

First, provided two large-scale assays sample the same

portion of ‘interaction space’ (that is, they sample the same

pairs of interacting proteins - usually a subset of the

interactome), then the number of interactions detected by

both assays should be distributed according to the

hypergeometric distribution, well-approximated for large

populations by the binomial distribution. Given two assays

of size n1 and n2 interactions, respectively, with k in

common, as well as estimates of the false-positive rates of

the two assays (fpr1 and fpr2), the maximum likelihood

estimate of the number of interactions, N, within that

subspace is [n1(1 - fpr1) × n2(1 - fpr2)]/k, provided n1 and n2

are sufficiently large (n1(1 - fpr1) × n2(1 - fpr2) >> N; see

Additional data file 1 for a derivation of the statistics). This

intersection analysis (Figure 2) has a rich history in other

fields, such as mark-recapture methods for estimating the

size of an animal population [30], and has recently been

applied to protein-interaction networks [31].

In order to use this method, the datasets must be corrected

for their error rates. One method for estimating the false-

positive rates of large-scale assays, described by D’haeseleer

and Church [32], involves comparing the two datasets to each

other and to a reference dataset. The method does not require

a gold-standard reference; only that the reference not be

biased toward either of the samples being measured. This

requirement is met by comparing two similar assays: that is,
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Figure 2
The method of intersection analysis for estimating interactome size. In an
interactome, or subspace of an interactome, of N true interactions, two
independent assays of n1 and n2 interactions are expected, under the
hypergeometric distribution, to share k interactions by random chance.
As described in the text, we can use the observed intersection of
interaction assays to estimate N.

N = true positive interactions
        (the ‘interactome’)

False positives

n1

n2k



either two mass spectrometry or two two-hybrid datasets.

The method, described in Figure 3a, uses the ratio of the

intersections of the three datasets to estimate the number of

true positives in each sample. An example using the

interactions derived from the two recent genome-scale

TAP/mass spectrometry assays published by Gavin et al. [27]

and Krogan et al. [28], compared to the Munich Information

Center for Protein Sequences (MIPS) reference set [33], is

presented in Figure 3b. In this and all subsequent analyses,

the interaction data were used as published: for Krogan et al.

[28] bait-prey pairs; for Gavin et al. [27] bait-prey pairs

derived from lists of prey associated with each bait.

To estimate the interactome size by intersection analysis, we

first take the interactions in each dataset that are derived

from the common sample space of the two assays. (Figure 3b

shows only the interactions in this common sample space.)

Each group purified around 2,000 TAP-tagged strains for

mass spectrometry, with the common set of baits numbering

1,243, of which 1,128 yielded at least one identical inter-

action. While a true ‘apples-to-apples’ comparison of these

results is difficult given the data that these two groups have

published, as discussed by Goll and Uetz [34], we tried to

extract the interactions derived from these common baits for

this analysis from the published filtered datasets. After

calculating error rates and subtracting false positives from

the two datasets, their intersection was used to predict the

number of interactions within the subspace they sample.

That prediction was then scaled up to the size of the whole

interactome (around 5,8002/2) to estimate the total number

of protein-protein interactions in the organism.

The error estimates for Gavin et al. [27] and Krogan et al.

[28], as well as those for other large-scale yeast interaction

datasets, are shown in Table 1. The false-positive rate of the

computationally derived Jansen dataset [22] was determined

by comparing it to Gavin et al. [27] and Krogan et al. [28]

individually, although these comparisons may violate the no-

bias requirement for the reference dataset. Table 2 shows the

interactome size predictions derived from these pairs of mass

spectrometry assays, which give an average interactome size

of about 53,000 interactions, although the Gavin-Krogan

pairwise estimate has the largest intersection and is,

therefore, likely to be the most accurate estimate of the three.

The two-hybrid assays [35,36] share too few interactions to

give a meaningful estimate of interactome size.
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Figure 3
Estimating false-positive rates of large-scale assays. (a) As described by D’haeseleer and Church [32], the number of true positives in an interaction
dataset can be estimated by examining the ratio of intersections of two similar datasets (A and B) and a reference dataset. If intersections contain all true
positives, then the ratio of areas I and II is equal to the ratio of areas III and IV, where IV contains true positives (and V false positives, not shown to
scale). The number of false positives can then be determined by simple subtraction, repeating the calculation for the other dataset. (b) Calculation of
false-positive rates for the most recent yeast mass spectrometry assays of Gavin et al. [27] and Krogan et al. [28] within the interactome subspace
sampled by both experiments (1,243 baits) and using MIPS as the reference sample [33]. Intersections (regions I, II, II) were determined by examining the
data, and true- and false-positive populations (regions IV and V) were calculated as described in (a).
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These projected interactome sizes agree with those

generated by a simple, very approximate, scaling argument:

we observe approximately 5-10 unique interactions per yeast

protein in current networks; multiplying these values by

around 5,800 yeast genes gives estimates of approximately

29,000-58,000 interactions. These values are somewhat

larger than previous estimates of 10,000-30,000 total yeast

interactions [20,29,31,37-39].

Unfortunately, applying these techniques to high-through-

put assays of human protein-protein interactions is still

problematic. The two large-scale yeast two-hybrid screens

published recently [14,15] share only six interactions, too

small an intersection to generate reliable error rate or inter-

actome size estimates; similarly, data from Stelzl et al. [15]

share only 5 and 13 interactions with orthology-transferred

interactions from Lehner and Fraser [40] and the compu-

tationally derived set of Rhodes et al. [23], ruling out these

comparisons for estimating interactome size. However,

comparison of the Rual et al. [14] data with those of Lehner

and Fraser [40] and Rhodes et al. [23] yielded consistent

false-positive estimates, suggesting that reference bias is

minimal (Table 3). The human interactome estimates gener-

ated from these pairs of datasets are shown in Table 4. These

projections, while consistent with the estimate of approxi-

mately 260,000 interactions offered by Rual et al. [14], still

stem from small intersections and limited information about

sample space, and should be considered very rough estimates.

The critical importance of measuring error rates
This analysis, with many others [20,32,37,41-45], only

reinforces the importance of measuring error rates when

mapping protein interactions. Observing an interaction

experimentally (for example, as in a yeast two-hybrid assay)

does not guarantee a true positive interaction; that is, one

that occurs in vivo under native conditions during the life of

the organism. All assays, experimental and computational,

show errors and should be accompanied by measures of

confidence. Many published methods exist for estimating
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Table 1

Yeast protein-interaction assay false-positive rates: yeast datasets

Number of Derived false-positive Published false-positive Average false-positive 
Dataset interactions rate* (%) rate (%) rate (%)

Uetz et al. [35] 854 46 [32] 32 [24]†,47 [44], 50 [37], 51 [42] 45

Ito [36] 4,393 89 [32] 71 [24]†, 78[41], 85 [37], 91 [44] 83

Gavin et al. [16] 3,180 68 [32] 14 [24]†, 22 [4], 35
<72 (upper bound [20])

Ho et al. [17] 3,618 83 [32], 81, 82, 80 55 [24]†, <97 (upper bound [20]) 76

Jansen et al. [22] 15,922 81, 79 - 80

Gavin et al. [27] 18,137 78, 82, 86‡ - 82

Krogan et al. [28] 14,317 75, 79, 66‡ - 73 
(7,123 core) (59, 65, 37‡ core) (54 core)

Overall 51,419 72

*This interaction assay false-positive rate is taken from D’haeseleer and Church [32] or derived using the method therein. Multiple values derive from
choosing either the GRID [2] or MIPS [33] reference sets. ‡This interaction assay false-positive rate is calculated with the EPR server of Deane et al. [42].
†The mean of four values estimated from Table S3 of Lee et al. [24] by fitting the interaction set as a linear combination of true-positive (small scale
interactions) and false-positive (random pairs) interactions.

Table 2

Prediction of the size of the yeast interactome

Estimated interactions in 
Dataset pair Common baits common search space Projected interactome size (95% CI)

Gavin-Krogan (core) [27,28] 1,128 3,642 38,600 (37,800-39,500)

Ho-Gavin [16,17] 241 718 50,000 (47,700-53,000)

Ho-Krogan (core) [17,28] 282 1,109 69,000 (63,300-75,500)

Mean 52,500 (37,800-75,500)*

*The range of interactome sizes is the minimum and maximum from the confidence intervals (CI) generated from pairwise estimates.



interaction assay error rates [20,22,37,41-45] and for scoring

individual protein-protein interactions. These latter scores

either exploit assay-specific features [46] or use simple, but

surprisingly effective, statistical criteria for separating true

from false-positive interactions [43,47,48]. For example,

although the full Ito et al. [36] yeast two-hybrid set has a

measured false-positive rate of around 80%, a statistical

measure based on the hypergeometric distribution can select

a subset of around 45% of the interactions whose false-

positive rate is only around 30% [43].

These high error rates underscore the difficulty in

evaluating progress towards complete interactomes. Given

these false-positive rates, and the resulting relatively small

number of interactions detected in multiple assays, how far

have we actually progressed towards the complete protein-

interaction networks of yeast and humans?

How do we know when we’re done?
As we can only approximate true interactome sizes, we have

few sure measures of interactome completion beyond simply

testing for coverage of confident interactions from the litera-

ture [2,20]. However, two empirical methods, assay satura-

tion and dead reckoning, suggest that we are far from finished

with either the yeast or human interactomes.

Assay saturation captures the notion that, early in

interaction-network mapping, each new interaction assay

largely discovers novel interactions, as was observed for the

first two large-scale yeast two-hybrid assays [36]. Provided

false-positive rates are well controlled, later assays should

reveal proportionally fewer novel interactions, with the new

interaction discovery rate dropping as interaction saturation

approaches 100%. At this time, the portion of the interactome

accessible to these assays will be complete, although this

approach says nothing about how well this accessible portion

covers the entire interactome. The saturation can be revealed

by plotting, for each additional assay, the total interactions

mapped versus the novel interactions mapped. Early assays

fall along the diagonal (all interactions are new); later assays

provide fewer new interactions, with the slope of the line

decreasing, ultimately approaching zero for error-free, com-

pletely redundant assays.

We tested for assay saturation in yeast and humans (Figure 4).

Not surprisingly, we detect no evidence of saturation in

humans. In yeast, however, there appears to be some: the

most recent yeast dataset from Krogan et al. [28] discovers

66% new interactions, on a par with the estimated false-

positive rate of the dataset. As with previous screens [20],

both recent large-scale mass spectrometry assays may be

biased toward interactions between abundant proteins, and
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Table 3

Human protein-interaction assay false-positive rates: human datasets

Number of Derived false-positive Published false-positive Average false-positive 
Dataset unique interactions rates* (%) rates (%) rates (%)

Lehner and 58,700 96, 94, 93 - 94 
Fraser [40] (9,396 core) (86, 81, 69 core) (79 core)

Rhodes et al. [23] 38,379 87, 86, 83 - 85

Stelzl et al. [15] 3,150 98, 98 70 [45] 98 
(902 core) (94,95 core) (86 core)

Rual et al. [14] 2,611 87, 93 8-66 [14]†, 54 [45] 58

Overall 100,242 90

*This interaction assay false-positive rate is derived using the method of D’haeseleer and Church [32] and a reference set of 20,296 unique interactions
from HPRD [54], BIND [55], Reactome [56], and Ramani et al. [49]. Multiple values derive from different choices of comparison sets. †A range of six
values (mean 48%) estimated from Table 1 of Rual et al. [14] by fitting the interaction set CCSB-HI1 as a linear combination of true positive (LCI-core)
and false positive (all possible) interactions.

Table 4

Prediction of the size of the human interactome

Estimated interactions in 
Dataset pair Interactions in both datasets common search space Projected interactome size (95% CI)

Rual-Lehner (core) [14,40] 35 28,200 261,000 (191,000-369,000)

Rual-Rhodes [14,23] 59 20,200 189,000 (154,000-239,000)

Mean 225,000 (154,000-369,000)*

*The range of interactome sizes is the minimum and maximum from the confidence intervals (CI) generated from pairwise estimates.



saturation is likely to be confined to interactions of abundant

proteins. Nevertheless, achieving this level of completeness

for a major fraction of yeast proteins is a worthy accomplish-

ment, and serves as a guide for future large-scale assays

exploring the rest of the yeast interactome.

The method of dead reckoning measures total interactome

completion from the number of interactions assayed and

their associated false-positive rates, just as sailors on the

high seas estimated distances from the ship’s speed and the

time traveled. For this approach, we assume all interactions

observed by more than one assay are true positives. When

assays are uncorrelated, this assumption holds for about

99.9% of the time for both yeast and human, given our

estimates of interactome size. The number of additional true

positives contributed by an assay of size n is n(1 - fpr) - x,

where x is the number of interactions already observed in

previous assays. By this measure, the yeast experiments in

Tables 1 and 2 plus the comprehensive literature databases

have contributed 24,800 true-positive interactions, or around

50% of the estimated interactome. Of this total, nearly

18,000 interactions come from curated literature databases

[2,33], and 5,800 were detected in more than one high-

throughput assay. Human protein-interaction assays have

similarly covered about 25,000 true-positive interactions, or

around 11% of the estimated interactome, with over 80%

coming from sources based on literature mining. Note that

these estimates assume that the literature sources are error-

free, which is certainly not the case [14].

For both organisms, a number of factors could extend the

current datasets to cover more of the interactome, such as

considering the matrix model of interactions discovered by

mass spectrometry [29]. Although this increases the false

positives, statistical scores can identify true positives [43],

increasing the overall quality and number of interactions.

Raw data release could be the way forward
High error rates in large-scale assays dictate that the com-

munity must oversample the interactome in order to approach

completion. Whole-proteome interactome mapping is, there-

fore, analogous to whole-genome shotgun sequencing [11]:

each assay reveals a subset of the interactions (sequence),

requiring multiple-fold coverage of the interactome (genome)

for completion of the true-positive set. In shotgun sequen-

cing, assembly of sequencing reads is the algorithmically

difficult step. By contrast, controlling and measuring error

rates is currently the more challenging step in ‘shotgun’

interactome mapping. With false-positive rates exceeding

50%, and false-negative rates (the proportion of true inter-

actions missed) for two-hybrid assays in particular approa-

ching 90%, it is clear that each subspace must be sampled

many times to provide complete coverage - and the problem

remains of separating the true interactome from the false

positives.
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Figure 4
Comparison of the degree of completion of the yeast and human protein-
interaction networks. Neither (a) the yeast nor (b) the human protein-
interaction network is near completion as judged by the extent of assay
saturation for the studies indicated here, although the yeast network
shows higher saturation. With repeating assays on a finite set of
interactions, we expect the rate of discovery of new interactions (gray
line) to fall below 100% (black diagonal line) and asymptotically to
approach the false-positive discovery rate. If false-positive rates are
properly controlled, the rate of new interactions should level out,
indicating the complete network assayable by these methods. In yeast, the
most recent mass spectrometry study of Krogan et al. [28] (core set)
shows 66% new interactions, suggesting initial saturation. Human protein
interactions are under-sampled; the most recent study, Rual et al. [14],
assayed 95% new interactions.
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This last problem has made it clear that many alternative

approaches will be required to complete the network. Com-

paring results from different approaches will continue to be

crucial for validating interactions and estimating error rates,

as the biases of one technique are easily overcome by

integrating interactions from other methods. To this end, we

strongly encourage all participants in interactome mapping

to make public their raw data as well as their analyzed and

filtered high-confidence interactions, as weak signals

detected across multiple assays can be integrated to help

distinguish real from spurious interactions. To further this

discussion, many of the primary groups mapping the human

protein interaction network met last August at the Joint Cold

Spring Habor/Wellcome Trust Conference on Interactome

Networks in Hinxton, UK, to compare results and coordinate

efforts and announced plans to meet again next August. This

effort may yet coalesce into a collaborative consortium like

the human genome sequencing consortium, and an open

forum now exists as the mapping proceeds.

Additional data files
Additional data on the statistics used are available online as

Additional data file 1.

References
1. Bandyopadhyay S, Sharan R, Ideker T: Systematic identification

of functional orthologs based on protein network compari-
son. Genome Res 2006, 16:428-435.

2. Reguly T, Breitkreutz A, Boucher L, Breitkreutz BJ, Hon GC, Myers
CL, Parsons A, Friesen H, Oughtred R, Tong A, et al.: Comprehen-
sive curation and analysis of global interaction networks in
Saccharomyces cerevisiae. J Biol 2006, 5:11.

3. Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabasi AL: Global orga-
nization of metabolic fluxes in the bacterium Escherichia
coli. Nature 2004, 427:839-843.

4. Herrgard MJ, Lee BS, Portnoy V, Palsson BO: Integrated analysis
of regulatory and metabolic networks reveals novel regula-
tory mechanisms in Saccharomyces cerevisiae. Genome Res
2006, 16:627-635.

5. Kharchenko P, Church GM, Vitkup D: Expression dynamics of a
cellular metabolic network. Mol Syst Biol 2005, doi:10.1038/-
msb4100023.

6. Maciag K, Altschuler SJ, Slack MD, Krogan NJ, Emili A, Greenblatt JF,
Maniatis T, Wu LF: Systems-level analyses identify extensive
coupling among gene expression machines. Mol Syst Biol 2006,
doi:10.1038/msb4100045.

7. Guido NJ, Wang X, Adalsteinsson D, McMillen D, Hasty J, Cantor
CR, Elston TC, Collins JJ: A bottom-up approach to gene regu-
lation. Nature 2006, 439:856-860.

8. Jeong H, Mason SP, Barabasi AL, Oltvai ZN: Lethality and central-
ity in protein networks. Nature 2001, 411:41-42.

9. Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN,
Mohan SS, Sharma S, Pinkert S, Nagaraju S, Periaswamy B, et al.:
Analysis of the human protein interactome and comparison
with yeast, worm and fly interaction datasets. Nat Genet 2006,
38:285-293.

10. Coulomb S, Bauer M, Bernard D, Marsolier-Kergoat MC: Gene
essentiality and the topology of protein interaction net-
works. Proc Biol Sci 2005, 272:1721-1725.

11. Weber JL, Myers EW: Human whole-genome shotgun
sequencing. Genome Res 1997, 7:401-409.

12. Fields S, Song O: A novel genetic system to detect protein-
protein interactions. Nature 1989, 340:245-246.

13. Golemis EA, Brent R: Fused protein domains inhibit DNA
binding by LexA. Mol Cell Biol 1992, 12:3006-3014.

14. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N,
Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, et al.:
Towards a proteome-scale map of the human protein-
protein interaction network. Nature 2005, 437:1173-1178.

15. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H,
Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, et al.: A
human protein-protein interaction network: a resource for
annotating the proteome. Cell 2005, 122:957-968.

16. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A,
Schultz J, Rick JM, Michon AM, Cruciat CM, et al.: Functional orga-
nization of the yeast proteome by systematic analysis of
protein complexes. Nature 2002, 415:141-147.

17. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar
A, Taylor P, Bennett K, Boutilier K, et al.: Systematic identifica-
tion of protein complexes in Saccharomyces cerevisiae by
mass spectrometry. Nature 2002, 415:180-183.

18. Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V,
Starostine A, Richards D, Beattie B, Krogan N, et al.: Interaction
network containing conserved and essential protein com-
plexes in Escherichia coli. Nature 2005, 433:531-537.

19. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B: A
generic protein purification method for protein complex
characterization and proteome exploration. Nat Biotechnol
1999, 17:1030-1032.

20. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork
P: Comparative assessment of large-scale data sets of
protein-protein interactions. Nature 2002, 417:399-403.

21. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G,
Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, et al.: A
physical and functional map of the human TNF-alpha/NF-
kappa B signal transduction pathway. Nat Cell Biol 2004, 6:97-105.

22. Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, Chung S, Emili
A, Snyder M, Greenblatt JF, Gerstein M: A Bayesian networks
approach for predicting protein-protein interactions from
genomic data. Science 2003, 302:449-453.

23. Rhodes DR, Tomlins SA, Varambally S, Mahavisno V, Barrette T,
Kalyana-Sundaram S, Ghosh D, Pandey A, Chinnaiyan AM: Proba-
bilistic model of the human protein-protein interaction
network. Nat Biotechnol 2005, 23:951-959.

24. Lee I, Date SV, Adai AT, Marcotte EM: A probabilistic functional
network of yeast genes. Science 2004, 306:1555-1558.

25. Mellor JC, Yanai I, Clodfelter KH, Mintseris J, DeLisi C: Predic-
tome: a database of putative functional links between pro-
teins. Nucleic Acids Res 2002, 30:306-309.

26. Fraser AG, Marcotte EM: A probabilistic view of gene function.
Nat Genet 2004, 36:559-564.

27. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau
C, Jensen LJ, Bastuck S, Dumpelfeld B, et al.: Proteome survey
reveals modularity of the yeast cell machinery. Nature 2006,
440:631-636.

28. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J,
Pu S, Datta N, Tikuisis AP, et al.: Global landscape of protein
complexes in the yeast Saccharomyces cerevisiae. Nature 2006,
440:637-643.

29. Bader GD, Hogue CW: Analyzing yeast protein-protein inter-
action data obtained from different sources. Nat Biotechnol
2002, 20:991-997.

30. Seber GAF: The Estimation of Animal Abundance and Related Parame-
ters. 2nd edition. Caldwell, NJ: Blackburn Press; 1982.

31. Grigoriev A: On the number of protein-protein interactions
in the yeast proteome. Nucleic Acids Res 2003, 31:4157-4161.

32. D’haeseleer P, Church GM: Estimating and improving protein
interaction error rates. In Proc IEEE Comput Syst Bioinform Conf:
August 16-19 2004; California.Edited by IEEE Computer Society;
2004:216-223.

33. Guldener U, Munsterkotter M, Oesterheld M, Pagel P, Ruepp A,
Mewes HW, Stumpflen V: MPact: the MIPS protein interaction
resource on yeast. Nucleic Acids Res 2006, 34(Database
issue):D436-D441.

34. Goll J, Uetz P: The elusive yeast interactome. Genome Biol 2006,
7:223.

35. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lock-
shon D, Narayan V, Srinivasan M, Pochart P, et al.: A comprehen-
sive analysis of protein-protein interactions in
Saccharomyces cerevisiae. Nature 2000, 403:623-627.

120.8 Genome Biology 2006, Volume 7, Issue 11, Article 120 Hart et al. http://genomebiology.com/2006/7/11/120

Genome Biology 2006, 7:120



36. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y: A com-
prehensive two-hybrid analysis to explore the yeast protein
interactome. Proc Natl Acad Sci USA 2001, 98:4569-4574.

37. Sprinzak E, Sattath S, Margalit H: How reliable are experimental
protein-protein interaction data? J Mol Biol 2003, 327:919-923.

38. Tucker CL, Gera JF, Uetz P: Towards an understanding of
complex protein networks. Trends Cell Biol 2001, 11:102-106.

39. Legrain P, Wojcik J, Gauthier JM: Protein-protein interaction
maps: a lead towards cellular functions. Trends Genet 2001,
17:346-352.

40. Lehner B, Fraser AG: A first-draft human protein-interaction
map. Genome Biol 2004, 5:R63.

41. Bader JS, Chaudhuri A, Rothberg JM, Chant J: Gaining confidence
in high-throughput protein interaction networks. Nat Biotech-
nol 2004, 22:78-85.

42. Deane CM, Salwinski L, Xenarios I, Eisenberg D: Protein interac-
tions: two methods for assessment of the reliability of high
throughput observations. Mol Cell Proteomics 2002, 1:349-356.

43. Lee I, Narayanaswamy R, Marcotte EM: Bioinformatic prediction
of yeast gene function. In Yeast Gene Analysis. Edited by Stansfield
I, Stark M. Amsterdam: Elsevier Press; 2007. Preprint at
http://polaris.icmb.utexas.edu/publications.html.

44. Mrowka R, Patzak A, Herzel H: Is there a bias in proteome
research? Genome Res 2001, 11:1971-1973.

45. Patil A, Nakamura H: Filtering high-throughput protein-
protein interaction data using a combination of genomic
features. BMC Bioinformatics 2005, 6:100.

46. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL,
Ooi CE, Godwin B, Vitols E, et al.: A protein interaction map of
Drosophila melanogaster. Science 2003, 302:1727-1736.

47. Samanta MP, Liang S: Predicting protein functions from redun-
dancies in large-scale protein interaction networks. Proc Natl
Acad Sci USA 2003, 100:12579-12583.

48. Schlitt T, Palin K, Rung J, Dietmann S, Lappe M, Ukkonen E, Brazma
A: From gene networks to gene function. Genome Res 2003,
13:2568-2576.

49. Ramani AK, Bunescu RC, Mooney RJ, Marcotte EM: Consolidating
the set of known human protein-protein interactions in
preparation for large-scale mapping of the human interac-
tome. Genome Biol 2005, 6:R40.

50. Eppig JT, Bult CJ, Kadin JA, Richardson JE, Blake JA, Anagnostopoulos
A, Baldarelli RM, Baya M, Beal JS, Bello SM, et al.: The Mouse
Genome Database (MGD): from genes to mice-a commu-
nity resource for mouse biology. Nucleic Acids Res 2005,
33(Database issue):D471-D475.

51. Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K: Identifica-
tion of essential genes in cultured mammalian cells using
small interfering RNAs. J Cell Sci 2001, 114:4557-4565.

52. Kittler R, Putz G, Pelletier L, Poser I, Heninger AK, Drechsel D,
Fischer S, Konstantinova I, Habermann B, Grabner H, et al.: An
endoribonuclease-prepared siRNA screen in human cells
identifies genes essential for cell division. Nature 2004,
432:1036-1040.

53. Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins
N: Identification of 315 genes essential for early zebrafish
development. Proc Natl Acad Sci USA 2004, 101:12792-12797.

54. Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, Bala P,
Shivakumar K, Anuradha N, Reddy R, Raghavan TM, et al.: Human
protein reference database - 2006 update. Nucleic Acids Res
2006, 34(Database issue):D411-D414.

55. Alfarano C, Andrade CE, Anthony K, Bahroos N, Bajec M, Bantoft K,
Betel D, Bobechko B, Boutilier K, Burgess E, et al.: The Biomolec-
ular Interaction Network Database and related tools 2005
update. Nucleic Acids Res 2005, 33(Database issue):D418-D424.

56. Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de
Bono B, Jassal B, Gopinath GR, Wu GR, Matthews L, et al.: Reac-
tome: a knowledgebase of biological pathways. Nucleic Acids
Res 2005, 33(Database issue):D428-D432.

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

http://genomebiology.com/2006/7/11/120                                                         Genome Biology 2006, Volume 7, Issue 11, Article 120 Hart et al. 120.9

Genome Biology 2006, 7:120


