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Abstract  

Shotgun proteomics using mass spectrometry is a powerful method for protein identification 

but suffers limited sensitivity in complex samples. Integrating peptide identifications from 

multiple database search engines is a promising strategy to increase the number of peptide 

identifications and reduce the volume of unassigned tandem mass spectra. Existing 

methods pool statistical significance scores such as p-values or posterior probabilities of 

peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides 

have been assigned to spectra, but these methods lack reliable control of identification error 

rates as data are integrated from different search engines. We developed a statistically 

coherent method for integrative analysis, termed MSblender. MSblender converts raw 

search scores from search engines into a probability score for all possible PSMs and 

properly accounts for the correlation between search scores. The method reliably estimates 

false discovery rates and identifies more PSMs than any single search engine at the same 

false discovery rate. Increased identifications increment spectral counts for all detected 

proteins and allow quantification of proteins that would not have been quantified by 

individual search engines. We also demonstrate that enhanced quantification contributes to 

improve sensitivity in differential expression analyses. 

 

Keywords: integrative analysis, database search, peptide identification 

Abbreviations: FDR - false discovery rate, LC - liquid chromatography, MS - mass 

spectrometry, PSM - peptide-spectrum match, ROC - receiver operating characteristic 
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Introduction 

Analyses of mass spectrometry-based shotgun proteomics data rely heavily upon 

computational algorithms for automating peptide identification via database searching. 

Database search engines assign each tandem mass spectrum to the best-scoring peptide 

sequence in the database based on scoring functions using spectral features1-7. Several 

different search engines are available today, and peptides identified with high confidence 

often show good consensus across different engines8. Nevertheless, many high-quality 

MS/MS spectra remain unassigned to peptide sequences or have scores below chosen 

confidence thresholds9. Moreover, some spectra may be assigned to different peptides by 

different search engines, which vary in their scoring schemes4, 10. Provided that these issues 

are properly addressed, pooling peptide identifications from multiple search engines is 

expected to improve peptide identifications and to leave fewer mass spectra without 

assignment to peptide sequences.  

 To date, a few computational approaches have been proposed for integrating 

database search results. Alves et al. proposed a calibration of p-values from multiple search 

engines into a meta-analytic p-value for each peptide8. Searle et al. proposed a Bayes 

approach to adjust probability scores computed in individual search engines based on the 

agreement between search engines, in which the largest adjusted probability is taken as the 

final score for each peptide11. Although these methods allow for more efficient use of 

available data, the integration of search results still has room for further development. First, 

the number of peptide-spectrum matches (PSMs) identified in some but not all search 

engines grows at combinatorial rates as more search engines are considered for integration, 

and the scores must be properly calibrated for the PSMs identified by individual search 

engines to control the overall identification error rates in a unified manner. Second, since 

some search engines only report the best matching peptide sequence for each spectrum, 

potential matches to lower-ranking peptides are ignored in the report even if individual 

scores for those secondary matches are nearly as good as the best match score and thus 
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are likely true hits. If data are integrated from different search engines, one must include 

lower-ranking PSMs from every search engine and recalibrate the scores into a unified score 

as was done in Searle et al11. The strategy of integrating data after the selection of high 

confidence PSMs (i.e., leaving out lower-ranking scores) may lead to inaccurate estimation 

of integrative probability scores unless search engines are sufficiently homogeneous12-14. 

 To address these issues, we developed a unified probabilistic approach for the 

integrative analysis of unique PSMs, termed MSblender (Figure 1). We use probability 

mixture models for distinguishing correct and incorrect identifications. The score distributions 

across search engines are jointly modeled using multivariate distributions up to the number 

of observed dimensions to accommodate the correlation in raw search scores. Using this 

model, MSblender computes a unified posterior probability of correct identification for all 

PSMs identified by search engines. The conversion into posterior probabilities automatically 

calibrates PSM scores reported by individual search engines in two ways: (1) the likelihood 

is marginalized to the search engines identifying individual PSMs, and (2) prior probability is 

adjusted for different combinations of search engines. More importantly, MSblender pools 

raw search scores for every possible PSM and directly models the distribution for all listed 

scores from the beginning, so it is not necessary to revisit lower-ranking PSMs to account for 

the PSMs not agreed upon by all search engines. 

 We evaluate the performance of MSblender with respect to peptide identification and 

protein quantification by spectral counting using three independent datasets. First, we use a 

yeast dataset (Yeast YPD hereafter) to assess the sensitivity and specificity profile for bona 

fide identifications, where high-confidence identifications reproducibly reported in multiple 

published datasets can be used as a benchmark set. Next, we include a (Sigma) UPS2 

dataset featuring a simple mixture of 48 human proteins, where concentrations are known 

for all proteins and thus the accuracy in both identification and quantification can be 

evaluated. Lastly, we use a dataset (iPRG09) from an Association of Biomolecular Resource 

Facilities (ABRF) proteome informatics research group (iPRG) 2009 study consisting of two 

biological samples, in which proteins present in only one sample are known and thus the 
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influence of improved identifications can be evaluated by differential expression analysis. 

Through these examples, we show that integrative analysis by MSblender increases the 

number of identifications substantially with accurate estimation of low false discovery rate 

(FDR), and it improves quantitative analysis of protein concentrations.  

 

Materials and Methods 

Yeast YPD dataset  

Yeast YPD is a yeast dataset from Ramakrishnan et al.15. Briefly, cell lysates were 

harvested from S. cerevisiae BY4741 grown in rich medium (YPD) in log phase, digested 

with trypsin and prepared for LC/LC-MS/MS analysis. We performed eight replicate LC-

MS/MS using four salt steps on an SCX column (ammonium chloride solutions of varying 

molarity, namely 0, 15, 60, 900 mM or 0, 20, 100, 900 mM in a 5% acetonitrile, 0.1% formic 

acid background), followed by reverse-phase chromatography on a C18 column and MS/MS 

analysis on an LTQ-Orbitrap Classic (Thermo). 32 files were analyzed using S. cerevisiae 

sequences from EnsEMBL version 50 and randomly shuffled sequences as decoy. The raw 

dataset is available at http://www.marcottelab.org/users/MSdata/Data_02/.  

 

UPS2 dataset  

The dataset comprises 48 human proteins mixed in concentrations covering six orders of 

magnitude, from 0.5 fmol to 50,000 fmol (Sigma Aldrich). The sample was prepared as 

described before15 including cysteine alkylation, trypsin digestion and cleanup of the 

resulting peptides. The sample was re-suspended in 50 µl of buffer (95% H2O, 5% 

acetonitrile, 0.1% formic acid) and ten samples of different dilutions were used for LC-

MS/MS analysis on an LTQ-Orbitrap Classic (Thermo) mass spectrometer in a 5 to 90% 

acetonitrile gradient over four hours. Dilutions ranged from none to 1:30, with 10µl injected 

per run. We used a sequence file downloaded from Sigma Aldrich website as the target 
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database and a decoy database derived from their randomly shuffled protein sequences. 

The raw data are deposited at http://www.marcottelab.org/users/MSdata/Data_13/. 

 

iPRG09 dataset  

We used the ABRF iPRG 2009 study data downloaded from Tranche Proteome Commons. 

The data consist of two 1D gel separations of identical Escherichia coli cellular lysates 

(called the ‘yellow’ and ‘red’ samples). In each sample, one segment of the separation gel 

was cut out and discarded. The two discarded segments (‘green’ and ‘blue’) did not overlap 

in their position in the two samples, thus the proteins in these segments would be identified 

as differentially expressed proteins relative to the other sample. For each of the two samples, 

five LC-MS/MS data files were available. To compare our results with the original study, we 

used the same E. coli sequences as available from the ABRF website 

http://www.abrf.org/index.cfm/group.show/ProteomicsInformaticsResearchGroup.53.htm 

including reversed sequences as decoy instead of randomly shuffled sequences.  

 

Data processing  

We used the same database with target and decoy sequences for all individual runs with 

four different search engines: SEQUEST, X!Tandem with k-score, InsPecT and MyriMatch. 

We used default parameters in each search engine wherever possible, assuming that 

parameters had already been optimized for each scoring matrix. We allowed for up to 2 

missed tryptic cleavages, and set static cysteine alkylation. More detailed information, such 

as software version and modified parameters, is reported in Table 1. In the search results, 

individual spectra may be reported multiple times in different PSMs, mainly because of 

different charge state assignments. For example, MyriMatch reported two PSMs for every 

spectrum with different charge estimates (+2 and +3 in our default setup). To guarantee 

consistency across search engines, we selected the best scoring PSM per spectrum based 

on the scores listed in Table 1. However, this is not a requirement and additional lower 

Page 6 of 35

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7 

ranking PSMs might also be allowed if the total number of PSMs from each search engine is 

not significantly different.  

 

Statistical model  

The statistical approach in MSblender is a probability mixture model for score distributions of 

correct and incorrect identifications, which has been widely used for scoring PSMs16. A novel 

feature of MSblender is that the mixture component distributions are modeled as multivariate 

distributions that appropriately account for the correlation between database search scores 

(Figure 2).  

 Suppose that the database search was repeatedly performed using K independent 

search engines, and M spectra were matched to peptide sequences by at least one search 

engine. Let Si=(Si1,Si2,...,SiK) denote the raw search score for spectrum i, where i=1, 2, ..., M. 

We assume that the raw scores are median centered and scaled by setting unit standard 

deviation in all search engines. Note that some Sij can be missing if the j-th search engine 

does not report the same PSM. The joint probability density of search scores can be written 

as  

g(Si) = (1-π) g0(Si) + π g1(Si)  for all i 

where π is the proportion of spectra with correct peptide assignment in the data. g0 and g1 

are the score distributions for PSMs in correct and incorrect identifications, respectively. We 

refer to them as negative and positive mixture component distributions from here on. To 

estimate these distributions, a sufficient number of PSMs must have scores across all 

database search algorithms included. However, not every spectrum is assigned to the same 

peptide sequence across all database search engines (Figure 1). Especially for decoy 

sequences, a spectrum is rarely assigned to the same decoy peptide by two or more search 

engines due to the random nature of incorrect peptide matches. It follows that the negative 

component g0 cannot be specified as a fully multivariate distribution due to the lack of usable 

data for estimation, and thus we assume g0(Si) = ∏n=1,...,K g0n(Sin), i.e. scores from different 
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search engines are conditionally independent for incorrect identifications. Furthermore, it is 

natural to assume different prior weights for true and false identifications when PSMs are 

identified in more search engines than others, i.e. frequent identification implies high prior 

belief of correct identification. Hence we vary the weight parameter π by each combination of 

search engines, as many as 2K-1.  

 To provide flexibility for accommodating variable shapes of score distributions, we 

allowed the mixture components g0 and g1 to be expressed as mixtures of multivariate 

Gaussian distributions themselves (g0 with a diagonal covariance matrix), where the number 

of subcomponents must be pre-specified by the user. Specifically,  

g1(Si) = Σc=1,...,C λc MVNK(Si; mc, Vc) 

where c is the number of subcomponents for the positive component distribution g1, MVNk 

stands for K-dimensional multivariate normal distribution, and mc and Vc are the mean vector 

and the covariance matrix for the subcomponent distribution c with a respective mixing 

proportion λc (such that Σc=1,...,C λc = 1). In a typical run, we specified two subcomponents by 

default (c=2).  

 In the case of g0, the marginal negative component distribution g0n of an individual 

search engine n is expressed as a mixture of univariate Gaussian distributions to allow for 

the same flexibility as in the positive component, i.e.  

g0(Si) = ∏n=1,...,K { Σc=1,...,C δcn N(Sin; mcn, Vcn)  } 

where N denotes univariate normal distribution. Mean and variance parameters (mcn, Vcn) as 

well as the mixing proportion(s) π are estimated using the EM algorithm17, where the spectra 

assigned to decoy peptides are treated as known incorrect PSMs, rendering the mixture 

model semi-supervised18. Once we estimate the positive and negative distributions in the 

score distribution, we compute the posterior probability of correct identification for each PSM 

by Bayes’ rule: 

pi = P(Correct | Si) = π g1(Si) / g(Si) 

Page 8 of 35

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



9 

where g(Si) = (1-π) g0(Si) + π g1(Si) for every spectrum i, and π varies by search engine 

combinations. Recall that Si is a fully K-dimensional vector without missing data only if PSM i 

is observed in all search engines. For a spectrum with scores from fewer than K database 

search engines, we compute the probability using the marginal distributions of observed 

scores only. After computing probabilities, the FDR at a probability threshold p* can be 

estimated by ∑i∈S* (1 - pi) / |S*|, where S* is the set of PSMs such that pi ≥ p* and |A| is the 

size of a set A.  

 

Benchmark data  

In the Yeast YPD dataset, we compared the MSblender results to the proteins observed in 

previously published large-scale data under the same condition (the entire cellular lysate 

during logarithmic growth in rich medium). This list of proteins was prepared from 4 MS-

based proteomics datasets and 3 non-MS-based datasets (see Ramakrishnan et al.15 and 

http://www.marcottelab.org/MSdata/gold_yeast.html). We used the list of 4,265 proteins 

observed in either two or more MS-datasets or any of non-MS-datasets as benchmark list.  

 

Differential expression analysis by QSPEC  

We applied a statistical method for selecting differentially expressed proteins based on 

spectral counts, termed QSPEC19, to the iPRG09 dataset analyzed by individual search 

engines and MSblender. QSPEC computes the odds (Bayes factors) of differential 

expression for individual proteins and reports log scaled odds multiplied by the sign 

determined by the direction of changes as the summary statistic. These quantities are used 

to estimate local fdr and FDR using nonparametric empirical Bayes methods20. We 

evaluated the sensitivity profile at various thresholds. We constructed receiver operating 

characteristic (ROC)-like curves using the benchmark set provided by the ABRF iPRG 2009 

study committee. The 'blue' and 'green' segments contain positive sets of enriched proteins 

in the 'red' and 'yellow' data respectively. In the ROC plot, the horizontal coordinate 
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corresponds to the number of proteins not included in the positive set, representing the false 

positive hits. Likewise, the vertical coordinate corresponds to the number of proteins 

included in the positive set, representing the sensitivity of detection. 

 

Software Availability  

The source for running MSblender can be downloaded from the URL 

http://www.marcottelab.org/index.php/MSblender. 

 

Results and Discussion 

Estimation of FDR  

The fundamental challenge in data integration is accurate estimation of error rates such as 

FDR. This is particularly difficult when search engines are heterogeneous, i.e. conflicting 

PSMs occur frequently between search engines, and search scores are not in good 

agreement. Figure 3 plots the FDR estimated by MSblender (see Materials and Methods) 

against decoy-based FDR estimates in all three datasets. We estimated decoy-based FDR 

by labeling one half of the decoy PSMs as non-decoy PSMs and measuring their recurrence 

in the MSblender results (with proper scaling). Overall, the two estimates show good 

agreement in critical regions, i.e. where the error rate is low, in all datasets, with a trend of 

underestimation of FDR against decoys in UPS2 and Yeast YPD datasets. There was no 

evidence of such underestimation against decoys in iPRG09 datasets, particularly in the low 

error rate area. A possible explanation for the underestimation is that more consistent decoy 

PSMs were identified by multiple search engines in UPS2 and YPD datasets than in iPRG09 

dataset. Since MSblender assigns higher prior weights for PSMs identified in more search 

engines than for PSMs identified in only one engine, many multi-engine (borderline scoring) 

decoy PSMs were assigned high probability.  

 To see this from a comparative angle, we first examined the union method, which 

selects PSMs in individual search engines at fixed FDRs and merging them. In Table 2 (FDR 
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0.5%), rows for MSblender and union show that the latter approach consistently includes 

more decoy PSMs than the former, leading to underestimation of error rates (actual error 

rate by decoy count is higher than the target 0.5%). A more sophisticated union approach 

with probability adjustments based on the search score agreement by Searle et al11 

improves the accuracy of FDR estimates in the first two datasets but not in iPRG09 datasets 

(Supplement Figure 2; see below). In addition to estimated FDR, Table 3 shows that 

MSblender achieves a good trade-off between recovering more true targets (gold standard 

reference identification in Yeast YPD dataset; see Materials and Methods) and identifying 

false-positive proteins at FDR 1%, whereas union would have incurred higher error rates 

than MSblender to achieve similar sensitivity. However, there was no significant 

improvement at FDR 0.5%; union and MSblender reported nearly identical results, implying 

that at extremely low error cutoffs, a sophisticated statistical model, such as is used in 

MSblender, is not necessarily helpful.  

 The findings above show that choosing thresholds for each search engine before 

forming the union is non-trivial as merging data filtered at a fixed FDR in individual search 

engines results in the post-integration FDR being higher than the target FDR. In addition, 

there may not exist a unique solution to control the composite identification error rate since 

the combined error is not a simple function of the individual error rates. In this situation, FDR 

control by MSblender based on multivariate mixture model can be helpful despite its 

underestimation of error in extremely high confidence regions. 

 

Sensitivity of identification 

In addition to the accuracy of FDR estimates in high confidence selections, we evaluated the 

performance of MSblender in comparison to the individual search engines. Specifically, we 

examined the number of identifications for both PSMs and proteins at fixed FDRs (0.5% and 

1%), and summarized the result in Figure 4. In all three datasets, MSblender clearly 

increases the number of identifications over individual search engines. For example, 

X!Tandem yielded the highest number of PSMs amongst other search engines at FDR 0.5% 
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in the Yeast YPD dataset (Figure 4a). Table 2 shows that the dataset contains 240,781 

PSMs, and X!Tandem identified 74,244 PSMs among these (30%). In comparison, 

MSblender identified 99,814 PSMs (41%) at the same FDR, increasing the number of 

identified PSMs by 11% of total spectra. From these additional PSMs, 452 new proteins 

were identified by MSblender in comparison to X!Tandem in this dataset. In the UPS2 

dataset, the number of PSMs increased by ~20% in MSblender compared to the best 

performing search engine SEQUEST (Figure 4b), but the number of proteins increased only 

marginally (by 4 proteins) due to the low sample complexity (see Table 2). However, the 

additional PSMs helped to improve quantification by spectral counting (see below). In 

iPRG09 datasets (Figures 4c-4d), MSblender identified a substantial number of additional 

PSMs, e.g. roughly doubling the number of identified PSMs over SEQUEST, and many new 

proteins.  

 In general, MSblender consistently increased the number of identifications compared 

to individual search engines both when integrating all search engines and when integrating 

only a subset of the engines (Supplementary Figure 1). This result holds for both small and 

highly complex protein samples with thousands of proteins. Interestingly, MSblender was as 

good with some combinations of three search engines as with all four search engines, 

indicating that there exists saturation effect in terms of additional improvements by including 

additional search engines. 

 

Comparison to agreement score adjustment 

To compare MSblender to existing integrative methods, we implemented in-house code to 

carry out the procedure described in Searle et al11, which we term agreement score 

adjustment (personal communication with the author). For each PSM, the agreement score 

was calculated following Searle et al.’s description, the probability scores from individual 

search engines were adjusted reflecting this agreement score, and the largest probability 

from all available search engines was taken as the final score for each PSM. If a search 

engine does not report the PSM, we considered it as a zero probability event. 
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Supplementary Figure 2 shows that agreement score adjustment not only produces as many 

PSMs as MSblender at fixed FDRs in UPS2 dataset, but also provides more accurate FDR 

estimates. The performance for the two methods was also similar in Yeast YPD dataset. 

However, MSblender offers much more accurate FDR estimates and more PSMs in both 

iPRG09 datasets. This is partly attributable to the fact that MSblender performs very well 

with highly heterogeneous search engine results, i.e. search engines that largely disagree 

on PSM identifications, as is the case in iPRG09 but not in UPS2 and Yeast YPD. 

Supplementary Table 1 shows that both decoy and non-decoy PSMs common in two or 

more search engines appeared more frequently in Yeast YPD and UPS2 datasets than in 

iPRG09 datasets. In the iPRG09 data, the method of agreement score adjustment operates 

close to the union method as it takes the largest probability, but probability adjustment 

occurs less frequently in iPRG09 than in other datasets (Supplementary Figure 2 panels 3b-

4b).  

 

Impact on label-free quantification by spectral counting  

Enhanced PSM and protein identification by integrative analysis is expected to have a 

positive impact on spectral counting based protein quantification, in particular if additional 

PSMs contribute to total spectral counts per protein and thus refine the resolution of 

quantification. For instance, the difference between 1 spectrum and 2 spectra is less 

discernible than the difference between 10 spectra and 20 spectra. The increase in spectral 

counts is particularly important for low-abundance proteins, as they are often identified by 

one or a few PSMs only using a single search engine.  

 We first examined the number of proteins identified by individual search engines and 

MSblender across the range of spectral counts. In spectral counting, if a spectrum is 

matched to n different peptides at a given significance level, then we considered the PSM as 

1/n count for each and every peptide (split spectral counts). We also investigated not using 

this correction and adding one count to each matched peptide, but this procedure did not 

perform differently in the low FDR range (not shown). Supplementary Figures 3a-3d illustrate 
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the results, for the case of split spectral counts. When we plotted the number of identified 

proteins against the spectral counts normalized by their length (in log10 scale), we found that 

not only the spectral count per protein increased in MSblender compared to individual 

searches, but also additional low-abundance proteins were identified. This observation 

implies that MSblender not only increased spectral counts for proteins identified by individual 

search engines, but also identified additional proteins in low spectral counts that individual 

search engines missed.  

 To assess the accuracy of quantification, we examined the correlation between 

spectral counts of 48 proteins of known concentrations (UPS2 dataset). Figure 5 shows the 

results for the individual search engines and MSblender combining all of them at FDR 0.5%. 

As in Yeast YPD data, spectral counts were normalized by protein length, and spectral 

counts and known concentrations were rescaled to log10. Figures 5a-5e show that 

MSblender allows for quantification of the largest number of proteins (42 proteins out of 48) 

while providing a similar correlation between observed and expected protein concentrations 

as individual searches, measured by rank correlation coefficients (Figure 5f). Even though 

tens of thousands of additional PSMs have been used by MSblender for quantification, 

length-normalized spectral counts were linearly correlated with the known concentrations. 

Based on the evenly distributed increase in identifications, we expect that this trend should 

hold in samples of high complexity. When we relaxed the error criterion (FDR 1%), the 

number of quantified proteins also increased in individual search engines, but the correlation 

decreased. FDR cutoffs less stringent than 1% admitted PSMs with probability score as low 

as 0.5 or 0.6, allowing noisy PSMs to compromise quantification accuracy. 

To further demonstrate that increased PSM identification improves quantification, we 

used iPRG09 datasets to examine the sensitivity/specificity profile during differential 

expression analysis. To evaluate the performance consistently, we applied the differential 

expression analysis tool QSPEC (see Materials and Methods) to spectral count data 

reported by individual search engines and MSblender. Figure 6 shows the comparative 

performance in terms of the receiver-operating characteristic (ROC) for split and raw 
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spectral count data at FDR 0.5%. MSblender detected differentially expressed proteins with 

the highest sensitivity at all fixed error rates for both types of spectral count data.  

 

Conclusion 

This work presents an efficient probabilistic approach that substantially improves 

identification of PSMs at low error rates, reducing the volume of unassigned spectra in mass 

spectrometry-based shotgun proteomics experiments. Because scores are computed for all 

PSMs from the start, PSMs subject to search engine discrepancy are automatically 

considered for all possible peptide sequences and thus there is no need to trace back lower-

ranking PSMs in individual searches. The final probability of correct identification does not 

have to rely on the probability from individual search engines which was calculated ignoring 

statistical dependence of raw search scores. The method can be applied to any number and 

combination of database search engines. Since the score is directly calculated from raw 

scores, the underlying statistical model allows a unified control of identification error rates.  

 Integration of unique PSMs in MSblender provides justifiable grounds for more 

coherent quantification than the post-assignment integration methods, particularly if spectral 

counting is employed. Interestingly, we observed that the identification and quantification 

improved not only for low abundance proteins with MSblender, but also for high abundance 

proteins. This observation implies that MSblender substantially expanded the dynamic range 

of detectable protein concentrations without compromising quantification accuracy.  

 For practical applications, we remind the readers that the fundamental challenge of 

integrative analysis is accurate estimation of identification errors, and it is important to 

understand the benefits and risks for error estimation when integrating different search 

engines of varying heterogeneity. MSblender delivers a tool to estimate correct integrated 

error rates even across heterogeneous datasets. In homogeneous datasets, i.e. where many 

search engines share PSMs including decoy PSMs, the performance of MSblender can be 

improved by modeling the negative component distribution in multivariate form as the 
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positive component distribution. In practice this is not feasible because the proportion of 

decoy PSMs occurring in two or more search engines is too small. We leave further 

improvements in statistical modeling to future work.  
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Supplementary Figure 1. Comparison of identification results across different database 

search engines and MSblender integrating 2, 3, and 4 search engines. The counts of PSMs 

assigned to non-decoy sequences are plotted versus the estimated FDR. The figure shows 

that MSblender integration using combinations of three search engines performs 

comparable to MSblender with all four search engines.  

 

Supplementary Figure 2. Comparison of MSblender and the agreement score method of 

Searle et al. with respect to the number of identifications (1a-4a) and the consistency 

between the estimated FDR and the decoy-based FDR (1b-4b). MSblender identifies more 

PSMs than the agreement score method except for the UPS2 dataset. The agreement 

method controls errors more accurately (closer to the diagonal) in the YPD and UPS2 

datasets; MSblender estimates errors more accurately for the iPRG09 dataset. 

 

Supplementary Figure 3. The number of identified proteins as a function of MS/MS spectral 

counts. Spectral counts per protein were normalized by protein length and rescaled to log10. 
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The improvement to protein identification by MSblender is similar for proteins from all 

abundance ranges, and does not show strong bias e.g. towards high abundance proteins. 

 

Supplementary Table 1. Heterogeneity of PSM agreement across search engines before 

filtering. 
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Figures 

 

 

Figure 1. Schematic view of MSblender. Each spectrum is listed with all unique peptide 

assignments across the database search engines considered for integration. MSblender 

considers all different cases. PSMs may be found by some search engines, but not by 

others (peptides 1, 2). Some spectra may be matched to different peptides by different 

search engines (peptides 3 - 9), where each PSM is treated differently.  
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Figure 2. An example of the statistical model for integrating scores from two database 

search engines. The scatter plot shows three groups of data: PSMs with scores reported 

from both engines (dots following a diagonal line), and PSMs identified uniquely by either of 

the two search engines (dots in lines parallel to each axis). Red stars indicate the PSMs 

assigned to decoy sequences. The elliptical contours in the scatter plot and the curves in the 

histograms are the estimated distributions (blue: correct identification, red: incorrect 

identification). 
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Figure 3. FDR estimated from posterior probabilities (Estimated FDR) against FDR 

estimated from decoy identifications (Decoy FDR). Estimated FDR is calculated by 

averaging PSM errors with a posterior probability threshold as described in Materials and 

Methods. Decoy-based FDR is calculated by recovery rate of decoy PSMs after labeling a 

half of decoy PSMs as target PSMs before running MSblender. Provided that decoys are 

truly random hits, the diagonal line indicates accurate FDR estimates.  
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Figure 4. Comparison of identification results across different database search engines and 

MSblender integrating all search engines. The plots show the number of PSMs assigned to 

non-decoy sequences against estimated FDR. Although the performance of individual 

search engine varies depending on the dataset, it is clear that integrated MSblender can 

identify substantially more PSMs at the same FDR. More figures with different combination 

of search engine results are available in the Supplementary Figure 1.    
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Figure 5. Length normalized spectral counts against known protein concentrations in the 

UPS2 dataset (FDR 0.5%). Spectral counts and concentrations were rescaled to log10. a-e: 

Individual search engines and MSblender. The number in subtitle parentheses reports the 

number of proteins identified. Across all protein concentrations, normalized spectral counts 

increase in MSblender, showing that MSblender improves the dynamic range of spectral 

counts. f: Spearman rank correlation coefficients (RS) against percentage of proteins 

identified, defined as the number of identified proteins divided by the total number of proteins 

known to exist (48). MSblender improves the protein identification substantially (x-axis), 

while maintaining a correlation between observed and known protein concentrations similar 

to single search engine results.    
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Figure 6. Comparison of QSPEC analyses using the search results from individual search 

engines and MSblender integrating all search engines (FDR 0.5%). Correct and incorrect 

identifications were determined from proteins removed from each sample provided by the 

ABRF iPRG 2009 committee. See Materials and Methods for details in each samples and 

segments. 
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Tables 

Table 1. Summary of search engine parameters. Parameters not reported in this table were 

not changed from default values used by the search engine.   

Name Source Version Scores used  

in MSblender  

Parameters 

SEQUEST Thermo 

Electron 

Bioworks  

3.3.1 SP1 

 

Xcorr Mass type: monoisotopic precursor and fragments 

Peptide tolerance: 25.0 ppm 

Fragment ion tolerance: 1.0 amu 

X!Tandem 

(k-score) 

REFERENCE 2009.10.01.1 E-value Fragment monoisotopic mass error: 0.7 

Parent monoisotopic mass error: 100 ppm 

Minimum peaks: 15 

Minimum fragment m/z: 150 

InsPecT REFERENCE 20100331 MQscore TagCount: 50 

PMTolerance: 2.5 

MyriMatch REFERENCE 1.6.62  

(2009-12-4) 

Mvh NumChargeStates: 3 

UseAvgMassOfSequences: false 
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Table 2. Summary table of identification results by individual search engines and MSblender 

combining all search engine results. The entries were obtained at FDR 0.5%. In the PSM 

table, the rows referred to as ‘k engines’ indicate the number of PSMs identified with k 

search engines. In the same table, the numbers in the parentheses are the number of decoy 

PSMs identified at the same FDR (0.5%).  

PSM UPS2 Yeast YPD iPRG09(Red) iPRG09(Yellow) 

Total MS/MS  

spectra observed 74,602 240,781 69,416 70,970 

SEQUEST 32,651 (87) 57,955 (268) 9,524 (98) 9,492 (83) 

X!Tandem 27,264 (210) 74,244 (332) 15,147 (117) 15,366 (112) 

MyriMatch 26,262 (79) 41,179 (106) 9,706 (88) 9,134 (46) 

InsPecT 25,618 (64) 69,341 (414) 12,691 (202) 13,295 (216) 

Union  40,829 (434) 95,315 (1053) 21,764 (505) 21,684 (455) 

MSblender 39,273 (336) 99,814 (1011) 23,580 (153) 23,717 (177) 

1 engine 4,043 (190) 10,441 (100) 2,138 (38) 2,073 (52) 

2 engines 7,389 (89) 16,861 (546) 3,768 (76) 3,878 (74) 

3 engines 5,560 (35) 32,111 (203) 6,820 (24) 6,816 (21) 

4 engines 22,202 (24) 38,257 (18) 10,830 (3) 10,826 (4) 

     

Protein UPS2 Yeast YPD iPRG09(Red) iPRG09(Yellow) 

Total proteins  48 6,698 4,417 4,417 

SEQUEST 38 1,391 757 749 

X!Tandem 38 1,459 870 847 

MyriMatch 36 1,241 722 657 

InsPecT 29 1,527 877 902 

Union  44 1,873 999 1,024 

MSblender 42 1,911 1,185 1,147 
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Table 3. Recovery of gold standard proteins in Yeast YPD dataset.  

FDR 0.5% All proteins False proteins True proteins False/Total 

Total 6698 2433 4265   

SEQUEST 1387 69 1318 4.97% 

X!Tandem 1453 62 1268 4.26% 

MyriMatch 1238 43 1195 3.47% 

InsPecT 1519 99 1420 6.51% 

Union 1899 161 1738 8.47% 

MSblender 1864 153 1711 8.20% 

     

FDR 1% All Proteins False proteins True proteins False/Total 

Total 6698 2433 4265   

SEQUEST 1500 96 1404 6.40% 

X!Tandem 1628 98 1530 6.01% 

MyriMatch 1307 53 1254 4.05% 

InsPecT 1662 134 1528 8.06% 

Union 2218 252 1966 11.36% 

MSblender 2038 203 1835 9.96% 
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Table of Contents Synopsis  
We present a statistical method, termed MSblender, which integrates mass spectrometry 

based peptide identification results from multiple database search engines. MSblender 

models the joint score distributions of peptide-spectrum matches in multiple search engines, 

and performs classification of each match into correct or incorrect identifications. It increases 

the number of peptide identifications significantly at low false discovery rates. The 

improvement also leads to better quantification of low abundance proteins.  
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