Supplemental Methods

Lee, Blom, *et al.*, Prioritizing candidate disease genes by network-based boosting of genomewide association data

Inferring gene functional association from human transcript expression data

Functional associations based on mRNA co-expression patterns across multiple microarray datasets were analyzed as in (Lee et al. 2008). A total of 166 microarray datasets (spanning several thousand individual microarrays) were assembled from the Stanford Microarray Database (Gollub et al. 2003) and Gene Expression Omnibus (Barrett et al. 2005) databases. Of these sets, 21 sets (**Table S2**), composed of 1,603 total microarrays, showed significant correlations between the degree of mRNA co-expression (measured as the Pearson correlation coefficient between expression vectors) and the degree of functional association (measured as the LLS for sharing GO annotations). We assigned 21 LLS to each human gene pair based on regression models between the LLS and correlation coefficients, as well as an additional LLS derived from a similar analysis of the concatenated set of all 1,603 arrays. The resulting 22 scores were integrated into a single overall LLS (HS-CX) for co-expression using the weighted sum method of (Lee et al. 2008).

Inferring gene functional associations from genomic context of orthologs

To discover functional associations based on genomic context, we compared the human protein sequences to 31 archeaebacterial and 393 eubacterial genomes using phylogenetic profiling (Pellegrini et al. 1999) (HS-PG) and the gene neighbor method of (Bowers et al. 2004) (HS-GN), analyzing them as in (Lee et al. 2008). A subset of 184 genomes, one selected from each unique genus, maximized performance of inferred linkages by the gene neighboring method, judged by recall-precision analysis; a set of 313 genomes, one from each unique species, maximized performance by the phylogenetic profiling method. For phylogenetic profiling, we observed improved performance by considering only human proteins with fewer than two domains annotated by the InterPro database (Hunter et al. 2009), as human proteins with greater numbers of domains tended to generate promiscuous functional associations in this approach. We assigned LLS for each human gene pair based on regression models with the genomic context scores from each method.

Inferring gene functional linkages based on protein domain co-occurrence patterns

The occurrence of similar patterns of protein domains is often a good indicator of similar protein function. We therefore analyzed InterPro domains for each protein as follows: We generated a matrix of human proteins versus InterPro domains with binary scores (1 for presence and 0 for absence) indicating domain occurrences. We observed improved performance, judged by recall-precision analysis, when weighting domains according to their frequency, as rare domains are stronger indicators of shared function. We therefore multiplied each domain co-occurrence by the inverse of its frequency in the genome. The associations between protein pairs were calculated from the mutual information of these domain profiles. To minimize spurious associations, we considered only gene pairs with BLASTP scores of E < 1e - 3. We assigned

LLS (HS-DC) for each human gene pair based on regression models with the mutual information scores.

Inferring functional associations from orthologs (associalogs)

Besides human data, we incorporated datasets from yeast, fly, and worm. Within each organism, we considered previously derived functional linkages, treating each line of evidence independently and benchmarking them in the same fashion as human datasets, but with the additional step of considering gene orthology. A total of 13 linkage sets were generated from three model organisms' functional gene networks, consisting of 7 sets of linkages from YeastNet (Lee et al. 2007) derived from mRNA co-expression (SC-CX), literature curated protein interactions (SC-LC), co-citation evidence (SC-CC), genetic interactions (SC-GT), mass spectrometry (SC-MS), predicted interactions from tertiary structure (SC-TS), and yeast twohybrid interactions (SC-YH); a set of fly PPIs derived from BIOGRID (Breitkreutz et al. 2008), IntAct (Kerrien et al. 2007), MINT (Chatr-aryamontri et al. 2007) (DM-PI); and 5 sets of functional linkages from WormNet (Lee et al. 2008) derived from mRNA co-expression (CE-CX), co-citation (CE-CC), yeast two-hybrid assays (CE-YH), genetic interactions (CE-GT), and literature curated protein interactions (CE-LC). The sets are summarized in Table S1. Orthologs were calculated between human and model organism genes using INPARANOID (Remm et al. 2001). Functional linkages were weighted by confidence in the orthology assignments using their INPARANOID scores, which range from 0 to 1, calculating an INPARANOID-weighted log likelihood score (IWLLS) as in (Lee et al. 2010), and fitting a regression model between the assigned IWLLS and the LLS for sharing human functional annotation.

Functional gene linkages from literature, mass spectrometry proteomics, and genome-wide Y2H screens

We incorporated human protein interactions curated from the literature by the databases HPRD Release 6 (Mishra et al. 2006), BIND (downloaded on May 2006) (Alfarano et al. 2005), BIOGRID version 2.0.24 (Breitkreutz et al. 2008), IntAct (downloaded on February 2007) (Kerrien et al. 2007), MINT (downloaded on January 2007) (Chatr-aryamontri et al. 2007), and Reactome version 20 (Vastrik et al. 2007), as well as those identified from literature by (Rual et al. 2005), in total forming the HS-LC dataset (**Table S1**).

We also inferred linkages from the approx. 6,000 reported protein interactions detected by affinity purification of human protein complexes followed by mass spectrometry (Ewing et al. 2007), and from yeast two-hybrid-based protein interactions reported in two independent studies. For each gene pair from these datasets (analyzing mass spectrometry and Y2H datasets independently), we calculated a confidence score as in (Hart et al. 2007), then fit a regression model between the confidence score and LLS for sharing functional annotation.

Functional linkages based on literature-mined protein interactions

In addition to literature curation, various large-scale text-mining algorithms have been used to retrieve protein-protein interactions (PPIs) from the scientific literature. We analyzed one such mined set of interactions generated by a Bayesian classifier-filtered co-citation analysis (Ramani

et al. 2005). Confidence scores were assigned to mined interactions using the hypergeometric probability approach of (Hart et al. 2007; Lee et al. 2007). We then calculated a LLS (HS-CC) for each gene pair based upon a regression model to the confidence scores.

REFERENCES

- Alfarano C, Andrade CE, Anthony K, Bahroos N, Bajec M, Bantoft K, Betel D, Bobechko B, Boutilier K, Burgess E et al. 2005. The Biomolecular Interaction Network Database and related tools 2005 update. *Nucleic Acids Res* **33**(Database issue): D418-424.
- Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X et al. 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. *Nature* **403**(6769): 503-511.
- Baird K, Davis S, Antonescu CR, Harper UL, Walker RL, Chen Y, Glatfelter AA, Duray PH, Meltzer PS. 2005. Gene expression profiling of human sarcomas: insights into sarcoma biology. *Cancer Res* 65(20): 9226-9235.
- Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau WC, Ledoux P, Rudnev D, Lash AE, Fujibuchi W, Edgar R. 2005. NCBI GEO: mining millions of expression profiles-database and tools. *Nucleic Acids Res* **33**(Database issue): D562-566.
- Bowers PM, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D. 2004. Prolinks: a database of protein functional linkages derived from coevolution. *Genome Biol* **5**(5): R35.
- Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, Recht LD, Sikic BI. 2005. High-resolution genome-wide mapping of genetic alterations in human glial brain tumors. *Cancer Res* **65**(10): 4088-4096.
- Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M, Oughtred R, Lackner DH, Bahler J, Wood V et al. 2008. The BioGRID Interaction Database: 2008 update. *Nucleic Acids Res* **36**(Database issue): D637-640.
- Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R, Dohner H, Pollack JR. 2004. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 350(16): 1605-1616.
- Cario G, Stanulla M, Fine BM, Teuffel O, Neuhoff NV, Schrauder A, Flohr T, Schafer BW, Bartram CR, Welte K et al. 2005. Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. *Blood* **105**(2): 821-826.
- Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G. 2007. MINT: the Molecular INTeraction database. *Nucleic Acids Res* **35**(Database issue): D572-574.
- Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, Lai KM, Ji J, Dudoit S, Ng IO et al. 2002. Gene expression patterns in human liver cancers. *Mol Biol Cell* **13**(6): 1929-1939.
- Diehn M, Alizadeh AA, Rando OJ, Liu CL, Stankunas K, Botstein D, Crabtree GR, Brown PO. 2002. Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. *Proc Natl Acad Sci U S A* **99**(18): 11796-11801.
- Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M et al. 2007. Large-scale mapping of human protein-protein interactions by mass spectrometry. *Mol Syst Biol* **3**: 89.

- Gilks CB, Vanderhyden BC, Zhu S, van de Rijn M, Longacre TA. 2005. Distinction between serous tumors of low malignant potential and serous carcinomas based on global mRNA expression profiling. *Gynecol Oncol* **96**(3): 684-694.
- Gollub J, Ball CA, Binkley G, Demeter J, Finkelstein DB, Hebert JM, Hernandez-Boussard T, Jin H, Kaloper M, Matese JC et al. 2003. The Stanford Microarray Database: data access and quality assessment tools. *Nucleic Acids Res* **31**(1): 94-96.
- Hart GT, Lee I, Marcotte ER. 2007. A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. *BMC Bioinformatics* **8**: 236.
- Heuser M, Wingen LU, Steinemann D, Cario G, von Neuhoff N, Tauscher M, Bullinger L, Krauter J, Heil G, Dohner H et al. 2005. Gene-expression profiles and their association with drug resistance in adult acute myeloid leukemia. *Haematologica* **90**(11): 1484-1492.
- Higgins JP, Wang L, Kambham N, Montgomery K, Mason V, Vogelmann SU, Lemley KV, Brown PO, Brooks JD, van de Rijn M. 2004. Gene expression in the normal adult human kidney assessed by complementary DNA microarray. *Mol Biol Cell* 15(2): 649-656.
- Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L et al. 2009. InterPro: the integrative protein signature database. *Nucleic Acids Res* **37**(Database issue): D211-215.
- Iacobuzio-Donahue CA, Maitra A, Olsen M, Lowe AW, van Heek NT, Rosty C, Walter K, Sato N, Parker A, Ashfaq R et al. 2003. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. *Am J Pathol* **162**(4): 1151-1162.
- Kampmann B, Hemingway C, Stephens A, Davidson R, Goodsall A, Anderson S, Nicol M, Scholvinck E, Relman D, Waddell S et al. 2005. Acquired predisposition to mycobacterial disease due to autoantibodies to IFN-gamma. J Clin Invest 115(9): 2480-2488.
- Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R et al. 2007. IntAct-open source resource for molecular interaction data. *Nucleic Acids Res* 35(Database issue): D561-565.
- Lee I, Ambaru B, Thakkar P, Marcotte EM, Rhee SY. 2010. Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. *Nat Biotechnol* **28**(2): 149-156.
- Lee I, Lehner B, Crombie C, Wong W, Fraser AG, Marcotte EM. 2008. A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. *Nat Genet* **40**(2): 181-188.
- Lee I, Li Z, Marcotte EM. 2007. An Improved, Bias-Reduced Probabilistic Functional Gene Network of Baker's Yeast, Saccharomyces cerevisiae. *PLoS ONE* **2**(10): e988.
- Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, Bala P, Shivakumar K, Anuradha N, Reddy R, Raghavan TM et al. 2006. Human protein reference database--2006 update. *Nucleic Acids Res* **34**(Database issue): D411-414.
- Nielsen TO, West RB, Linn SC, Alter O, Knowling MA, O'Connell JX, Zhu S, Fero M, Sherlock G, Pollack JR et al. 2002. Molecular characterisation of soft tissue tumours: a gene expression study. *Lancet* 359(9314): 1301-1307.
- Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. 1999. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. *Proc Natl Acad Sci U S A* **96**(8): 4285-4288.

- Ramani AK, Bunescu RC, Mooney RJ, Marcotte EM. 2005. Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. *Genome Biol* **6**(5): R40.
- Remm M, Storm CE, Sonnhammer EL. 2001. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. *J Mol Biol* **314**(5): 1041-1052.
- Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N et al. 2005. Towards a proteome-scale map of the human protein-protein interaction network. *Nature* 437(7062): 1173-1178.
- Schaner ME, Davidson B, Skrede M, Reich R, Florenes VA, Risberg B, Berner A, Goldberg I, Givant-Horwitz V, Trope CG et al. 2005. Variation in gene expression patterns in effusions and primary tumors from serous ovarian cancer patients. *Mol Cancer* **4**: 26.
- Shyamsundar R, Kim YH, Higgins JP, Montgomery K, Jorden M, Sethuraman A, van de Rijn M, Botstein D, Brown PO, Pollack JR. 2005. A DNA microarray survey of gene expression in normal human tissues. *Genome Biol* **6**(3): R22.
- Skotheim RI, Lind GE, Monni O, Nesland JM, Abeler VM, Fossa SD, Duale N, Brunborg G, Kallioniemi O, Andrews PW et al. 2005. Differentiation of human embryonal carcinomas in vitro and in vivo reveals expression profiles relevant to normal development. *Cancer Res* **65**(13): 5588-5598.
- Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S et al. 2003. Repeated observation of breast tumor subtypes in independent gene expression data sets. *Proc Natl Acad Sci U S A* **100**(14): 8418-8423.
- Subramanian S, West RB, Corless CL, Ou W, Rubin BP, Chu KM, Leung SY, Yuen ST, Zhu S, Hernandez-Boussard T et al. 2004. Gastrointestinal stromal tumors (GISTs) with KIT and PDGFRA mutations have distinct gene expression profiles. *Oncogene* **23**(47): 7780-7790.
- Subramanian S, West RB, Marinelli RJ, Nielsen TO, Rubin BP, Goldblum JR, Patel RM, Zhu S, Montgomery K, Ng TL et al. 2005. The gene expression profile of extraskeletal myxoid chondrosarcoma. *J Pathol* **206**(4): 433-444.
- Vastrik I, D'Eustachio P, Schmidt E, Gopinath G, Croft D, de Bono B, Gillespie M, Jassal B, Lewis S, Matthews L et al. 2007. Reactome: a knowledge base of biologic pathways and processes. *Genome Biol* **8**(3): R39.
- Zhao H, Langerod A, Ji Y, Nowels KW, Nesland JM, Tibshirani R, Bukholm IK, Karesen R, Botstein D, Borresen-Dale AL et al. 2004. Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. *Mol Biol Cell* **15**(6): 2523-2536.
- Zhao H, Ljungberg B, Grankvist K, Rasmuson T, Tibshirani R, Brooks JD. 2006. Gene expression profiling predicts survival in conventional renal cell carcinoma. *PLoS Med* 3(1): e13.

Supplemental Figure 1. Predictive power does not depend upon the number of genes associated with the phenotype, plotted for binned mouse phenotypes predicted by the Iterative Ranking method.

Supplemental Figure 2. While Gaussian smoothing performs better overall for associating genes with diseases, as measured by the area under a ROC curve (**Figures 2C,D**), it does not rank the withheld candidate genes as highly as *naïve* Bayes GBA for well-predicted diseases. Instead, we observe *naïve* Bayes GBA to outperform Gaussian smoothing for extremely high precision association of genes with diseases, measured as the median cross-validated rank of each withheld test gene, and evaluated in turn for each OMIM disease.

Data	Description	# genes	# gene
set			pairs
CE-CC	Co-citation of worm genes	1,370	12,928
CE-CX	Co-expression among worm genes	2,633	41,645
CE-GT	Worm genetic interactions	1,040	5,430
CE-LC	Literature-curated worm protein physical interactions	1,402	2,640
CE-YH	High-throughput yeast 2-hybrid assays among worm genes	1,561	3,254
DM-PI	Fly protein physical interactions	4,153	15,738
HS-CC	Co-citation of human genes	3,423	6,172
HS-CX	Co-expression among human genes	11,050	156,317
HS-DC	Co-occurrence of domains among human proteins	8,737	38,797
HS-GN	Gene neighborhoods of bacterial and archaeal orthologs of human genes	3,504	36,487
HS-LC	Literature-curated linkages from protein-protein interaction DBs (HPRD, BIND, BioGRID, IntAct, MINT) and Rual <i>et al.</i> , and pathway DB (Reactome)	8,783	56,505
HS-MS	Human protein complexes from affinity purification/mass spectrometry	1,485	3,575
HS-PG	Co-inheritance of bacterial and archaeal orthologs of human genes	1,170	18,868
HS-YH	High-throughput yeast 2-hybrid assays among human genes	1,358	1,365
SC-CC	Co-citation of yeast genes	2,798	31,353
SC-CX	Co-expression among yeast genes	2,001	48,423
SC-GT	Yeast genetic interactions	2,584	17,678
SC-LC	Literature-curated yeast protein physical interactions	2,661	17,280
SC-MS	Yeast protein complexes from affinity purification/mass spectrometry	2,382	65,986
SC-TS	Yeast protein interactions inferred from tertiary structures of complexes	859	6,270
SC-YH	High-throughput yeast 2-hybrid assays among yeast genes	1,292	1,801

Table S1. Twenty-one different lines of evidence supporting HumanNet linkages.

Expression data set	Database	# experiments
Alizadeh A. A. et al. (Alizadeh et al. 2000)	SMD	133
Baird K. et al. (Baird et al. 2005)	GEO	181
Bredel M. et al. (Bredel et al. 2005)	SMD	54
Bullinger L. et al. (Bullinger et al. 2004)	SMD	119
Cario G. et al. (Cario et al. 2005)	SMD	51
Chen X. et al. (Chen et al. 2002)	SMD	207
Diehn M. et al. (Diehn et al. 2002)	SMD	68
Gilks C. B. et al. (Gilks et al. 2005)	SMD	23
Heuser M. et al. (Heuser et al. 2005)	SMD	35
Higgins J. P. et al. (Higgins et al. 2004)	SMD	34
Iacobuzio-Donahue C. A. et al. (Iacobuzio-Donahue et al. 2003)	SMD	36
Kampmann B. et al. (Kampmann et al. 2005)	SMD	16
Nielsen T. O. et al. (Nielsen et al. 2002)	SMD	46
Schaner M. E. et al. (Schaner et al. 2005)	SMD	46
Shyamsundar R. et al. (Shyamsundar et al. 2005)	SMD	123
Skotheim R. I. et al. (Skotheim et al. 2005)	GEO	30
Sorlie T. et al. (Sorlie et al. 2003)	SMD	167
Subramanian S. et al. (2004) (Subramanian et al. 2004)	SMD	26
Subramanian S. et al. (2005) (Subramanian et al. 2005)	SMD	36
Zhao H. et al. (2004) (Zhao et al. 2004)	SMD	64
Zhao H. et al. (2006) (Zhao et al. 2006)	SMD	177

Table S2. Experimental microarray datasets used to derived co-expression linkages

SMD, Stanford Microarray Database; GEO, Gene Expression Omnibus

New	Old				New	Boost	
rank	rank	Name	Entrez	BF	BF	weight	Major SNP
1	1	NOD2	64127	12.00	12.00	1.00	rs2076756
2	2	ATG16L1	55054	11.11	11.46	1.00	rs10210302
3	3	IL23R	149233	10.07	10.57	1.00	rs11805303
4	4	CYLD	1540	6.26	6.55	0.98	rs7342715
5	6	PTPN2	5771	5.42	5.92	0.95	rs2542151
6	5	NKX2-3	159296	5.91	5.91	0.97	rs10883365
7	17	STAT3	6774	3.15	4.85	0.62	rs744166
8	7	ZNF300	91975	4.77	4.77	0.91	rs3900064
9	9	BSN	8927	4.24	4.55	0.85	rs9858542
10	8	SLC22A5	6584	4.44	4.44	0.88	rs274547
11	10	APEH	327	4.24	4.38	0.85	rs9858542
12	99	GRB2	2885	2.01	4.14	0.15	rs16967789
13	21	DAG1	1605	3.02	4.03	0.58	rs1801143
14	15	TCTA	6988	3.16	4.01	0.62	rs9814873
15	11	HLA-DQA2	3118	3.69	3.69	0.76	rs9276429
16	18	CAPN9	10753	3.11	3.69	0.61	rs16852515
17	27	CDK14	5218	2.96	3.59	0.56	rs879428
18	12	CDKAL1	54901	3.55	3.55	0.73	rs6908425
19	13	RSPH6A	81492	3.48	3.48	0.71	rs8111071
20	32	MST1	4485	2.81	3.36	0.50	rs4855881
21	23	CCNY	219771	3.00	3.29	0.57	rs3936503
22	37	USP4	7375	2.72	3.28	0.47	rs4410472
23	45	TRAIP	10293	2.63	3.28	0.43	rs2352974
24	24	FAF1	11124	3.00	3.20	0.57	rs11205760
25	16	AMT	275	3.16	3.18	0.62	rs9814873
26	14	NICN1	84276	3.16	3.16	0.62	rs9814873
27	19	LYRM4	57128	3.10	3.10	0.61	rs12529198
28	65	ERC2	26059	2.30	3.10	0.29	rs9855289
29	125	PPM1K	152926	1.84	3.08	0.07	rs11733577
30	46	APP	351	2.62	3.08	0.43	rs2234988
31	20	IL12RB2	3595	3.03	3.03	0.58	rs3790567
32	22	NFATC2	4773	3.00	3.00	0.57	rs880324
33	25	ZGPAT	84619	2.99	2.99	0.57	rs2738758
34	26	ZFHX4	79776	2.98	2.98	0.56	rs10957818
35	42	CREM	1390	2.64	2.97	0.44	rs2505639
36	29	USP7	7874	2.90	2.95	0.54	rs2126999
37	47	BATF	10538	2.60	2.94	0.42	rs7161377
38	28	GCKR	2646	2.92	2.92	0.54	rs780094
39	44	CAMKV	79012	2.63	2.91	0.43	rs2352974
40	41	C13orf31	144811	2.67	2.89	0.45	rs3764147
41	36	SP140	11262	2.72	2.88	0.47	rs6743984
42	30	C1orf106	55765	2.87	2.87	0.53	rs7522462
43	38	SLC22A23	63027	2.71	2.87	0.47	rs17309827
44	31	PGM1	5236	2.84	2.86	0.51	rs2269252
45	33	SBNO2	22904	2.80	2.80	0.50	rs4807569

Table S3. Prioritization of genes for Crohn's disease using the network-assisted GWAS strategy, listing top-ranked 150 genes.

46	34	MDGA1	266727	2.76	2.76	0.49	rs9366943
47	35	CUL2	8453	2.73	2.73	0.47	rs17582416
48	39	TRIM15	89870	2.68	2.68	0.46	rs2517646
49	40	TRIM10	10107	2.68	2.68	0.46	rs2517646
50	57	TNFSF15	9966	2.37	2.64	0.32	rs4263839
51	43	BSG	682	2.63	2.63	0.43	rs2283573
52	48	KIFAP3	22920	2.57	2.60	0.41	rs1928887
53	73	TNFRSF6B	8771	2.22	2.57	0.25	rs2297441
54	49	DGKD	8527	2.54	2.54	0.40	rs11892545
55	106	RBMS3	27303	1.98	2.54	0.14	rs9821929
56	50	RAB3C	115827	2.51	2.51	0.38	rs2279980
57	127	NSF	4905	1.83	2.50	0.06	rs199449
58	51	TNRC6C	57690	2.47	2.49	0.37	rs4789012
59	52	SLC22A4	6583	2.47	2.47	0.37	rs3792884
60	53	ALPK2	115701	2.47	2.47	0.37	rs2003157
61	54	KIF21B	23046	2.43	2.45	0.35	rs12122721
62	327	TRAF1	7185	1.25	2.44	0.00	rs6478488
63	6125	SHC1	6464	-0.05	2.43	0.00	rs16836583
64	181	KIF23	9493	1.60	2.40	0.00	rs8030051
65	85	MAPT	4137	2.12	2.40	0.21	rs1864325
66	116	MAGI2	9863	1.89	2.39	0.10	rs10251915
67	55	CCI 18	6362	2.39	2.39	0.33	rs2015070
68	169	CAMK1D	57118	1.66	2.39	0.00	rs11258009
69	56	ACSL6	23305	2.37	2.37	0.32	rs7714191
70	69	CLK3	1198	2.28	2.36	0.28	rs4073149
71	58	VWF	7450	2.35	2.35	0.31	rs12319392
72	59	SERINC5	256987	2.35	2.35	0.31	rs2289290
73	60	TNKS	8658	2.33	2.33	0.31	rs4240626
74	61	POU2F1	5451	2.33	2.33	0.31	rs12742052
75	62	IP6K1	9807	2.32	2.32	0.30	rs3749237
76	63	ZNF221	7638	2.32	2.32	0.30	rs413061
77	64	ARFRP1	10139	2.32	2.32	0.30	rs6011040
78	80	DQX1	165545	2.13	2.31	0.21	rs6546909
79	76	KCNK1	3775	2.17	2.30	0.23	rs701228
80	66	AMIGO3	386724	2.29	2.29	0.29	rs2291542
81	67	RNF123	63891	2.29	2.29	0.29	rs2291542
82	68	GMPPB	29925	2.29	2.29	0.29	rs2291542
83	347	CREBBP	1387	1.22	2.29	0.00	rs130021
84	118	PPP2R2B	5521	1.89	2 27	0.09	rs715891
85	70	DSCAM	1826	2.26	2.26	0.27	rs16999671
86	126	KCNAB1	7881	1.83	2.25	0.06	rs4680276
87	71	1 YZI 2	119180	2 22	2 22	0.26	rs2814637
88	72	RTFL1	51750	2 22	2 22	0.25	rs2297441
89	3139	JAK2	3717	0.12	2 21	0.00	rs10491652
90	74	II 1E10	84639	2 20	2.21	0.00	rs4849148
91	78	STX8	9482	2.13	2.20	0.21	rs9895062
92	75	CACNA1S	779	2 18	2.10	0.24	rs11583328
93	77	DPP6	1804	2 16	2 16	0.24 0.23	rs877471
94	112	N4BP1	9683	1.92	2 16	0.11	rs6500394
95	267	YWHAF	7531	1 35	2.16	0.00	rs16945811
00	201		1001	1.00	2.10	0.00	10100-0011

96	79	SEC16A	9919	2.13	2.13	0.21	rs11145756
97	81	TLX2	3196	2.13	2.13	0.21	rs6546909
98	82	AUP1	550	2.13	2.13	0.21	rs6546909
99	83	LRRC7	57554	2.13	2.13	0.21	rs12035355
100	111	DOK1	1796	1.92	2.13	0.11	rs11126435
101	84	OR11A1	26531	2.12	2.12	0.21	rs2107193
102	86	C2orf65	130951	2.10	2.10	0.20	rs363691
103	87	ARID3B	10620	2.10	2.10	0.20	rs7497036
104	88	CDH8	1006	2.08	2.08	0.19	rs4438299
105	89	PHACTR3	116154	2.07	2.07	0.18	rs6027005
106	108	PRKG1	5592	1.96	2.06	0.13	rs11000404
107	182	OPCML	4978	1.60	2.06	0.00	rs1784520
108	11633	SRC	6714	-0.67	2.05	0.00	rs3940202
109	386	DCTN1	1639	1.15	2.04	0.00	rs9309484
110	90	PROM1	8842	2.04	2.04	0.17	rs16892888
111	621	FOS	2353	0.93	2.04	0.00	rs1569328
112	91	ZNF225	7768	2.03	2.03	0.17	rs2068061
113	92	ZNF224	7767	2.03	2.03	0.17	rs2068061
114	93	CRHR1	1394	2.03	2.03	0.16	rs8072451
115	94	ELMO1	9844	2.03	2.03	0.16	rs2723980
116	214	GSN	2934	1.49	2.02	0.00	rs10985207
117	95	KIAA1267	284058	2.02	2.02	0.16	rs11079729
118	96	LDLRAD3	143458	2.02	2.02	0.16	rs973942
119	97	CALCB	797	2.01	2.01	0.15	rs16924840
120	98	USP1	7398	2.01	2.01	0.15	rs626787
121	100	WNT3	7473	2.00	2.00	0.15	rs199530
122	203	NCOA1	8648	1.53	1.99	0.00	rs17791703
123	101	C9orf163	158055	1.99	1.99	0.15	rs4379550
124	228	COL4A2	1284	1.45	1.99	0.00	rs4773156
125	102	MRPL53	116540	1.99	1.99	0.14	rs1063588
126	103	INO80B	83444	1.99	1.99	0.14	rs1063588
127	104	WBP1	23559	1.99	1.99	0.14	rs1063588
128	105	MOGS	7841	1.99	1.99	0.14	rs1063588
129	199	EBF1	1879	1.54	1.98	0.00	rs6556379
130	119	CRIP1	1396	1.86	1.98	0.08	rs4983425
131	107	NALCN	259232	1.97	1.97	0.13	rs1333758
132	140	TTC38	55020	1.79	1.94	0.04	rs6007761
133	109	FNDC5	252995	1.93	1.93	0.12	rs16835198
134	110	S100PBP	64766	1.93	1.93	0.12	rs16835198
135	1325	JAK1	3716	0.54	1.91	0.00	rs17127024
136	334	IL12B	3593	1.24	1.91	0.00	rs2853696
137	113	МҮНЗ	4621	1.90	1.90	0.10	rs2239930
138	114	TNS4	84951	1.90	1.90	0.10	rs8078319
139	115	CLSTN2	64084	1.90	1.90	0.10	rs1426036
140	222	GRAP2	9402	1.46	1.89	0.00	rs137954
141	117	NKD1	85407	1.89	1.89	0.09	rs8047222
142	290	ANK2	287	1.29	1.87	0.00	rs17045918
143	628	CREB5	9586	0.93	1.86	0.00	rs4722842
144	120	USP3	9960	1.86	1.86	0.08	rs8023466
145	121	ATP8B1	5205	1.85	1.85	0.08	rs319449

146	122	PLD5	200150	1.85	1.85	0.08	rs12135329
147	155	TK1	7083	1.69	1.85	0.00	rs1811086
148	123	IP6K2	51447	1.85	1.85	0.07	rs11708786
149	124	FRMD4A	55691	1.84	1.84	0.07	rs2797887
150	301	CRX	1406	1.28	1.84	0.00	rs10405809

New	Old		U			New	Boost	
rank	rank	Name		Entrez	BF	BF	weight	Major SNP
1	1	TCF7L2		6934	10.14	10.14	1.00	rs4506565
2	2	CDKAL1		54901	4.15	4.15	0.84	rs9465871
3	3	TSPAN8		7103	4.01	4.01	0.82	rs1495377
4	5	THBS2		7058	3.81	4.00	0.78	rs10806665
5	4	RBMS1		5937	3.86	3.86	0.79	rs6718526
6	6	PDE4B		5142	3.81	3.81	0.78	rs4655595
7	7	KCNJ6		3763	3.42	3.42	0.70	rs6517434
8	8	CCDC33		80125	3.30	3.30	0.66	rs2930291
9	9	ZNF239		8187	3.27	3.27	0.66	rs9326506
10	10	ANO2		57101	3.26	3.26	0.65	rs387896
11	11	ZFAND6		54469	3.24	3.24	0.65	rs2903265
12	12	NHEDC2		133308	3.17	3.17	0.63	rs1481279
13	13	PARD3B		117583	3.06	3.16	0.59	rs17248501
14	14	EBF3		253738	3.03	3.03	0.58	rs12776159
15	15	CPB1		1360	2.90	2.90	0.54	rs16861027
16	26	ISLR		3671	2.50	2.89	0.38	rs2899824
17	16	GULP1		51454	2.87	2.87	0.53	rs11688935
18	17	BEND3		57673	2.83	2.83	0.51	rs1665901
19	44	KIF23		9493	2 11	2 69	0.20	rs1504626
20	22	GTSE1		51512	2.56	2 62	0.41	rs10854854
21	18	AGBL4		84871	2.62	2 62	0.43	rs12086219
22	19	BEND5		79656	2.62	2.62	0.43	rs12086219
23	200	BACH2		60468	1.32	2 61	0.00	rs16882569
24	200	GBE1		8729	2.57	2.57	0.00	rs17780667
25	42	FAM49A		81553	2 13	2.57	0.21	rs11679606
26	21	TTC38		55020	2.56	2.56	0.41	rs10854854
20	23	HRH1		3269	2.56	2.56	0.11	rs440646
28	24	CEP110		11064	2.56	2.56	0.11	rs2057466
20	30	ANKS1A		23294	2.00	2.00	0.40	rs1996913
30	25	STRA6		64220	2.00	2.50	0.02	rs2899824
31	28	PRKG1		5592	2.00	2.00	0.00	rs11000542
32	20	DUSP16		80824	2.41	2.44	0.04	rs16908188
33	34	XVIR		9942	2.44	2.44	0.00	rs818838
34	33	ANKS1R		56899	2.20	2.42	0.27	rs11109882
35	20			00000	2.20	2.40	0.27	re/600815
36	20	ATG7		10533	2.40	2.40	0.04	re3/6078
37	31	DTDDT		11122	2.10	2.30	0.23	re7262/11/
30	30	GALNT10		55568	2.00	2.04	0.20	rc/058711
30	35	CALCE		707	2.20	2.20	0.20	rc16024840
40	36	CREBS		0586	2.23	2.23	0.20	rc10425018
40	50	MELK		9200	2.22	2.22	0.20	rc/512/60
41	51	MACI2		9033	2.02	2.22	0.10	rc12520799
42	00 70			9003 1404	1.90	2.22	0.10	1512009100
43	37 20			00000	2.17	2.17	0.23	150004342
44	38			00333	2.10	2.10	0.23	151/00/401
45	40			203008	2.16	2.16	0.22	1512013/83
40	41	PLXNA4		91584	Z.15	Z.15	0.22	1510273901

Table S4. Prioritization of genes for type II diabetes using the network-assisted GWAS strategy, listing top-ranked 150 genes.

47	270	PARD6G	84552	1.19	2.14	0.00	rs12201
48	43	PAQR5	54852	2.11	2.11	0.20	rs1504626
49	45	ANK3	288	2.11	2.11	0.20	rs10821700
50	46	CHST3	9469	2.11	2.11	0.20	rs731027
51	47	FARS2	10667	2.09	2.09	0.19	rs9502305
52	48	TLR5	7100	2.08	2.08	0.19	rs1341987
53	49	TRMU	55687	2.08	2.08	0.19	rs6008700
54	79	ALK	238	1.83	2.05	0.06	rs6754787
55	50	SEPT4	5414	2.05	2.05	0.17	rs8182262
56	191	CDC42	998	1.33	2.05	0.00	rs2056975
57	66	DYNC1H1	1778	1.90	2.02	0.10	rs1741153
58	52	MTHFD1L	25902	2.02	2.02	0.16	rs12201472
59	53	GALNT13	114805	2.02	2.02	0.16	rs12995536
60	54	GRIK1	2897	2.01	2.01	0.15	rs2154490
61	55	MCC	4163	2.01	2.01	0.15	rs10043783
62	56	LOH12CR1	118426	2.00	2.00	0.15	rs3751262
63	57	JAZF1	221895	1.99	1.99	0.14	rs864745
64	60	CHUK	1147	1.93	1.98	0.11	rs11597086
65	58	SOCS6	9306	1.97	1.97	0.13	rs713129
66	59	FHIT	2272	1.94	1.94	0.12	rs9874888
67	74	SORCS2	57537	1.86	1.94	0.08	rs3936616
68	61	BLNK	29760	1.92	1.92	0.11	rs4917723
69	62	ZKSCAN2	342357	1.92	1.92	0.11	rs17625090
70	63	PQLC1	80148	1.91	1.91	0.10	rs11081573
71	64	SMAP1	60682	1.90	1.90	0.10	rs2347624
72	67	PAX5	5079	1.90	1.90	0.10	rs2297109
73	68	GBP5	115362	1.89	1.89	0.09	rs2209307
74	69	TAF11	6882	1.89	1.89	0.09	rs3734262
75	108	XKR6	286046	1.67	1.88	0.00	rs9657544
76	70	FSTL4	23105	1.88	1.88	0.09	rs17166592
77	292	EBF1	1879	1.16	1.87	0.00	rs10066782
78	71	RBL2	5934	1.87	1.87	0.08	rs8043918
79	72	FRMD6	122786	1.87	1.87	0.08	rs11847326
80	73	EFCAB11	90141	1.87	1.87	0.08	rs7158821
81	75	MYOM2	9172	1.85	1.85	0.08	rs1542065
82	76	МҮОЗВ	140469	1.85	1.85	0.07	rs2113650
83	77	ENOX1	55068	1.85	1.85	0.07	rs9567136
84	78	FLVCR2	55640	1.85	1.85	0.07	rs8011085
85	118	COPG	22820	1.62	1.84	0.00	rs10934876
86	100	ZNF532	55205	1.72	1.84	0.01	rs6567036
87	80	ASXL2	55252	1.83	1.83	0.06	rs17680828
88	81	ZPLD1	131368	1.82	1.82	0.06	rs16845038
89	82	CRTAC1	55118	1.82	1.82	0.06	rs505699
90	83	ACCN1	40	1.82	1.82	0.06	rs317326
91	84	SLC12A3	6559	1.81	1.81	0.06	rs11640308
92	95	DYRK1A	1859	1.77	1.81	0.04	rs2835735
93	85	GPR133	283383	1.81	1.81	0.06	rs1195747
94	86	KCNAB1	7881	1.81	1.81	0.06	rs13097501
95	87	CX3CR1	1524	1.80	1.80	0.05	rs17038645
96	88	ATXN1	6310	1.80	1.80	0.05	rs1144700

97	89	TBX15	6913	1.80	1.80	0.05	rs12143789
98	90	DCAKD	79877	1.80	1.80	0.05	rs8078303
99	218	CREM	1390	1.28	1.79	0.00	rs2505639
100	91	ARHGEF12	23365	1.79	1.79	0.05	rs11217854
101	92	SV2C	22987	1.79	1.79	0.04	rs6896716
102	996	PRKACB	5567	0.59	1.79	0.00	rs11163905
103	93	SAMD4A	23034	1.77	1.77	0.04	rs709939
104	94	SMYD3	64754	1.77	1.77	0.04	rs2817506
105	140	FOSL1	8061	1.53	1.76	0.00	rs694994
106	96	FRMD4A	55691	1.75	1.75	0.02	rs6602681
107	103	MDGA2	161357	1.70	1.74	0.00	rs17118171
108	97	EIF3F	8665	1.73	1.73	0.02	rs4758263
109	101	HIP1	3092	1.70	1.73	0.00	rs237238
110	98	CCL18	6362	1.73	1.73	0.01	rs2015070
111	99	KIAA0649	9858	1.72	1.72	0.01	rs12238018
112	192	LCPCAT1	79888	1.33	1.70	0.00	rs16878933
113	102	UBE2D3	7323	1.70	1.70	0.00	rs223413
114	114	EXOC4	60412	1.64	1.69	0.00	rs6963221
115	104	SCN11A	11280	1.68	1.68	0.00	rs4676588
116	3099	CTNNB1	1499	0.08	1 68	0.00	rs13072632
117	105	TADA2A	6871	1.67	1.67	0.00	rs2158239
118	106	PTPLA	9200	1 67	1 67	0.00	rs17141401
119	125	FEZ1	9638	1.59	1.67	0.00	rs614910
120	107	NTNG1	22854	1 67	1 67	0.00	rs17018944
121	136	MAP3K11	4296	1.55	1.66	0.00	rs11227234
122	109	VAV3	10451	1.66	1.66	0.00	rs2494069
123	115	PDF6A	5145	1 63	1 65	0.00	rs152949
124	110	ADAMTS3	9508	1.65	1.65	0.00	rs13112404
125	111	LRRTM3	347731	1.64	1.64	0.00	rs7082306
126	112	CTNNA3	29119	1 64	1 64	0.00	rs7082306
127	113	DIRC1	116093	1 64	1 64	0.00	rs781241
128	116	TMPRSS11A	339967	1.63	1.63	0.00	rs17578509
129	117	C3orf37	56941	1 62	1 62	0.00	rs10934876
130	119	KIAA1328	57536	1.62	1.62	0.00	rs2046471
131	120	FHOD3	80206	1.62	1.62	0.00	rs507163
132	7618	NIK	51701	-0.09	1.61	0.00	rs11871640
133	121	USP25	29761	1 61	1 61	0.00	rs2026853
134	122	NHEDC1	150159	1 61	1.61	0.00	rs7698608
135	232	GBE1	2632	1.01	1.61	0.00	rs3772891
136	123	I BH	81606	1.20	1.60	0.00	rs4564821
137	171	SKIV212	23517	1 40	1.60	0.00	rs7730157
138	124	CELSR1	9620	1.40	1.60	0.00	rs6008770
130	124		22850	1.00	1.00	0.00	rs11660007
140	158		50507	1.00	1.50	0.00	rs11018620
1/1	100		28/217	1.47	1.55	0.00	re052/28
1/2	127	MDDC22	560/5	1.55	1.55	0.00	rs1586861
1/2	120	CCDC85R	11007	1.53	1.59	0.00	rs604004
1//	1/6		517/1	1.55	1.50	0.00	rc2055071
144	140		102/2	1.51	1.50	0.00	re81/2066
140	120		110660	1.50	1.50	0.00	ro10007100
140	130	טועסוס	110003	1.57	1.57	0.00	131000/122

147	143	ZNF804A	91752	1.53	1.57	0.00	rs6726421
148	159	SEMA3C	10512	1.46	1.57	0.00	rs6979288
149	131	ZFYVE28	57732	1.57	1.57	0.00	rs3118617
150	132	VGLL4	9686	1.56	1.56	0.00	rs6766610