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A B S T R A C T

Single particle analysis for structure determination in cryo-electron microscopy is traditionally applied to
samples purified to near homogeneity as current reconstruction algorithms are not designed to handle hetero-
geneous mixtures of structures from many distinct macromolecular complexes. We extend on long established
methods and demonstrate that relating two-dimensional projection images by their common lines in a graphical
framework is sufficient for partitioning distinct protein and multiprotein complexes within the same data set.
The feasibility of this approach is first demonstrated on a large set of synthetic reprojections from 35 unique
macromolecular structures spanning a mass range of hundreds to thousands of kilodaltons. We then apply our
algorithm on cryo-EM data collected from a mixture of five protein complexes and use existing methods to solve
multiple three-dimensional structures ab initio. Incorporating methods to sort single particle cryo-EM data from
extremely heterogeneous mixtures will alleviate the need for stringent purification and pave the way toward
investigation of samples containing many unique structures.

1. Introduction

Cryo-electron microscopy (cryo-EM) has undergone a revolutionary
shift in the past few years. Increased signal in electron micrographs, as a
result of direct electron detectors, has allowed for the near-atomic re-
solution structure determination of many macromolecules of various
shapes and sizes (Kühlbrandt, 2014). These new detectors combined
with automated data collection software and improvements in image
processing suggest that cryo-EM could be utilized as a high-throughput
approach to structural biology. One emerging field in single particle
cryo-EM that seeks to take advantage of these advances is the direct
investigation of macromolecules from cellular extracts (Doerr, 2018;
Kyrilis et al., 2019). Such an approach is motivated by many observa-
tions that fractions from chromatographically separated cell extracts
combined with mass spectrometry can be mined for a wealth of in-
formation including the organization of macromolecules into larger
assemblies (Wan et al., 2015). A natural complement to this informa-
tion would be direct structural analysis of the macromolecular assem-
blies from the same fractions of cell extract. Single particle cryo-EM is a
promising tool for this goal. Although spatial context is lost when

compared to tomography, single particle approaches are more suc-
cessful at producing high-resolution structures. However, one major
obstacle remains: sorting through the immense heterogeneity that is
present in a mixture of tens to hundreds of macromolecular assemblies.

We and others have shown that cellular extracts contain rich
structural information which can be used for the identification of
multiple structures using conventional single particle analysis (Kastritis
et al., 2017; Verbeke et al., 2018). More recently, we extended this
approach to reconstruct macromolecular machines from the lysate of a
single C. elegans embryo (Yi et al., 2018). These studies were limited to
the identification of only the most abundant and easily identifiable
protein and protein–nucleic acid complexes due to a lack of methods to
efficiently categorize which two-dimensional (2D) projection images
derive from which three-dimensional (3D) assemblies on the basis of
their structural features. While a number of 3D classification schemes
exist, all failed to produce reliable reconstructions for the majority of
particles in these complicated mixtures. This obstacle emphasizes the
long-standing need to sort mixtures of structures in addition to their
conformational and compositional heterogeneity.

Several methods have been successfully implemented for sorting
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heterogeneity in cryo-EM data when there are conformational land-
scapes or variations in the subunit stoichiometry. These approaches
generally fall into three categories. Currently, the most popular ap-
proach for sorting heterogeneity in cryo-EM data utilizes a maximum
likelihood estimation to optimize the correct classification of particles
into multiple structures (Scheres, 2012; Sigworth, 1998; Sigworth et al.,
2010). Another approach is to estimate the covariance in cryo-EM data
to search for regions of variability between the models and the data
(Katsevich et al., 2015; Liao et al., 2015; Penczek et al., 2006). The last
approach, and most relevant to this paper, involves computing simila-
rities between projection images in the data before applying clustering
methods to separate the data into homogenous subsets (Aizenbud and
Shkolnisky, 2019; Herman and Kalinowski, 2008; Shatsky et al., 2010).
All of these approaches have been demonstrated on samples containing
a primary structure with multiple conformations or variable subunits.
However, little work has been done for sorting heterogeneous samples
containing multiple distinct structures.

In particular, this work uses the principle of common lines to score
the similarity between many otherwise disparate 2D projection images.
The central section theorem states that the Fourier transform of any 2D
projection of a 3D object is a 2D section through the center of the 3D
Fourier transform of the 3D object. Additionally, the 2D central section
is perpendicular to the direction of the projection. It follows a dimen-
sion lower that a 1D projection (line projection) of a 2D object is a 1D
central section through the 2D Fourier transform of the 2D object.
Stated in real space: any two 2D projections of the same 3D object must
share a 1D line projection in common (i.e. common lines) (Van Heel,
1987). The central section theorem was initially used for ab initio 3D
reconstructions but has largely been abandoned in favor of projection
matching strategies due to a poor sensitivity to noise (Penczek et al.,
1994). For our purposes of investigating structures from lysates, pro-
jection matching is largely ineffective because we do not have initial 3D
structures or even know how many structures might be present in the
data and therefore cannot bootstrap from the models. However,
common lines still contain significant information that can be exploited
to discriminate 2D projections from a heterogeneous mixture prior to
3D reconstruction by conventional methods.

Here, we develop a pipeline for building 3D reconstructions from

rich mixtures of distinct particles by first grouping aligned and aver-
aged 2D projections into discrete, particle-specific classes using the
principles of common lines and a novel graphical clustering framework.
We demonstrate our method by partitioning reprojections from 35
previously solved structures into their correct groups. Furthermore, we
applied this pipeline to an experimental set of cryo-EM micrographs
containing a mixture of several macromolecular complexes. We were
able to reconstruct multiple 3D structures after our clustering, im-
proving on 3D classification of all particles simultaneously using cur-
rent 3D reconstruction software. This work adds a new layer to the
conventional classification schemes and is a necessary step for moving
cryo-EM towards single particle structural biology from samples con-
taining mixtures of many structures.

2. Results

2.1. Classifying projection images from multiple structures

A major challenge facing “shotgun”-style cryo-EM is to reconstruct
models from projection images arising from multiple distinct structures
present in a mixture. To overcome this obstacle, we sought a method to
computationally group heterogeneous projection images into discrete
clusters that each derive from the same structure. In order to partition
2D projections into homogenous subsets, we developed an algorithm
for detecting Shared Lines In Common Electron Maps (SLICEM). Using
this algorithm, we score the similarity of 1D line projections between
sets of aligned, classified and averaged 2D projection images (referred
to as 2D class averages) without knowledge of the number of under-
lying 3D objects, or what they look like. Subsequently, these similarity
scores can be put into a graphical framework and clustering algorithms
can be applied to group related 2D projection images for subsequent 3D
reconstructions (Fig. 1).

2.2. Synthetic data

To test our approach using SLICEM, we generated synthetic re-
projections from 35 previously solved structures deposited in the PDB
(see Methods). The structures ranged in molecular weight from ∼30 to

Fig. 1. Computational pipeline for SLICEM. Individual particle images are averaged after reference-free 2D alignment and classification. Using a Radon transform, 1D
line projections are created from the 2D class averages (also referred to as 2D projections). Each 1D line projection from every 2D projection is then scored for
similarity. The top scores between 2D projections are then used to create edges connecting 2D projections that have a similar 1D line projection, forming a graph. 2D
projection images are then partitioned into groups belonging to the same putative structure using a community detection algorithm. Individual particle images
belonging to each 2D projection within a community are subjected to ab initio 3D reconstruction.
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3000 kDa (Fig. 2A). Each PDB structure was low-pass filtered to 9 Å and
uniformly reprojected to create 12 2D projection images, forming an
initial set of 420 reprojections simulating 2D class averages from a
mixture of structures (Ludtke et al., 1999) (Fig. S1). Although these
reprojections do not perfectly reflect experimentally determined 2D
class averages, failure of this test would indicate little power for real
data. Each 2D projection is in turn projected down to 1D in 5 degree
increments over 360 degrees.

The similarity between all 1D line projections from every 2D re-
projection was then scored using different metrics to evaluate their
performance for identifying common line projections. The metrics
evaluated were Euclidean distance (Eq. (1)), sum of the absolute dif-
ference (Eq. (2)), cross-correlation (Eq. (3)) and cosine similarity (Eq.
(4)) (see Methods). We additionally tested the performance of the Eu-
clidean distance and cross-correlation after a Z-score normalization of
each 1D line projection. Scoring common lines depends heavily on the
centering of 2D class averages. We address this in two ways in our al-
gorithm. As an additional layer of image processing, the particle in each
class average is centered by encompassing it in a minimal bounding
box. Next, as part of the scoring, if there is a difference in length be-
tween a given pair of 1D projections, the smaller of the two vectors is
translated pixel-wise relative to the other vector and scored at each
position to account for class averages that might be offset relative to

other similar class averages. The optimum score during translations is
then used as the similarity between the two 1D line projections.

The precision and recall of correctly pairing 2D class averages from
the same 3D structures was then computed in order to determine the
performance of each metric, and cosine similarity was determined to be
the top performing metric (Fig. 2B). Euclidean distance and normalized
Euclidean distance had identical performance and are overlaid on the
plot. Not surprisingly, cross-correlation was the worst performing me-
tric as the dot product between two vectors scales with their magnitude.
Thus, 1D projections from larger protein assemblies are more likely to
score higher even if there is no true similarity between the 1D projec-
tions.

In order to identify sets of 2D projection images from the same 3D
particles, we constructed a network from the comparisons between 2D
reprojections, or class averages, as follows: Each 2D class average was
represented as a node in a directed graph, with each node connected by
edges to the nodes corresponding to the 5 most closely-related 2D class
averages based on the similarity of their 1D line projections. While the
top-scoring metric in our precision/recall analysis was cosine similarity,
the network generated from the Euclidean distance similarity most
clearly showed communities (clusters of 2D class averages) correctly
partitioned by 3D structure (Fig. S2). This result is reflected by the well
separated distributions of scores for reprojections belonging to the same

Fig. 2. Separating mixtures of synthetic 2D reprojections. Synthetic reprojections were generated from 35 distinct PDB structures low-pass filtered to 9 Å from protein
and protein assemblies ranging in molecular weight from∼30 to 3000 kDa, prior to separation using SLICEM. (A) Low-pass filtered models of each PDB structure. (B)
Precision-recall plot ranking 6 different metrics at scoring the similarity between 1D line projections from each 2D reprojection. (C) Distribution of scores calculated
using Euclidean distance for reprojections belonging to the same structure and reprojections belonging to different structures.
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structure and scores for reprojections belonging to different structures
(Fig. 2C). We additionally applied a traditional hierarchical clustering
scheme and show the block structure present in the similarity scores
between reprojections (Fig. S2). These results show that partitioning 2D
projection images by scoring the similarity of their 1D line projections
is a powerful, unsupervised approach for sorting cryo-EM data from
distinct 3D structures within a heterogeneous mixture.

We additionally tested the following cases that are often present in
cryo-EM datasets: (1) uneven angular distribution and number of pro-
jections (i.e. non-uniform sampling of the structure), (2) molecular
symmetry in the structure, and (3) conformational and subunit het-
erogeneity. In the first test, performance of the algorithm was only
slightly diminished over the case of uniform projections (Fig. S3).
Preferential orientation negatively impacts 3D reconstruction, but has
significantly less effect when simply searching for common lines. Our
algorithm was also able to effectively distinguish synthetic 2D re-
projections for the latter two cases (Fig. S4). In the competitive gra-
phical framework, similar but lower scoring projections (e.g. due to a
change in conformation) are outcompeted by higher scoring projections
in the same conformation. Molecular symmetries may also be beneficial
as they increase the chance of finding a common line between struc-
tures. Thus, scoring by common lines provides a powerful approach for
ranking the similarity of 2D projections in a mixture.

2.3. Cryo-EM on a mixture of protein complexes

After validating our SLICEM algorithm on a synthetic dataset, we
performed cryo-EM on an experimental mixture of structures and tested
our approach as a proof-of-principle. Our experimental mixture con-
sisted of 40S, 60S and 80S ribosomes at 75 nM, 150 nM and 50 nM,
respectively, and apoferritin and β-galactosidase each at 125 nM. We
collected∼ 2,400 images and used a template-based particle picking
scheme to select∼ 523,000 particles from the entire data set (Roseman,
2004). Raw micrographs showed a mixture of disperse particles with
varying size and shape (Fig. S5). We then performed 2D classification
on the entire set of particles using RELION (Scheres, 2012). After 1
round of filtering junk particles, the remaining ∼203,000 particles
were sorted into 100 classes using RELION. The class averages con-
tained many characteristic ribosome projections and had distinct
structural features (Fig. S5). We were unable to identify any β-ga-
lactosidase particles in our collected images.

We then applied our SLICEM algorithm to the 100 2D class
averages. The identity of each 2D class average was manually anno-
tated, where it was easily recognizable, to assess whether our algorithm
was correctly separating the 2D projection images from our hetero-
geneous mixture (Fig. 3). Based on these manual annotations, we again
tested the 6-different metrics in a precision-recall framework to de-
termine which metric performed better on experimental data (Fig. S6).
The Euclidean distance and sum of the absolute difference scoring
metrics significantly outperformed the cosine similarity. Using the sum
of the absolute difference scoring metric, the network naturally parti-
tioned into 3 distinct communities, one for each ribosome, prior to
employing any community detection algorithms (Fig. 3).

As part of our algorithm, we evaluated two community detection
methods, edge betweenness and walktrap, to determine if the network
should be further subdivided (Newman and Girvan, 2004; Pons and
Latapy, 2005). We chose to use community detection algorithms to
prevent biasing the data by choosing a specific number of output
clusters we expected. Briefly, the algorithms work as follows: For edge
betweenness, edges with the highest “betweenness” score in a network
are iteratively removed and the betweenness recalculated. At some
iteration, the network is separated into separate components (i.e.
communities). For walktrap, random walks on a graph tend to stay in
the same community if they are densely packed. A similarity score
between nodes can then be calculated and used for partitioning of the
graph. Both approaches have advantages and disadvantages for our

purpose here and the best choice for clustering is largely empirical.
As part of our processing pipeline, we note that the initial choice for

the number of 2D class averages, computed here using RELION, can
have an effect on the performance of our algorithm. We tested K= 80,
100, 120 and 200 classes to assess the effect on the performance of our
algorithm (Fig. S7). Despite varying the number of classes, the resulting
networks still show correct grouping of 2D class averages from the same
3D structure. At all K values, performance measured by precision and
recall is substantially better than random assignment of class averages.
However, these results also suggest that moving forward, a more
quantitative approach should be taken for selecting the number of 2D
class averages. Using our SLICEM algorithm, we demonstrate that it is
possible to correctly separate 2D projection images from 3 large,
asymmetric macromolecular complexes in the same mixture.

2.4. Summed pixel intensity as an additional filtering step

Apart from partitioning 2D projection images into homogenous
subsets for 3D reconstruction, one additional goal of shotgun-EM is to
determine the identity of each projection image. In previous studies, we
and others have leveraged mass spectrometry data to help identify
electron microscopy reconstructions from a heterogeneous mixture,
such as cell lysate, where the architecture of every protein or protein
complex is not known (Kastritis et al., 2017; Verbeke et al., 2018).
However, this combined MS-EM approach was only useful for identi-
fying highly abundant and easily recognizable structures.

To provide evidence of macromolecular identity from the electron
maps, we calculated the sum of pixel intensities for each manually
annotated 2D class average as a proxy for molecular weight (Fig. 4).
The summed pixel intensities of each annotated 2D class average is
plotted as a point on the violin plot to show the distribution of summed
pixel intensities between projections of the same structure and between
projections of different structures. We found that each of the three ri-
bosomes and apoferritin had unique summed pixel intensities that
could be used to distinguish their class averages. Although these values
do not directly correspond to molecular weight, and the values will
depend on microscope settings or specimen variation, such as ice
thickness, class averages belonging to the same structure should have
similar values that can be ranked relative to external data (e.g. mass
spectrometry data). A least-squares fit to the mean of the summed pixel
intensities showed a linear relationship between summed pixel intensity
and molecular weight.

The summed pixel intensities were therefore used as an additional
filtering step by removing nodes in communities whose summed pixel
intensities were outliers in that community. Using this filtering step, the
apoferritin class average was removed from the community containing
predominantly 40S ribosome reprojections. Our data suggest that, given
an appropriate set of standards, summed pixel intensity can be corre-
lated to molecular weight. Thus, summed pixel intensity could be useful
in narrowing down the possible identities for a set of electron density
maps, when combined with sequence information from mass spectro-
metry.

2.5. 3D classification of a mixture of protein complexes

The ultimate goal of our pipeline is to reconstruct multiple 3D
models from our output of clustered 2D projection images. We chose to
use cryoSPARC for 3D reconstructions because it can perform hetero-
geneous reconstruction without a priori information on structure or
identity (Punjani et al., 2017). We used the particles from each of our 3
distinct communities in addition to the isolated apoferritin node for ab
initio reconstruction in cryoSPARC (Fig. 5). The cluster containing pri-
marily 40S ribosome particles was split into two classes to filter the
additional junk particles present in the community. Comparison of our
models reconstructed after clustering to the models produced using the
entire data set as input for ab initio reconstruction in cryoSPARC with 4
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classes (one for each protein complex in the mixture) showed our pre-
sorting procedure improved the resulting structures (Fig. 5). In parti-
cular, we were able to build an apoferritin model that was missed in the
3D classification of all particles from cryoSPARC. Our 80S model also
shows a more complete density for the small subunit than its counter-
part in the model created without clustering. We also observe that
changing the number of classes using ab initio reconstruction in
cryoSPARC had a substantial impact on the quality of classification
(Fig. S8).

Each model was refined and evaluated using the gold-standard
0.143 Fourier shell correlation criterion (Fig. S9). We obtained easily
identifiable 40S, 60S, and 80S ribosome structures at 12, 4, and 5.4 Å
resolution, respectively. We were also able to reconstruct the smaller,
more compact apoferritin at 19 Å resolution. The ratio of particle
numbers for each model was also compared to the input concentrations
and shows a bias towards 60S particles (Fig. S9). Notably, the 40S and
80S models contain streaks in one dimension, indicating that we are
missing several orientations of the particles. We attribute this to pre-
ferential orientation of the particles in ice, rather than an inability of
our algorithm to properly sort particles into correct communities. To-
gether, these results demonstrate a functioning pipeline for sorting 2D
projection images from a heterogeneous mixture of 3D structures, al-
lowing for single particle EM to be applied to samples containing
multiple proteins or protein complexes. Importantly, aside from
choosing the most appropriate similarity measure, our approach is fully
unsupervised, requiring no user defined estimate of the number of ex-
isting 3D classes.

3. Discussion

As cryo-EM continues to rapidly advance, one potential application
would be to perform high-throughput single particle structural biology
of the cell. In particular, our goal is to survey macromolecular struc-
tures directly from cell lysates. The ability to correctly sort and classify

heterogeneous mixtures will become a necessary feature. One ad-
vantage of this approach would be to study closer-to-native proteins
directly from cells without the need to purify or alter the sample.
Currently, handling compositional and conformational heterogeneity is
a major challenge for the EM field, usually requiring expert, time-
consuming steps. For our purposes of samples containing many struc-
tures, the more sophisticated projection matching algorithms currently
used are not effective by themselves as they require an estimate for the
number of 3D models expected. Additionally, chromatographic se-
paration of cell lysate is often done on the basis of size, ruling out using
the size of 2D projections as a means for separating them.

In this study, we present an unsupervised algorithm, SLICEM, which
extends on previous methods and demonstrates that scoring the simi-
larity between 2D class averages based on their 1D line projections
contains sufficient information to correctly cluster 2D class averages of
the same 3D structure from a mixture of protein and protein-nucleic
acid complexes. Using the principal of common lines in a competitive
graphical framework provides auxiliary information which can enhance
traditional classification. Additionally, as we are not using the common
lines to define a relative angle about a tilt axis between 2D projections,
many of the pitfalls previously observed with using common lines for
3D reconstruction do not apply. We first demonstrate that the algorithm
successfully sorts a synthetic dataset of reprojections created from 35
unique macromolecular structures. Next, we show the same algorithm
can successfully partition 2D class averages from an experimental data
set containing multiple macromolecular complexes. Pre-sorting 2D
projection images prior to 3D classification can allow for current re-
construction algorithms to be employed on datasets containing many
unique structures.

Although we demonstrated the feasibility of our approach on syn-
thetic and experimental data, we acknowledge that there are several
limitations. In particular, our algorithm relies on the quality of up-
stream 2D alignment, classification and averaging. One possible ap-
proach to better quantify the 2D class averages input to our algorithm

Fig. 3. Experimental 2D class averages and resulting network. Cryo-EM data was collected on a mixture of 5 protein and protein-nucleic acid complexes.
Representative 2D class averages of the 4 complexes identified in the mixture are shown on the left. The identity of each class average was manually annotated were it
could be easily identified. The class average corresponding to apoferritin was further subdivided into multiple classes for visualization. Each box corresponds to a
width of 422 Å. The network displayed was generated after using SLICEM on the 100 2D class averages scored using the sum of the absolute difference metric. Nodes
representing each 2D class averages are colored by their putative structural identity and are connected to their 5 most similar class averages.
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Fig. 4. Summed pixel intensities of 2D class averages correlate to molecular weight. (A) 2D to 1D projections (projection angle orthogonal to the x-axis) for
representative 2D class averages of each structure present in the mixture. 1D projection plots show the line profile for a single 1D projection of each 2D class average.
Pixel heat maps show the intensity of the line profile at each pixel. (B) Distribution of the summed pixel intensities calculated for each 2D class average. Summed
pixel intensities for each manually identified 2D class average are plotted against their respective molecular weight. Black points are the mean summed pixel intensity
for each structure and n indicates the number of 2D classes for each structure.
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would be to sweep multiple values of 2D classes and compare their
Fourier ring correlations to see which number of classes has the most
similar, high-resolution classes. There will likely be a tradeoff between
picking enough classes to cover the heterogeneity present in the data
and still having enough signal for accurate common line detection.
However, our intent with this algorithm is simply to pre-sort 2D pro-
jections belonging to the same structure allowing for more robust 3D
classification schemes. As we observed during 2D classification of our
cryo-EM data, all apoferritin particles were grouped into a single class
average. However, during our network generation step, each class
average is given multiple edges to the most similar classes, forcing the
single apoferritin class average to have multiple spurious edges. This
error will occur any time the number of class averages of a given
structure is less than the number of edges used in the graph. Future
modifications to the algorithm could include searching for symmetric
class averages, where this error is more likely to occur, and removing
them prior to community detection.

As we move cryo-EM towards structural determination from

complicated mixtures, several other technical challenges will emerge,
such as universal freezing conditions. In our mixture of 5 macro-
molecular complexes, we were unable to easily find freezing conditions
that accommodated all proteins. The result was a mixture missing β-
galactosidase and containing orientation preferences for the 40S and
80S ribosome. However, previous work has produced e.g. high-resolu-
tion structures of fatty-acid synthase from fractionated cell lysate,
suggesting it is possible to find suitable cryo-conditions for solutions
containing many macromolecular species (Kastritis et al., 2017). An
additional challenge will be developing particle picking algorithms
specifically for mixtures, where the particle shape may be unknown
and, perhaps more importantly, non-uniform. While in this study we
used a template picking scheme, future studies with mixtures of un-
known composition will require more sophisticated approaches.

An expert might be able to manually sort the class averages from our
cryo-EM data set; however, as mixtures grow in complexity, manual
sorting will certainly become infeasible. Introducing algorithms such as
SLICEM will provide an unbiased way to group 2D projection images

Fig. 5. Ab initio structures from an experimental mixture. (Top) High-resolution structures of the 80S ribosome EMD-2858 (Cianfrocco and Leschziner, 2015), 60S
ribosome EMD-2811 (Shen et al., 2015), 40S ribosome EMD-4214 (Scaiola et al., 2018) and apoferritin EMD-2788 (Russo and Passmore, 2014). (Middle) 3D models
of the 80S ribosome, 60S ribosome, 40S ribosome and apoferritin generated by sorting particles using SLICEM prior to ab initio 3D reconstruction in cryoSPARC.
(Bottom) 3D models generated using ab initio reconstruction to generate 4 classes in cryoSPARC without pre-sorting particles using SLICEM.
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and can be easily implemented in conjunction with a variety of image
processing and 3D reconstruction packages. One additional utility of
this algorithm could be to remove junk class averages from data in a
semi-supervised manner by removal of communities of projection
images that do not appear to have structural features. Our approach for
sorting mixtures of structures combined with previous approaches for
sorting conformational heterogeneity could be a powerful tool for deep
classification. Development of methods to sort mixtures of structures in
single particle cryo-EM will allow us to solve more structures in parallel
and alleviate time-consuming protein purification and sample pre-
paration.

4. Materials and methods

4.1. Synthetic data generation

The following list of PDB entries were used to create the dataset of
synthetic reprojections (1A0I, 1HHO, 1NW9, 1WA5, 3JCK, 5A63, 1A36,
1HNW, 1PJR, 2FFL, 3JCR, 5GJQ, 1AON, 1I6H, 1RYP, 2MYS, 3VKH,
5VOX, 1FA0, 1JLB, 1S5L, 2NN6, 4F3T, 6B3R, 1FPY, 1MUH, 1SXJ,
2SRC, 4V6C, 6D6V, 1GFL, 1NJI, 1TAU, 3JB9, 5A1A). Each PDB entry
was low-pass filtered to 9 Å and converted to a 3D EM density using
‘pdb2mrc’ in EMAN (Ludtke et al., 1999). These densities were then
uniformly reprojected using ‘project3d’ in EMAN to create 12 2D re-
projections for each structure (Ludtke et al., 1999). Reprojections were
centered in 350 Å boxes.

4.2. Purification of apoferritin and β-galactosidase

Size-exclusion chromatography was performed at 4 °C on an AKTA
FPLC (GE Healthcare). Approximately 10mg of apoferritin (Sigma
A3660-1VL) and 5mg of β-galactosidase G5635-5KU were in-
dependently applied to a Superdex 200 10/300 GL analytical gel fil-
tration column (GE Healthcare) equilibrated in 20mM HEPES KOH,
100mM potassium acetate, 2.5mM magnesium acetate, pH 7.5 at a
flow rate of 0.5mLmin−1. Fractions were collected every 0.5 mL.

4.3. SLICEM algorithm

Our algorithm consists of five main steps: (1) Extracting 2D class
average signal from background, (2) Generating 1D line projections
from the extracted 2D projection images, (3) Scoring the similarity of
all pairs of 1D line projections, (4) Building a nearest-neighbors graph
of the 2D class averages and (5) Partitioning communities within the
graph.

4.3.1. Extracting 2D class averages from background
The input to our algorithm is a set of centered and normalized 2D

class averages. The images are normalized according to the RELION
conventions of setting particles to a mean value of zero and a standard
deviation of one for all pixels in the background area. We then extract
the centered region of positive pixels values from the zero-mean nor-
malized images to remove background signal and extra densities that
might be present in a class average. This step also serves to re-center the
class average by surrounding it with a minimal bounding box.

4.3.2. Generating 1D line projections from extracted 2D projection images
Each newly extracted class average is then projected into 1D over

360 degrees in 5 degree intervals by summing the pixel values along the
projection axis. The 1D line projections are then ready to be scored or
are independently zero-mean normalized if the normalized cross-cor-
relation or normalized Euclidean distance scoring metric are selected.

4.3.3. Scoring the similarity of all pairs of 1D line projections
To score the similarity of the 1D line projections we consider 6

different scoring metrics. The metrics evaluated were Euclidean

distance (Eq. (1)), sum of the absolute difference (Eq. (2)), cross-cor-
relation (Eq. (3)) and cosine similarity (Eq. (4)). We additionally con-
sider Euclidean distance and cross-correlation after a Z-score normal-
ization of each 1D line projection. For two 1D line projection vectors p
and q, the difference d between the vectors can be calculated as follows:
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The similarity of the 1D line projections is calculated for all pixel-
wise translations of the smaller 1D projection across the larger 1D
projection if there is a difference in projection size, analogous to the
‘sliding’ feature of standard cross-correlations. The optimum score
during the translations is kept for each pair of 1D projections. After
pairwise scoring of all 1D line projections from all 2D class averages,
the similarity between each pair of 2D class averages is defined by their
respective best scoring 1D line projections.

4.3.4. Building a nearest-neighbors graph of the 2D class averages
SLICEM then constructs a directed graph using the similarity scores

calculated for each pair of 2D class averages. Each node (2D class
average) is connected to the 5 most similar (top scoring) 2D class
averages. Each edge is assigned a weight computed as a Z-score relative
to all scores for a given 2D class average.

4.3.5. Partitioning communities within the graph.
The resulting graph is then subdivided using a community detection

algorithm. Specifically, we evaluated the edge-betweenness and walk-
trap algorithms to define clusters in the graph. The default parameters
for each clustering method implemented in iGraph were used in our
algorithm, however we note that different similarity metrics and
‘clustering strengths’ can be applied. For edge-betweenness, the den-
drogram is cut at the level which maximizes the modularity and for
walktrap, the length of the random walks is set to 4. Then, the median
absolute deviation of summed pixel intensities for each node is calcu-
lated to remove outliers from clusters. Finally, for each community, the
individual raw 2D particles corresponding to the now-grouped 2D class
averages are then used as input for 3D reconstruction in cryoSPARC.

4.4. Cryo-EM grid preparation and data collection

C-flat holey carbon grids (CF-1.2/1.3, Protochips Inc.) were pre-
coated with a thin layer of freshly prepared carbon film and glow-dis-
charged for 30 s using a Gatan Solarus plasma cleaner before addition of
sample. 2.5 μl of a mixture of 75 nM 40S ribosome, 150 nM 60S ribo-
some, 50 nM 80S ribosome, 125 nM apoferritin and 125 nM β-galacto-
sidase were placed onto grids, blotted for 3 s with a blotting force of 5
and rapidly plunged into liquid ethane using a FEI Vitrobot MarkIV
operated at 4 °C and 100% humidity. Data were acquired using an FEI
Titan Krios transmission electron microscope (Sauer Structural Biology
Laboratory, University of Texas at Austin) operating at 300 keV at a
nominal magnification of ×22,500 (1.1 Å pixel size) with defocus
ranging from −2.0 to −3.5 μm. The data were collected using a total
exposure of 6 s fractionated into 20 frames (300ms per frame) with a
dose rate of∼8 electrons per pixel per second and a total exposure dose
of ∼40 e–Å−2. A total of 2423 micrographs were automatically re-
corded on a Gatan K2 Summit direct electron detector operated in
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counting mode using the MSI Template application within the auto-
mated macromolecular microscopy software LEGINON (Suloway et al.,
2005).

4.5. Cryo-EM data processing

All image pre-processing was performed in Appion (Lander et al.,
2009). Individual movie frames were aligned and averaged using
‘MotionCor2’ drift-correction software (Zheng et al., 2017). These drift-
corrected micrographs were binned by 8, and bad micrographs and/or
regions of micrographs were removed using the ‘manual masking’
command within Appion. A total of 522,653 particles were picked with
a template-based particle picker using a reference-free 2D class average
from a small subset of manually picked particles as templates. The
contrast transfer function (CTF) of each micrograph was estimated
using CTFFIND4 (Rohou and Grigorieff, 2015). Selected particles were
extracted from micrographs using particle extraction within RELION
(Scheres, 2012) and the EMAN2 coordinates exported from Appion.
Two rounds of reference free 2D classification with 100 classes for each
sample were performed in RELION to remove junk particles, resulting
in a clean stack of 202,611 particle images.
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