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Abstract 
Polyethylene terephthalate (PET)-hydrolyzing enzymes (PETases) are a recently discovered enzyme class capable of plastic degradation. 
PETases are commonly identified in bacteria; however, pipelines for discovery are often biased to recover highly similar enzymes. 
Here, we searched metagenomic data from hydrothermally impacted deep sea sediments in the Guaymas Basin (Gulf of California) 
for PETases. A broad diversity of potential proteins were identified and 22 were selected based on their potential thermal stability and 
phylogenetic novelty. Heterologous expression and functional analysis of these candidate PETases revealed three candidates capable 
of depolymerizing PET or its byproducts. One is a PETase from a Bathyarchaeia archaeon (dubbed GuaPA, for Guaymas PETase Archaeal) 
and two bishydroxyethylene terephthalate-hydrolyzing enzymes (BHETases) from uncultured bacteria, Poribacteria, and Thermotogota. 
GuaPA is the first archaeal PETase discovered that is able to depolymerize PET films and originates from a specific enzyme class 
which has endowed it with predicted novel structural features. Within 48 h, GuaPA released ∼3–5 mM of terephthalic acid and 
mono-(2-hydroxyethyl) terephthalate from low crystallinity PET. PET co-hydrolysis containing GuaPA and one of the newly discovered 
BHETases further improves the hydrolysis of untreated PET film by 68%. Genomic analysis of the PETase- and BHETase-encoding
microorganisms reveals that they likely metabolize the products of enzymatic PET depolymerization, suggesting an ecological role in
utilizing anthropogenic carbon sources. Our analysis reveals a previously uncharacterized ability of these uncultured microorganisms
to catabolize PET, suggesting that the deep ocean is a potential reservoir of biocatalysts for the depolymerization of plastic waste.
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Introduction 
In 2021 the world produced over 390 million metric tons of 
plastic, 6.2% of whic h was poly(ethylene terephthalate) (PET)
[1]. Plastic production continues to increase, translating to more 
than 25 million metric tons of PET produced each year with a 
sizable amount going into single-use packaging. Polyethylene 
terephthalate-hydrolyzing enzymes (PETases) are a class of 
enzymes, which can depolymerize the PET polymer down to its 
monomers of terephthalic acid (TPA) and ethylene glycol (EG)
with some incomplete depolymerization products such as mono-
hydroxy ethylene terephthalate (MHET) and bishydroxyethylene
terephthalate (BHET) [2, 3]. The TPA released by enzymatic PET 
depolymerization can be recycled to make new PET and all of the 
depolymerization products can be u sed in microbial metabolism
for bioremediation or be upcycled into new molecules [4–6]. 

Efforts to discover more efficient PETases have resulted in 100+ 
biochemically characterized wild-type enzymes, some of which 
ha ve been applied to industrial enzymatic recycling applications

[4, 7–9]. Most PETases have been isolated from anthropogenic 
sources, such as compost and wastewater, or mined from large 
sequence databases via high levels o f similarity to enzymes which
are already well characterized [10, 11]. The presence of enzymes 
in the environment capable of depolymerizing polymeric PET is 
a strong indicator that the organisms in that environment are 
also capable of depolymerization of postconsumer PET plastics. 
In contrast, enzymes that h ydrolyze phthalic acid esters, or PET
oligomers may only indicate consumption of plastic leachates and
not polymer depolymerization.

The Guaymas Basin (GB), a marginal rift basin located ∼2000 m 
below sea level in the Gulf of California, is a hotspot for hydrother-
mally generated hydrocarbons [12] making it an ideal environ-
ment to search for novel petroleum-based polymer degrading 
enzymes. Previous research found a PETase (PET46) in an archaeal
metagenome assembled genome (MAG) from this site [13]. This 
PETase was only able to depolymerize ultrafine powders or a PET 
trimer and could not depolymerize films or other larger substrates
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representative of postconsumer PET products. The enzyme was 
found to have an optimal reaction temperature of 60◦C  and  a  
melting temperature of 84◦C, which are suited for PET depolymer-
ization. Previous studies have used bioinformatic strategies such
as the employment of hidden Markov models (HMMs) to screen
metagenomic databases [14,15]. By using the sequences of known 
PETases, it is possible to construct a profile of the amino acid 
sequence of a PETase and use that to predict new putative PETases 
from metagenomic data. We recently obtained massive high-
throughput metagenomic sequence data from five sediment cores 
spanning various thermal gradients harvested from four sites of 
the basin. Here we investigate the presence of PETases and other
PET active enzymes from hydrothermally impacted sediments in
GB and experimentally validate novel enzymes belonging to the
globally distributed archaea, Bathyarchaeia, and other uncultured
bacteria.

Materials and methods
Metagenomic sequencing, assembly, and binning
Sequencing through de novo binning has been previously 
described in detail for these samples [16]. Briefly, GB sediment 
push cores were collected by the human-operated vessel Alvin 
and research vessel Atlantis in November 2018 (AT42-05). 
Onshore, we extracted DNA for each core subsection across 
four sites. Library preparation and short-read sequencing was 
conducted by North Carolina State Genomics Sciences Laboratory
(NovaSeq S4 [Illumina]) and University of Delaware (NextSeq
[Illumina]). After initial quality control, reads were interleaved
and assembled with BBTools Reformat v38.18 [17] and MEGAHIT 
v1.2.9 [18], respectively. We used assembled scaffolds >2.5 kbp 
for bioprospecting plastic-degr ading enzymes and binning
via MaxBin v2.2.7 [19], CONCOCT [20], and MetaBA T [21]  via  
MetaWRAP v1.3.2 [22]. DAS Tools v1.1.2-2 provided a non-
redundant set of bins for further analysis [23]. 

The archaeal PETase (GuaPA) encoding MAG was obtained 
from a southern mat mound (Latitude: 27◦00.37′ N; Longitude: 
111◦24.57′ W and 2007.2 m below sea level [mbsl]), 15–20 cm deep 
with a thermal gradient ∼20–38◦C. The uncultured bacterial MAGs 
were extracted from Aceto Balsamico microbial mat (Latitude:
27◦00.47′ N; Longitude: 111◦24.44′ W and 2008.87 mbsl) and 
Cathedral Hill (Latitude: 27◦00.67′ N; Longitude: 111◦24.26′ W  and  
2012 mbsl), respectively. The Aceto Balsamico site (Marker 14) was 
previously named for high a cetate and methane concentrations,
supporting a diverse community [24,25]. The genome encoding 
the first BHETase (B1) was from an Aceto Balsamico site, 20– 
30 cm deep and had temperature readings between ∼74.1 and 
115◦C. Whereas, the genome encoding the second BHETase (B4) 
was from a Cathedral Hill site 5–13 cm de  ep core with temperature
of 89◦C measured at a 25 cm core depth.

Computational biopr ospecting
Using Prodigal v2.6.3, we predicted all the open reading frames 
of the GB 2.5 kb scaffolds (GE3) described previously [16]. These 
7 782 778 million proteins became the database used to search for 
potential enzymes. To d evelop the search criteria, we used the
PlasticDB [26], a database of known plastic-degrading enzymes, 
as the input enzymes. Using MMseqs2 [27], we clustered pro-
teins listed under PET in PlasticDB by 30% sequence similarity, 
generating three clusters of PET-degrading enzymes. The largest 
cluster contained IsPETase, Leaf Compost Cutinase (LCC), and 
55 other enzymes, whereas the other two clusters were sparse, 
containing three and two sequences, respectively. We computed

a multiple sequence alignment (MSA) of proteins in the largest
cluster using MUSCLE v3.8.1551 [28], then generated HMM profiles 
from the resulting MSA using the HMMER v3.3 software suite 
hmmbuild function. Using these HMM models, we searched the 
previously generated GB protein database for hits ≤1E-5, identi-
fying 362 unique candidate enzymes. These hits were aggregated
and filtered using custom python scripts available at github.com/ 
marcottelab/GuaPA. Then, the candidate enzymes were clustered 
by 40% sequence similarity using CD-HIT v4.8.1 [29,30]. From 
the 32 resulting clusters, candidates with the lowest E-values 
from the initial HMM search were selected, a nd their protein
structures were predicted using ESMFold [31], a large language 
model-based sequence-to-structure predictor that has previously 
been used for the efficient prediction of millions of metagenomic
protein structures. Supplementary Fig. S1 depicts a phylogenetic 
tree showing the distribution of the candidates. Foldseek was 
then used to compare the structures of these candidates to the 
canonical enzymes IsPETase and LCC. The best 22 structural
matches were then selected to move forward.

Prior to synthetic expression, the dee p learning model
TMBed [32], the software packages SignalP 6.0 [33], and Unbi-
ased Organism-agnostic Signal Peptide Network (USPNet) [34] 
were applied to the 22 chosen sequences to predict signal 
peptides. Manual comparison of the output from these three 
methods determined the exact sequences to remove from 
these candidates . The predicted signal peptides extracted from
the N-termini of the 22 candidate proteins are provided in
Supplementary Fig. S2 and the removed sequence on GuaP A is
highlighted in Supplementary Fig. S3. 

Media and micr oorganisms
LB Broth Miller and LB Agar Miller were purchased from Fisher 
BioReagents. Terrific Broth was purchased from Sigma-Aldrich. 
Escherichia coli strains BL21 (DE3) and DH5α chemically competent
cells were purchased from New England BioLabs.

Cloning and pr otein expression
The 22 putative PETases (Supplementary Table S1) were ordered 
as gene fragments from TWIST Biosciences (South San Francisco, 
CA, USA) codon optimized for E. coli and flanked by BsaI cut sites. 
The gene fragments were cloned into pET28α which was ampli-
fied with primers to incorporate BsaI cut sites which inserted 
the putative PETase genes in-frame with the NcoI Start codon
and 6x-C-terminal His tag present in the original vector. DH5α

chemically competent cells were transformed with the assem-
blies, and transformants were selected on LB agar + 50 μg/ml of 
kanamycin. For protein expression, BL21 (DE3) chemically com-
petent cells were freshly transformed with sequence verified 
plasmid. Single colonies were used to inoculate overnight cultures 
of LB + kanamycin, which were used to inoculate flask cultures of 
Terrific Broth + kanamycin at a 1:100 ratio of medium to culture. 
Flask cultures maintaining a medium-to-flask volume ratio of 
1:5 were grown at 37◦C and 220 RPM until an OD600 0.4–0.6 was 
r eached (in ∼2–4 h). Flasks were placed in a 4◦C cold room for
15 min, then induced with IPTG to a final concentration of 1 mM
and allowed to shake at 220 RPM and 18◦C for 18 h or overnight.

Protein purifica tion
Cells, which had been induced and allowed to express protein for 
18 h or overnight, were harvested via centrifugation at 6000 × g 
at 4◦C for 25 min. The cell pellets were resuspended in 30 ml
of resuspension/lysis buffer (50 mM phosphate buffer pH 7.5,
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300 mM NaCl, 20 mM imidazole, 0.1% Igepal CO-630 (Sigma-
Aldrich), and 5 mM MgSO4. Resuspended cells were lysed via 
sonication using 40% amplitude and 4 min of sonication time with 
1 s on 4 s off. The cell lysate was clarified by ultracentrifugation at 
4◦C for 30 min at 35 000 × g. The clarified cell lysate was applied 
to a disposable 10 ml gravity column with a 1–2 ml resin bed 
(column volume (cv)) of Ni-NTA resin (Thermo) which had been 
equilibrated with 20 cv of equilibration buffer (50 mM phosphate 
buffer, pH 7.5, 300 mM NaCl, and 20 mM imidazole). The sample 
column was washed with 20 cv equilibration buffer and 5 cv wash 
buffer (50 mM phosphate buffer, pH 7.5, 300 mM NaCl, and 50 mM 
imidazole). Protein was eluted using 5 ml of elution buffer (50 mM
phosphate buffer, pH 7.5, 300 mM NaCl, and 250 mM imidazole).
The eluted protein was concentrated with an Amicon Ultra-15
Centrifugal Filter MWCO 10 000 spin filter and desalted by adding
15 ml of PBS to the concentrated sample and concentrating again.
The concentrated, desalted protein was stored at 4◦C for up to 2
weeks or mixed 1:1 with glycerol and stored at −20◦C. 

Enzyme assa ys
Enzymes concentrations were determined using Bradford assays. 
Enzyme activity was assayed using 10 mM BHET or a 6 mm 
hole punch of PET film, either beancake film or Goodfellow low
crystallinity PET film as specified. Reactions were performed in a
total of 600 μl using 100 mM potassium phosphate buffer pH 8 
in protein low-bind tubes unless otherwise specified. BHET reac-
tions were performed at 30◦C for 24 h. BHET reactions were also 
performed after pre-incubating the tube with no BHET at 70◦C 
for an hour and adding BHET once the tube had cooled. For PET 
assays, tubes were incubated for 48 h at either 30◦C  o  r 60◦C unless
otherwise specified. All reactions were performed in triplicate and
with substrate and buffer only as a negative control. To stop the
reactions, the entire reactions or aliquots of the reactions were
mixed 1:1 with DMSO [35]  (Supplementary Fig. S4). 

High-performance liquid chromatography 
quantification of polyethylene terephthalate and 
bishydroxy ethylene terephthalate hydrolysis
To quantify hydrolysis of PET and BHET, samples from enzyme 
assays were filtered using 0.2 μM syringe or 96-well plate cen-
trifuge filters. These samples were then measured using a Van-
quish HPLC system (Thermo Fisher Scientific) with a 260 nM UV 
detector. The mobile phase buffers consisted of 0.1% formic acid 
in water or 0.1% formic acid in acetonitrile over the course of 
30 min with a fixed flow rate of 0.8 ml/min. The mobile phase 
used the following conditions: a solvent gradient of 1%–5% organic 
(vol/vol) for 5 min, a solvent gradient of 5%–100% organic (vol/vol) 
for 8 min, 100% organic solvent for 10 min, a solvent gradient
of 100%–5% organic (vol/vol) for 2 min, and finally a solvent
mix of 5% organic (vol/vol) for 5 min. Two-standard curves of
BHET, MHET, and TPA were prepared for high and low ranges of
detection in the linear ranges of 200 μM to 1.2 mM and 1.2 mM
to 12 mM.

For BHET hydrolysis assays, the quantity of MHET and TPA was 
measured by subtracting the calculated mean quantity of TPA 
and MHET in the enzyme free negative control reactions from the
calculated concentration of MHET and TPA in the samples.

Polyethylene terephthalate catabolism pathway 
structur al homology search
We obtained protein sequences for monomer catabolism from
UniProt [36] and searched the MAGs containing B1, B4, and GuaPA 
to determine pathway completeness (E-value ≤ 1e-5). In parallel, 
we downloaded the predicted protein structures of the known

enzymes necessary for the metabolic process from the AlphaFold
Database [37] and used ESMFold [31] to predict the structures of 
the proteins present in the MAGs. We then used Foldseek with 
an E-v alue cutoff of 1e-5 to search the MAGs for any structural
similarity.

Polyethylene terephthalate-hydrolyzing enzymes 
ph ylogenomic analyses
Database identifiers for 105 known PETase enzymes were 
downloaded from the PAZy database [15] and used to download 
the corresponding amino acid sequence from GenBank, UniProt, 
or MGnify. The sequences were then combined with candidate
PETase enzymes from the GB samples. A MSA was computed
via MAFFT v7.453 [38,39] and trimmed with ClipKIT v1.3.0 [40], 
and the phylogenetic tree was computed with IQ-TREE v1.6.12
[41]. The position of the 22 GB candidate enzymes in a more 
global phylogenetic tree was further determined by searching
for homologs in the NCBI non-redundant database [42]  (ca.  
September, 2024), retaining the top 50 hits for each sequence 
above an E-value of 1E-5. Duplicate sequences were removed, the
sequences realigned with MAFFT auto v7.526 [38], and 50% of 
the gaps masked with Geneious Prime 2023.2.1 [43]. This overall 
dataset was then used to infer a phylogeny using IQ-TREE v2.0.7
[44]. The best-fit model WAG + R10 was chosen according to 
Bayesian information criterion. Phylogenies were visualized with
iTOL v6 [45]. 

Phylogenetic analyses of polyethylene 
terephthalate-hydrolyzing enzyme
candidate-encoding genomes
GTDB-tk v2.4.0 [46] initially classified the genomes encoding B1, 
B4, and GuaPA as Poribacteria, Thermotogota,  and  Thermoproteota, 
respectively. To verify the predicted taxonomic assignment, we 
selected publicly available bacterial genomes from (NCBI) belong-
ing to Deinococcota, Synergistetes and Thermotogae (DST) phyla 
(Deinococcota, Synergistota, Lindowbacteria, Spirochaetota, Elusimi-
crobiota, Desantibacteria, Mcinerneyibacteriota, Fusobacteriota, Porib-
acteria) and basal Gracilicutes phyla (Caldisericota, Lithacetigenota, 
Coprothermobacterota, Bipolaricaulota, and Thermotogota). Archaeal 
references were chosen from Thermoproteota classes (Bath-
yarchaeia, Korarchaeia, Methanometh ylicia), orders (Brockarchaeales,
Caldarchaeales, Conexivisphaerales, Gearchaeales, Geothermarchaeales,
Marsarchaeales, Nitrososphaerlaes, Panguiarchaeales, Sulfolobales,
Thermofilales, Thermoproteales), and an outgroup genus Methanobac-
terium. We extracted 37 cross-domain markers via the PhyloSift
[47] pipeline to infer the phylogenetic placement of the archaeal 
and bacterial PETase candidate-encoding genomes within the 
reference set. The resulting concatenated alignments were
realigned with MAFFT v7.490 [38,39]  (auto)  and  masked  (50%  
gaps) with Geneious Prime 2023.2.1 [43]. Phylogenetic trees were 
inferred with IQ-TREE v2.0.7 [44] for the domains separately 
based on 1000 ultrafast bootstrap inferences and optimized 
with hill-climbing nearest neighbor interchange. The archaeal 
and bacterial trees were rooted with Methanobacterium and 
between Terrabacteria and Gracilicutes, respectively. The resulting
phylogenies were visualized with iTOL v6 [45]. 

Results 
Identification of polyethylene 
terephthalate-hydrolyzing enzymes from 
thermophilic ocean floor microorganisms
Recent studies have identified an increasing number of novel 
PETase enzymes from a variety of non-marine sources [15]. Given
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Figure 1. Computational pipeline picturing the process taken for aggregating known plastic degrading sequences, constructing a HMM profile, 
searching GB metagenomic data and subsequently do wnselecting potential enzyme candidates.

the global spread of plastic waste, we hypothesized that PETases 
might be found in deep sea microbial sources. We therefore 
plumbed a genomic catalog from the GB, a hydrothermal vent
system in the Gulf of California [16,48] known to provide a wealth 
of information regarding ne w phyla and metabolic capabilities
[48]. In particular, PETase sequences were mined from previ-
ously described samples from the GE3 [16] expedition of Novem-
ber 2018. During this expedition researchers collected sediment 
cores from ∼2000 mbsl using a m anned submersible, Alvin. The
core samples were frozen at −80◦C until DNA was extr acted
onshore [16] and sequenced using a combination of the NovaSeq 
S4 and NextSeq (Illumina) platforms, depending on DNA quantity. 
Protein-coding sequences fr om this metagenomic dataset were
identified and annotated with Prodigal v2.6.3 [49], ultimately gen-
erating a set of 7 782 778 unique pr otein sequences (see Materials
and methods).

A HMM profile was built from known plastic-degrading 
enzymes and used to search the compiled protein sequences
(Fig. 1). Some 300 unique putative enzymes were identified and 
filtered to a top 22 candidates based on their thermophilic 
potential, as determined by the temperature of the sampling 
site where the DNAs were acquired, phylogenetic novelty, and
structural similarity to known PETases (Supplementary Fig. S1). 
The majority of candidates chosen had less than 30% sequence 
identity with more well-known enzymes such as Ideonella 
sakaiensis PETase (IsPETase) a nd LCC, and at most 65% identity
to known PETases listed in the PAZy database [15], with an overall 
average identity of 27.6% (Supplementary Fig. S5). 

Screening of candidate enzymes on 
bishydroxyethylene terephthalate and 
amorphous polyethylene terephthalate
The 22 candidate enzymes were codon optimized, a C-terminal 
hexa-histidine tag added, and genes were expressed following 
cloning into pET28a and transformation into E. coli BL21 DE3. The 
putative PETases were purified using a nickel chelate column and 

protein was obtained from all 22 identified sequences, in a mounts
ranging from 0.4 to 20 mg/100 ml culture. The proteins were
estimated to be >90% pure via polyacrylamide gel electrophoresis
(PAGE) (Supplementary Fig. S6). 

Candidate enzyme activities were determined by applying 
enzyme samples to amorphous, beancake film PET (BC-PET), a rel-
atively easy-to-degrade PET film, as described previously [4], and 
examining plastic breakdown products using high-performance 
liquid chromatography (HPLC). In an initial screen each of the 22 
candidate PETases at 30◦C no evidence of PET hydrolysis was
observed (Fig. 2A). Knowing that some thermophilic enzymes 
might prove inactive at mesophilic temperature ranges, the entire 
PETase candidate list was rescreened on BC-PET at 60◦C. Enzyme
candidate 7, from Bathyarchaeia (Supplementary Fig. S7;  GuaPA),  
was found to hydrolyze BC-PET, releasing a combined 4.4 mM of 
the dep olymerization products TPA, MHET, and BHET after 48 h
(Fig. 2A). GuaPA is thus the only archaeal enzyme that has been 
sho wn to depolymerize PET film.

To ascertain whether any of the candidate enzymes could also 
degrade BHET or MHET, all 22 enzymes were further assayed 
using BHET as a model substrate, initially at 30◦C because BHET
undergoes significant autohydrolysis at higher temperatures
[50]. GuaPA was not able to hydrolyze BHET; however, Guaymas 
enzymes 1 and 4 (B1 and B4) were found to hydrolyze BHET to yield 
combined MHET and TP A products (2.7 and 4.0 mM, respectively,
Fig. 2B). The production of TPA indicates that both B1 and B4 
hydrolyze BHET to MHET and can further hydrolyze MHET to yield 
TPA. A pre-incubation of the enzymes at 70◦C, followed by incu-
bation with BHET at 30◦ C revealed that both B1 and B4 remained
active following the thermal pulse and were still able to hydrolyze
BHET (Fig. 2B). Given that the three active enzymes identified from 
the putative list of PETases appeared to be thermophilic, or at least 
thermotolerant, we decided to investigate their respective melting 
temperatures using differential scanning fluorimetry (DSF, the 
Biotium GloMelt system). The melting temperatures of GuaPA, B1, 
and B4 were 79, 87, and 80◦C, respectively (Supplementary Fig. S8).
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Figure 2. Hydrolysis products of 22 putative PETases using beancake film 
amorphous PET (A) and BHET (B) as substrates. All reactions were run in
600 μl 100 mM KPB pH 8 with an enzyme concentration of 200 nM using 
either a 6 mm hole punch of PET film or 10 mM BHET. PET reactions
were incubated for 48 h, while BHET reactions were incubated for 24 h.

Optimizing polyethylene terephthalate 
hydrolysis b y GuaPA
We sought to optimize GuaPA’s performance. Reaction parame-
ters such as salt concentration, pH, enzyme concentration, and 
temperature were initially optimized; each was varied indepen-
dently, using BC-PET as a substrate. The best reaction conditions
were 200 mM KPB, pH 8, at 60◦C (Supplementary Fig. S9A). 
The higher salt concentration preferred by GuaPA, 200 mM, 
compared to other PETases may be related to the enzyme’s 
relatively low isoelectric point 4.9 or its oceanic origin. GuaPA
contained what appeared to be a 24 amino acid signal peptide
(Supplementary Fig. S3). When expressed with and without 
this leader the truncated version appeared to perform slightly 
better, but the differences were not statistically significant
(Supplementary Fig. S9B). 

We observed that GuaPA was most active at lower enzyme 
concentrations (100 nM). This contrasts with other PET-degrading 
enzymes, such as LCC and its engineered variants, which are 
typically used at micromolar concentrations. There is no loss
of activity upon dilution of GuaPA from higher concentration
(Supplementary Fig. S10), suggesting that the phenomenon is due 
to reversible interactions between the e nzyme and the plastic or
between enzyme molecules.

Improving polyethylene terephthalate 
degradation with enzyme cocktails
Previous research has shown that the inclusion of BHETases can 
improve PET hydrolysis by removing BHET and MHET intermedi-
ates that can occup y the PETase active site but are not efficiently
hydrolyzed [51]. To assess this possibility with our newly discov-
ered enzymes, we combined equimolar amounts of GuaPA and the 

Figure 3. Depolymerization of PET films using two enzyme reactions 
either. (A) Depolymerization of BC film by GuaPA or combinations of 
GuaPA and BHETases. (B) Optimization of t he ratio of GuaPA and B1 for 
increasing PET depol ymerization of goodfellow low crystallinity PET.

BHETases B1, B 4, or a combination of B1 and B4 (Fig. 3A). B1 or a 
combination of B1 and B4 showed no difference in hydrolysis, B4
seemed to significantly hinder PET hydrolysis.

To discern if B1 may improve PET hydrolysis with a more 
crystalline, and thus difficult to depolymerize substrate, B1 
assays were carried out with 8% crystalline PET from Goodfellow. 
Although this is still low crystallinity PET, it is more difficult 
to degrade than the BC-PET whic h is 1%–2% crystallinity. On
Goodfellow PET, GuaPA depolymerized an average of 2.9 mM of
product, which consisted of 86% TPA and 14% MHET over 48 h
(Fig. 3B). When combined at a ratio of one molecule of GuaPA to 
two molecules of B1, maintaining the concentration of GuaPA at 
100 nM, hydrolysis is increased by 1.7-fold to a total hydrolysis of 
4.6 mM combined TPA and MHET, with 88% of the release pro duct
again being TPA. As the proportion of B1 further increases, overall
yields begin to fall with TPA eventually becoming 100% of the
released product.

With both Goodfellow film and BC PET GuaPA releases depoly-
merization products not previously seen during the enzymatic 
depolymerization of PET films, whether by FAST PETase, LCC, or
other PETases [4]. LC–MS analysis determined that the products
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are small oligomers of PET (Supplementary Fig. S11), suggesting 
that GuaPA may function primarily as an endo-PETase. This is con-
sistent with GuaPA’s inability to hydrolyze BHET (Fig. 2B). This pat-
tern of substrate preference has not been demonstrated among 
known PETases. These products disappear with the inclusion of 
B1, suggesting that B1 may be able to degrade PET oligomers larger
than BHET.

Predicted structural properties of GuaPA
When an ESMFold [31] model was used to predict the structure 
of GuaPA it did not fall neatly into the Type I, Type II classifi-
cation system previously used for categorizing PETases [52], and 
instead contained distinct structural features that differentiated 
it from other previously described PETases (Fig. 4). GuaPA is most 
different from other PETases in its extended loop region: this 
loop, which is 3–6 amino acids in Type I and Type II enzymes ,
is 12 amino acids in GuaPA. Docking a PET trimer in the active
site of GuaPA using Chai-1 [53] shows that this loop expan-
sion increases the number of hydrophobic amino acids prox-
imal to the PET chain, potentially enlarging the hydrophobic 
cleft region. This expansion has been shown to be benef icial in
other PETases by creating additional hydrophobic interactions
that draw the PET chain into the active site [3,52,54]. The sur-
face of GuaPA is very negatively charged (Fig. 5A and C), a prop-
erty which was previously deemed to be a hindrance to PET
hydrolysis [55]. The hypothesis that a negatively charged enzyme 
or active site might not be able to approach carboxylates on 
the PET surface was chemically suspect, and the existence of 
GuaPA suggests that PETases writ large may have a variety of 
ways in which they can achieve plastics breakdown. Empha-
sizing suc h new possibilities, the demonstrated thermostabil-
ity of GuaPA was attained even in the absence of a disulfide
bond, a feature that is unique compared to other thermostable
PETases [8,56]. We speculate that in the absence of disulfide 
bonds GuaPA may be stabilized by a network of π–π interactions. 
Using the Contacts of Aromatic Residues in Pr oteins analysis
pipeline [57], GuaPA was found to have 33 predicted aromatic– 
aromatic residue interactions (Supplementary Fig. S12), whereas 
LCC had only 24 and IsPETase only 13 (Supplementary Fig. S12
and Supplementary Tables S2–S4). This collection of unique struc-
tural features makes GuaPA an especially appealing candidate 
for future enzyme engineering, potentially by incorporating the 
beneficial attributes of canonical PETases into its structure.

Predicted metabolism of polyethylene 
terephthalate derived monomers by enzyme
containing metagenomes
The different enzymatic features of GuaPA led us to speculate 
that the organisms from which it was derived might also have 
unique PET degradation pathways. Given the ability of B1 and 
B4 to hydrolyze BHET, we wondered whether the metagenomic 
samples might also contain pathways capable of metabolizing
liberated TPA and EG. The metabolic pathways to fully metabolize
PET have been described previously [58], but searching for 
similar sequences via BLAST did not return homologous catabolic 
pathways. Nonetheless, many enzymes that might participate 
in homologous pathways were found using Foldseek structural 
similarity searches (Zenodo Repository) Bathyarchaeia MA G
encoding GuaPA contains all of the genes necessary to import
PET and degrade it to TPA, and from there to protocatechuate
(Fig. 6), as well as pathways for the further integration of TPA 
into central metabolism via either the 2,3-meta-cleavage or the 

Figure 4. Residue differences in the structure of GuaPA in the context of 
a PET trimer compared to previously described PETases. Residues which 
are part of the catalytic triad, Subsite I, Subsite II, the extended loop, 
and the additional disulfide bond are shown as stick models . Those 
residues that do not fit into either of the traditional Type I or Type II 
PET ases are opaque whereas those that do are transparent.

4,5-meta-cleavage p athway, similar to other metabolically diverse
prokaryotes like Comamonas testosteroni [58]. 

Discussion 
The newly identified thermophilic PETases from deep sea sedi-
ments may prove to be excellent candidates for engineering and
translation [59], given their already very high thermotolerance, 
atypical isoelectric point, apparent preference for interior ester 
bonds, and ability to completely degrade PET to TPA and MHET. For 
example, GuaPA is significantly more thermostable than IsPETase, 
and only slightly less thermostable than LCC, one of the natural
PETases with the highest reported melting temperatures [4,8,60]. 

The discovery of this enzyme in deep sea sediments may reveal 
a bounty of new opportunities for further biomining these sedi-
ments , given that computational analyses reveal unique enzyme
features (Figs 4 and 5) and potentially unique pathways for the 
catabolism of PET degradation products (Fig. 6). In the validated 
PAZy database, there is only one other archaeal PETase (PET46) 
from an uncultivated GB Bathyarchaeia [61]. That said, GuaPA is the 
only archaeal enzyme that has been shown to depolymerize PET 
film and has a unique position in the phylogenetic tree of PETases. 
Additionally, B1 is from an isolate of the phylum Poribacteria,
which are known commensals of marine sponges [62], and B4 
is from the genus Thermotogota, which are known to be a part 
of general macromolecule degrading communities in the GB [63] 
(Supplementary Fig. S13). Like archaea, these bacteria are less 
well represented marine micr oorganisms in plastics degradation
enzyme databases.

The identification of PETases from the deep ocean should at 
some level come as no surprise. Plastic pollution is permeant on 
the planet, and the deep ocean has been shown to be a major
sink, harboring up to 11 million metric tons of plastic [64], a 
mixture of oceanic plastic from fishing equipment and terrestrial 
plastic deposited in the deep ocean b y currents, with PET, nylon,
and polyethylene [65,66] making up large percentages. Plastic 
degrading enzymes have been catching up with this rich new
source of carbon [67]. Because the evolution of plastic degradation 
is still in its infancy, however, it is likely that there will be many 
parallel enzymes and pathways invented to supplement organis-
mal growth.
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Figure 5. Surface properties of GuaPA compared to IsPETase, FAST PETase, LCC, ICCM, PHL7, and HiC. (A) Surface charge map of the catalytic face of 7 
PETases demonstrating the highly negatively charged face of GuaPA in comparison to other PETases. (B) Hydrophobicity map of 7 PETases 
demonstrating the slightly larger hydrophobic pocket surrounding the active site of GuaPA. The net charge (C), isoelectric point (D), and 
hydrophobicity (E) of 7 PETases show GuaPA’s unique combination of low charge, low isoelectric point, and higher hydrophobicity.

GuaPA is likely just the tip of the iceberg in terms of identifying 
PETases and other plastic-degrading enzymes. Phylogenetic anal-
ysis of enzymes related to GuaPA identified 93 further arc haeal
homologs from diverse sources, suggesting the archaeal diversity

of PETases remains largely untapped (Fig. 7). Broadly, the origins 
of GuaPA are far less clear than for other PETases, whic h are
largely derived from cutinases (Fig. 7A and B). GuaPA is found 
to cluster with alpha/beta hydrolases, a serine peptidase, and
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Figure 6. PET degradation and monomer catabolism pathway. Filled in circles represent whether a structural homolog for the given enzyme is present 
in the organism where B1, B4, or GuaPA resides. EC numbers are listed below eac h of the named enzymes in parentheses.

dienelactone hydrolases (Fig. 7E). Dienelactone hydrolases have 
previously been shown to have BHETase-like activity [68]. The 
identification of new PETases that are not derived from cuti-
nases ultimately tracks with the r elative lack of cutin in oceanic

environments [69], as opposed to the abundance of cutin in ter-
restrial plants [70]. 

The integration of sequence-based discovery methods, struc-
tural predictions, and phylogenetic data has unearthed new
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Figure 7. Phylogenetic distribution of candidate and validated Guaymas Basin (GB) PETases. (A) Unrooted phylogenetic tree of five published wild-type 
PET-hydrolyzing enzymes from the PAZy database along with the 22 GB candidates. The colored blocks indicate the taxonomic group from which the 
enzymes originate, according to PAZy. We highlighted the unvalidated and the active GB enzymes on PET or BHET. Tree scale is 0.1. (B) To increase 
phylogenetic support, we added unvalidated non-reference hits from the NCBI non-redundant sequence database for each of the 22 GB candidates, 
including the three validated enzymes. This expanded analysis includes 94 PAZy reference sequences and 998 blast sequences. We inferred the 
maximum likelihood phylogeny with IQ-TREE v2.0.7, using the best-fit model WAG + R10 c hosen according to Bayesian information criterion. The 
concentric rings highlight taxonomy, PAZy references, GB candidates, and GB validated enzymes. Ultrafast bootstrap support values ≥90 are shown 
and midpoint rooted. Insets show sequences clustering with the validated GB enzymes: (C) B1, (D) B4, and (E) GuaPA. Ultrafast bootstrap support
values ≥50 are shown for the insets. For (B–E), the tree scale is equivalent to 1.
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plastic-degrading enzymes that likely would have been missed 
by a sequence-only approach. Not only can new PETases be 
discovered, but also structural homology searches hav e enabled
the identification of new and potentially unique downstream
enzymes for PET degradation (Fig. 6). As but one key example, B1 
and B4 would not have been found if phylogenetic relatedness had 
been the sole criteria for selection. The genomic context of the 
newly discovered PETases may further reveal previously unknown 
plastic degradation pathways. For instance, the GuaPA genome
appears capable of incorporating TPA into central metabolism via
a multitude of pathways (Fig. 6), all of which may be repurposed 
for the next generation of PET biotransformation, with the same 
being true of the EG incorporation pathways present in the MAGs
of B1 and B4 (Fig. 6). Further interrogation of deep sea sediments 
may thus well continue to turn up entirely new solutions to 
PET degradation that differ significantly from their terrestrial 
counterparts, and may yield even more tractable engineering 
solutions for PET valorization; e.g. the successful combination 
of GuaPA and B1, enzymes from a Bathyarchaeia and Poribacteria, 
respectively, may foreshadow functional syntrophic relationships 
between GB organisms that could be exploited by creating
synthetic pathways for plastic degradation. As another example
of how nature can lead biotechnology, combining the metabolic
capacities of the GuaPA for TPA and B1 for EG could potentially
improve not only the depolymerization of PET (Fig. 3), but also 
the downstream biotransformation of PET into glycerate and 
pyruvate, ultimately remediating the plastic while generating
useful chemical feedstocks for additional transformations.
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