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I.  INTRODUCTION 
 
The bioinformatic prediction of gene function is, although young, already an extensive 
field, and with the high quality of the yeast genome sequence and the already large and 
rapidly growing volume of yeast functional genomics data, the prediction of yeast gene 
function is a substantial subfield in itself.  A wide variety of approaches have been 
developed to predict gene function, ranging from sequence analyses to assign genes into 
functional families (Bork and Koonin 1998; Ponting 2001; Bateman et al. 2004), to 
structural analyses to assign protein folds (Honig 1999; Schonbrun et al. 2002; Godzik 
2003) and active sites (Fetrow and Skolnick 1998; Madabushi et al. 2002), to 
phylogenetic analyses for subdividing gene families into functional subgroups (Eisen 
1998; Eisen 1998; Abhiman and Sonnhammer 2005; Engelhardt et al. 2005) or predicting 
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interacting partners (Pazos and Valencia 2002).  As ‘gene function’ takes such a wide 
variety of forms, from the corresponding protein’s biochemical activity to its physical 
interaction partners to membership in a given pathway, we focus here only on the latter 
‘network’ aspects of gene function: a protein’s interaction and pathway partners, and the 
inferences of function that derive from these.   
 
One of the most effective strategies for inferring pathway-type functional information has 
turned out to be the general strategy of ‘guilt-by-association’ (e.g., as in (Eisen et al. 
1998; Marcotte et al. 1999; Aravind 2000; Eisenberg et al. 2000; Oliver 2000; Wu et al. 
2002; Huynen et al. 2003; Xia et al. 2004; Jiang and Keating 2005; Wolfe et al. 2005), to 
name but a few).  This chapter will discuss the inference of yeast gene function via guilt-
by-association approaches, discussing a variety of relevant functional and comparative 
genomics approaches, and their integration to predict gene function more accurately.  We 
focus in particular on how these approaches can be made quantitative by estimating the 
error rates in these data and in the predicted gene functions. 
 
 
II. PREDICTING FUNCTION THROUGH GUILT-BY-
ASSOCIATION 
 
A. A general principle for finding yeast gene function 
 
The general strategy of guilt-by-association involves implicating genes in the same 
biological processes.  Linking an uncharacterized gene to genes known to function in 
ribosome biogenesis carries an implication that the uncharacterized gene functions in this 
general area as well. The specific linkages may imply more specific function.  This 
strategy can be employed with many different classes of functional and comparative 
genomics data, some of which allow stronger inferences than others. The strength of 
inferences vary depending not only on the immediate links, the type of data, but also the 
larger data set beyond the immediate genes of interest (that is, a data set might, for 
example be strong for certain classes of genes but weak for others), as well as the prior 
chances of such inferences being correct, an aspect that is frequently overlooked in these 
analyses.   
 
In this section, we will first introduce the various classes of data useful for guilt-by-
association inferences, discussing the forms of inferences that are commonly made from 
them.  As we will see in section III, all of these approaches can be made quantitative 
without explicit development of statistic models through supervised methods of 
benchmarking and measuring error.  Many of the experimental techniques are treated in 
more detail in other chapters, including yeast two-hybrid assays (Chapter 6), expression 
analysis (Chapter 9), protein localization (Chapter 13), and synthetic genetic arrays 
(Chapter 17). 
 
 
B. Guilt-by-association via functional genomics 
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Protein interaction mapping by yeast two-hybrid and mass spectrometry 
 
Yeast protein-protein interaction data are primarily derived from two approaches: (1) 
genome-wide, high throughput yeast two-hybrid experiments, by which over 4,000 
unique protein interactions were observed between yeast proteins in three large-scale 
experiments (Ito et al. 2000; Uetz et al. 2000; Ito et al. 2001), and (2) affinity purification 
of complexes of yeast proteins, followed by identification of the proteins by mass 
spectrometry (Gavin et al. 2002; Ho et al. 2002), identifying thousands more interactions 
among yeast proteins. 
 
In addition to the large-scale experimental approaches, a number of groups have collected 
previously measured protein-protein interactions from the biological literature (Blaschke 
et al. 1999; Humphreys et al. 2000; Proux et al. 2000; Thomas et al. 2000; Marcotte et al. 
2001).  This systematic collection of known protein interaction data provides necessary 
checks on the quality of the large-scale interaction data; large-scale protein interaction 
data have varied widely in accuracy (Mrowka et al. 2001; Deane et al. 2002; von Mering 
et al. 2002). 
 
Protein interaction databases combine the interactions from large-scale screens with 
interactions extracted from the literature, and include the BIND (Bader et al. 2003) and 
GRID (Breitkreutz et al. 2003) databases and the Database of Interacting Proteins.  As of 
this writing, the Database of Interacting Proteins (DIP; http://dip.doe-mbi.ucla.edu/; 
(Salwinski et al. 2004)) currently contains >18,000 protein-protein interactions among 
>4,900 yeast proteins. The GRID database (http://biodata.mshri.on.ca/grid) includes 
>20,000 yeast protein-protein interactions.  The BIND database (http://www.bind.ca/) 
includes >71,000 yeast molecular interactions, although these include non-protein-protein 
interactions in the count.  For example, protein-DNA interaction data are also 
accumulating rapidly, primarily due to the scaling of chromatin immunoprecipitation 
methods to genome-scale using DNA microarrays (Ren et al. 2000; Bulyk et al. 2001; 
Iyer et al. 2001; Mukherjee et al. 2004), allowing large-scale assays of ~200 yeast 
transcription factor binding specificities (Lee et al. 2002; Harbison et al. 2004). 
 
For the purposes of inferring function from these interaction data, it is important to 
consider the model under which inferences are drawn.  In particular, in direct 
measurements of protein interactions, such as the two-hybrid and mass spectrometry data, 
the experiments are typically performed by measuring interactions between a ‘bait’ 
protein and whatever ‘prey’ proteins it may interact with.  If one protein (the ‘bait’) is 
observed to interact with multiple ‘prey’ proteins, there is no guarantee that the ‘prey’ 
will also interact with each other, although this may be likely in the case when they are 
members of the same protein complex.  As shown in Figure 1A, there is a distinction 
made  (Bader and Hogue 2002) between a ‘spoke’ interpretation, in which only directly 
observed interactions between ‘bait’ and ‘prey’ are considered, and a ‘matrix’ 
interpretation, in which ‘prey’ bound by the same ‘bait’ protein are also inferred to 
interact with each other.  Intuitively, the spoke model may seem too restrictive at times 
and the matrix model too permissive.  As we will demonstrate in Section IV, there is an 
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alternative model to these approaches, the weighted interaction model, which out-
performs both of these strategies. 
 
<Figure 1> 
 
Genetic interactions and synthetic genetic arrays 
 
Functional associations, far from being limited to physical interactions, can be drawn 
from more general associations between genes, such as those provided by genetic 
interactions.  In yeast, the bulk of these data are from synthetic genetic array experiments, 
in which two mutant strains are robotically mated, sporulated, and the double mutant 
progeny examined for synthetic phenotypes, such as lethality (Tong et al. 2001; Tong et 
al. 2004).  Unlike physical interactions, synthetic lethal relationships are not necessarily 
simple to interpret.  They clearly represent legitimate constraints on the cell to grow 
properly, and it is generally perceived  that the experiments have low false positive rates 
(although this is hard to measure) that generally stem from technical errors, such as 
occasional defects in the original yeast deletion strain collection (Giaever et al. 2002), 
rather than biological artifacts in the screens.   
 
Nonetheless, it has been shown (Wong et al. 2004; Kelley and Ideker 2005) that only a 
fraction (perhaps half) of synthetic lethal interaction partners belong to the same 
biological pathway.  Therefore, synthetic lethal interactions give two alternate 
interpretations for the purposes of inferring gene function, as illustrated in Figure 1B.  
Given a synthetic lethal interaction between two genes, one can interpret this as partial 
evidence that they belong to the same pathway.  However, the same inference can often 
be drawn in the case where two genes are not themselves synthetic lethal to each other, 
but have synthetic interactions with the same set of other proteins. 
 
Co-expression and co-localization 
 
Due to the prevalence of publicly available large-scale mRNA expression data sets, 
strong functional inferences can be drawn through analyses of genes’ expression patterns.  
These data are primarily in the form of thousands of DNA microarray experiments stored 
in the Stanford Microarray Database (Gollub et al. 2003) and the GEO database (Barrett 
et al. 2005).  These data have proved powerful in the guilt-by-association style transfer of 
function, with diverse algorithms developed to mine the data, ranging from simple 
calculations of correlations between genes expression profiles across a bank of 
microarray experiments to a rich variety of clustering, classification, and deconvolution 
algorithms for more sophisticated grouping of genes into functional groups (e.g., as 
reviewed in (Slonim 2002)). 
 
Complementing the mRNA expression data are yeast protein localization data, primarily 
from large-scale analyses of fusion protein localizations (Habeler et al. 2002; Kumar et 
al. 2002; Huh et al. 2003).  These data provide an important source of functional 
associations that vary from extremely specific (e.g., both proteins of interest localize to 
the spindle pole body) to very general (e.g., both are cytosolic).  These data have proved 
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most useful for functional inference when combined with other datasets (Jansen et al. 
2003). 
 
 
C. Guilt-by-association via comparative genomics 
 
A number of comparative genomics methods have been employed to identify yeast gene 
function.  Here, we summarize three of these approaches, in particular: 

 
(1) the discovery of functional associations via the observation that bacterial 

orthologs of the genes occur in the same operons 
(2) the discovery of functional associations based upon co-inheritance of genes across 

many organisms 
(3) the discovery of functional associations by observation of gene fusion events  

 
Deriving yeast gene function from bacterial genome organization 
 
This approach relies upon the trend for bacterial genes of related function to be organized 
into operons.  Therefore, yeast orthologs of these genes are also likely to function 
together. Although many operons are known for some organisms (e.g., see the 
RegulonDB database for known operons of E. coli (Salgado et al. 2004)), many more are 
uncharacterized.  Two computational methods, illustrated in Figure 2A and 2B, have 
proven effective for predicting functional relationships between genes by their orthologs’ 
tendencies to co-occur in bacterial operons.  Both of these methods ignore the 
identification of promoters and regulatory sequences, and instead exploit other properties 
to identify the operons.  One approach exploits the tendency for adjacent genes in the 
same operon to be separated by short intergenic distances, while adjacent genes in 
different operons are separated by longer intergenic distances (Salgado et al. 2000).  The 
second approach, often referred to as the ‘conserved gene neighbor’ approach, exploits 
the tendency for genes in operons to be conserved as adjacent, neighboring genes in 
multiple bacterial genomes (Tamames et al. 1997; Dandekar et al. 1998; Overbeek et al. 
1999; Snel et al. 2002; Yanai et al. 2002).  These approaches have proved remarkably 
powerful in yeast, as at least 1302 yeast proteins have bacterial orthologs with conserved 
gene-order information (Huynen et al. 2003). 
 
<Figure 2> 
 
Phylogenetic profiles and the principle of co-inheritance 
 
The second approach for identifying pathway and interaction partners exploits the 
tendency for proteins in the same pathway to be co-inherited across organisms (Pellegrini 
et al. 1999; Huynen et al. 2000), as illustrated in Figure 2C.  A protein sequence is 
compared to sequences of all known proteins from the available fully sequenced 
genomes.  From this analysis, a phylogenetic profile is calculated, describing which 
genomes contain homologs of the query gene.  This phylogenetic profile can then be 
compared to those of all other genes in a genome to suggest functional partners of the 
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query gene, with variations on the approach using orthologs rather than homologs (Eisen 
and Wu 2002), employing probabilistic measures of profile similarity (Wu et al. 2003) or 
measuring mutual information between the phylogenetic profiles (Huynen et al. 2000; 
Date and Marcotte 2003), and taking into account the phylogenetic relationships among 
the genomes (Vert 2002; Sun et al. 2005). 
 
 
The Rosetta Stone/gene fusion approach 

 
In the third approach, illustrated in Figure 2D, two genes in one organism can be inferred 
to be functionally linked due to the discovery of a third gene, which is the fusion of the 
two separate genes (Enright et al. 1999; Marcotte et al. 1999).  Empirically, it appears 
that gene fusions typically only occur between genes of related function; consequently, 
this method can be used to rapidly suggest functional partners for a gene.  As with the 
previous examples, this approach is rarely used without enforcing some statistical 
criterion (Enright et al. 1999; Yanai et al. 2001; Verjovsky Marcotte and Marcotte 2002; 
Bowers et al. 2004) to rule out spurious associations that arise from the tendency of 
certain ‘promiscuous domains’ to be found in multi-domain proteins with many other 
protein domains (Marcotte et al. 1999).  This approach has also recently been combined 
with the gene neighbor approach by looking for conservation of protein domains as 
neighbors (i.e., ignoring whether the domains belong to the same protein or different 
proteins, merely requiring that they be adjacent on the chromosome (Pasek et al. 2005).) 
 
 
III. RECOGNIZING AND ASSESSING ERROR IN FUNCTIONAL 
GENOMICS DATA 
 
It is a fact that all biological data, experimental or computational, low-throughput or 
high-, contain errors.  An error-free experiment has yet to be conducted.  It is clearly 
critical, then, to determine the extent of errors in both experiments and predictions.  Are 
these large or small, and can they be measured precisely?  Many of the original protein 
interaction and genetic interaction mapping experiments were presented only as 
experimental results, some of these experimental tours de force, but rarely (at first) 
accompanied by estimates of the error in these techniques (e.g., (Chien et al. 1991; 
Rigaut et al. 1999)).  Much of our appreciation of the errors in these approaches (for 
example, appreciation of the classes of false positive interactions identified in typical 
yeast two-hybrid assays) comes from empirical observations of many individual 
investigators (e.g., (Bartel et al. 1993; Estojak et al. 1995)) and from computational 
analyses performed after the original screens (e.g., (Mrowka et al. 2001; Deane et al. 
2002; von Mering et al. 2002; Patil and Nakamura 2005)).  Unfortunately, data for the 
failure rates of these techniques are rarely published, making it difficult to systematically 
measure error rates from small-scale assays (Jansen and Gerstein 2004).  For several of 
these approaches, specialized statistics have been developed to better measure the 
associated errors in specific large-scale screens, such as the prediction of true and false 
positive yeast two-hybrid interactions based upon internal properties of a large scale 
screen (Bader et al. 2004).   
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It is clear that without any appreciation of the errors involved, one can be strongly misled 
as to the likely functions and interactions of a gene of interest.  Functional and 
comparative genomics have the advantage that their errors can be measured and the data 
interpreted accordingly.  In this section, we introduce the primary approaches for 
measuring error in these data, in this manner estimating how correct functional inferences 
drawn from these data are likely to be. 
 
A. Reference sets for evaluating functional association 
 
In predicting gene function by guilt-by-association, false predictions arise when 
associations are identified between functionally irrelevant or uncoupled genes.  These 
false associations are generally products of non-biological variance in the data, even with 
extensive filtering of the data.  Therefore, one of the more successful strategies has been 
to rely upon external, independent data sets to act as a form of ‘gold-standard’ reference 
for assessing the primary data quality.  With high quality reference sets, we can then 
evaluate different data sets using a unified quality criterion. 
 
As with any ‘supervised’ approach, the quality of the reference set is critical and directly 
determines the quality of evaluations performed with the set.  A faulty reference set can 
lead to faulty evaluation and, consequently, to faulty biological inferences.  We consider 
3 aspects of the reference set quality:  First, the size (or coverage) of the reference set 
should be large enough to offer a statistically reliable evaluation of the data.  Second, the 
set should be of high accuracy, containing a minimum number of false examples.  
Although the evaluation methods we will discuss are noise-tolerant, a significant amount 
of noise can interfere with the analysis and lead to erroneous conclusions. Third, the 
resolution (or specificity) of information must be sufficiently high for the types of 
associations to be drawn.  Even with all true examples in the reference set, highly 
generalized associations will be of less utility. For example, the fact that two proteins 
both localize to the cytosol only weakly indicates that they might be functionally 
associated, as the association is too general in nature to draw a strong association. 
 
Diverse associations between genes, indicating different functional associations, can be 
used as reference sets.  For example, reference sets might consist of the following: 
 

1. Protein pairs sharing functional annotation(s)  
2. Protein pairs sharing pathway annotation(s) 
3. Protein pairs found in the same complex(es) 
4. Protein pairs sharing cellular localization annotation(s) 
 

Box 1 lists a variety of yeast gene annotation sets of these types that are useful as 
reference sets.  (Whenever possible, the precise locations of data files are given in the 
box, rather than the project web site gateways).  These annotations vary in both 
specificity and coverage.  Moreover, several of these are hierarchically organized, and 
choosing different levels of the annotation hierarchy may generate quite different 
evaluations for the same data set.  Generally speaking, top level annotations provide 
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extensive coverage but low specificity (resolution), while low level annotations decrease 
coverage but increase specificity.  Therefore, the choice of an appropriate level(s) of 
hierarchical annotation must be considered carefully in order to achieve the optimal 
trade-off between coverage and specificity.  Once chosen, the reference set should be 
consistent throughout the entire data analysis. 
 
<Box 1> 
 
It is striking that the current yeast annotation and reference sets are quite non-
overlapping.  For example, fewer than half of the KEGG pathway database associations 
are also contained in the Gene Ontology (GO) annotation set (Bork et al. 2004).  The low 
overlap is primarily due to different data mining methods and to inclusion bias among the 
annotation sets.  This, however, provides the opportunity to generate more 
comprehensive reference sets by combination of different annotation sets.  In practice, 
both GO and KEGG have proven to be generally reliable for benchmarking data sets. 
 
B. Evaluating Function Predictions Using a Reference Set 
 
Having selected a reference, the next step in functional prediction is to select a method 
for evaluating functional predictions against the reference set.  There are multiple 
methods to choose from, differing primarily in the parameters for measuring data quality.  
Two key parameters expressing data quality are coverage and accuracy.  For example, 
we can measure coverage of the proteome (the complete set of yeast proteins) by the 
proteins in the data set, or we can measure coverage of the interactome itself.  As we 
don’t currently know any complete interaction map, or even the size of a complete 
interaction map, the latter measure of coverage cannot be expressed as a percentage of 
the whole, but only as a total number of interactions.  The coverage also can be 
represented as a fraction of the reference interactions.  The accuracy can be measured by 
as the percentage of interaction data confirmed by the reference set (von Mering et al. 
2002), or alternately, as the likelihood of being true associations (Jansen et al. 2003; Lee 
et al. 2004).  In the latter approach, likelihood is usually calculated as a log odds ratio of 
the odds that the data are correct to incorrect.  (For example, a 2:1 odds ratio of being 
correct:incorrect corresponds to a 67% chance of being correct.)   
 
This likelihood approach is often based upon Bayesian statistics, which allow relatively 
straightforward calculation of such likelihood ratios.  To evaluate a dataset, a log 
likelihood ratio (LLR) can be calculated as: 
 

  ⎟⎟
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where P(D|I) and P(D|~I) are the probability of observing the functional genomics data 
(D) conditioned on the genes being associated in the reference set (I) or not being 
associated in the reference set (~I). By Bayes’ theorem, this equation can be rewritten as: 
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where P(I|D) and P(~I|D) are the frequencies of functional associations observed in the 
given dataset (D) between annotated genes that are associated in the reference set (I) or 
not associated in the reference set (~I), respectively.  P(I) and P(~I) represent the prior 
expectations (the total frequencies of all reference set genes being associated in the 
reference set or not, respectively). This latter version of the equation is simpler to 
compute. A score of zero indicates interaction partners in the dataset being tested are no 
more likely than random to belong to the same pathway or to interact; higher scores 
indicate a more accurate dataset. 
 
Another variation to consider for benchmarking functional inferences depends on 
whether we desire a single measured value for characterizing an entire data set or instead 
use a continuous measurement to differentiate among different quality subsets within the 
data.  A small data set with a fairly uniform probability distribution of error can be 
described by a single evaluation score for the entire data set.  However, if we have a 
parameter associated with the data set that correlates with data accuracy, it is often better 
to sort the data by this parameter and measure the accuracy as a function of a certain 
parameter range.  An example of this is shown in Section IV. 
 
One formal way to evaluate data by coverage and accuracy is to plot a recall-precision 
curve.  Recall (defined as the percentage of positives in the reference set correctly 
predicted as positives in the data set) provides a measure of coverage and precision 
(defined as the percentage of predicted positives in the data set confirmed as true 
positives by the reference set) provides a measure of accuracy (Figure 3).  In the case of 
using a log-likelihood scoring scheme, the log-likelihood score would be substituted for 
the accuracy or precision parameter, plotted in its place on the y axis of the plot. 
 
<Figure 3> 
 
 Another formal assessment method is the ROC (receiver operating characteristic) curve. 
The ROC curve is named from its popularity in communications research, where it is 
used to detect the ‘hit rate’ of true positives at a given cost of false alarms over a noisy 
communications channel.  The ROC approach can be applied as well to biological data, 
but has several shortcomings.  We consider the true positive rate (defined as 100 times 
the number of true positives divided by the number of positives in the reference set) as 
the true hit rate and the false positive rate (defined as 100 times the number of false 
positive divided by the number of negatives in the reference set) as the false hit rate.  All 
curves in the ROC plot (each corresponding to one data set) start at 0% in both the true 
positive rate and false positive rate and ultimately arrive at 100% in each, as illustrated in 
Figure 4.  For a data set of randomly chosen associations, we would expect to observe 
the same rates of true positives and false positives, giving rise to a diagonal line.  For a 
real data set, however, we hope to observe a higher rate of gain of true positives.  The 
area under each ROC curve is therefore proportional to the quality of the data sets.  The 
ROC analysis has a notable shortcoming—in order to be strictly comparable, each data 
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set must be evaluated over the same reference set.  So, for comparisons of multiple data 
sets, we have to define a subset of the original reference set common to all data sets in the 
plot, which can substantially diminish the size of the reference set used and which may 
even introduce a bias in the evaluation favoring specific data sets—it is possible that the 
common subset of reference associations has a significantly higher or lower proportion of 
matches for specific data sets than do the remaining set of associations. 
 
<Figure 4> 
 
A final benchmarking strategy that has proven useful is the modeling of a data set as a 
mixture of true and false positives (Mrowka et al. 2001; Deane et al. 2002).  Therefore, 
the behavior of the data set on some external benchmark (such as testing the extent of 
correlation of the gene pairs’ mRNA expression patterns) can be mathematically fit as a 
linear combination of the behaviors of two reference sets (a positive and a negative set), 
with the fit percentage of false positives providing the false positive rate of the data.  An 
example of this strategy is calculating error rates for yeast two-hybrid data based upon 
the co-expression of the genes across a bank of DNA microarray experiments.  Random 
gene pairs show one distribution of co-expression, true positives show another, skewed 
distribution, and the two-hybrid set being tested shows a mixture of the two distributions 
(Deane et al. 2002; Kemmeren et al. 2002).  
 
Figure 5 illustrates the benchmarking of a number of the functional genomics data sets 
introduced earlier, using the recall-precision analysis described above.  The relative 
scores indicate the utility of these data sets for inferring functional associations between 
genes linked by the particular methods.  The reference set was generated by pairs of 
genes belonging to the same KEGG pathways (~49,000 positive examples).  Each data 
set is thus evaluated for its utility in inferring two genes belong to the same pathway.  
Better inferences tend toward the upper right corner of the plot.  As can be seen, there is a 
wide spectrum of accuracy and coverage across the different data sets.  For example, two 
proteins found to interact in the ‘Uetz’ yeast two-hybrid assay (Uetz et al. 2000) are 
~60% likely to belong to the same KEGG pathway, giving an indication of their general 
functional relatedness, while two genes that are synthetic lethal to each other in the Tong 
et al. data set (Tong et al. 2004) are ~30% likely to belong to the same KEGG pathway.  
The best functional inference is accomplished by integrating the individual data sets. 
 
<Figure 5> 
 
IV. A QUANTITATIVE ERROR MODEL FOR YEAST TWO-
HYBRID, MASS SPECTROMETRY, AND OTHER INTERACTIONS 
 
Most interaction data sets, such as yeast two hybrid (Uetz et al. 2000; Ito et al. 2001) and 
protein complex affinity purification followed by mass spectrometry (Gavin et al. 2002; 
Ho et al. 2002), are accompanied by the simple observation of ‘interacting’ or ‘not 
interacting’.  However, for the purposes of predicting gene function, we would prefer to 
have some more fine-grained measure of confidence in the interactions and in the value 
of the transferred function (as in the ‘weighted’ interaction model of Figure 1A). One 

 10



particularly simple and general theoretical framework for error is based upon the 
hypergeometric distribution.  Variants of this approach appear to work well for many 
linkage and interaction types (Verjovsky Marcotte and Marcotte 2002; Samanta and 
Liang 2003; Schlitt et al. 2003).  In this section, we present an approach for calculating 
the hypergeometric error model and demonstrate its effectiveness. 
 
The essential notion is that when data is assembled from many interaction experiments, 
such as deriving from a large-scale protein interaction assay, proteins take on varied 
numbers of interaction partners, with some proteins interacting promiscuously with many 
partners.  This may be due to errors in the interaction screen or may be a legitimate 
reflection of the multi-functionality for the given proteins.  In either case, assignment of 
specific function by guilt-by-association is non-trivial, with our intuition that we probably 
want to assign less confident scores for these particular interactions.  Following this line 
of reason, we can apply a statistical re-interpretation to the interaction data to assign 
different confidence scores for different interactions depending on their tendency to 
participate in many or few interactions.  With this approach, even the matrix model of 
mass spectrometry data becomes highly informative, with subsets showing extensive 
coverage with reliable quality. 
 
Rather than use these coarse-grained models, we suggest a simple hypergeometric error 
model for calculating the probability of two proteins interacting by random chance given 
their behavior in the large-scale screen, assigning a probability (p-value) to the pair as: 
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and where k = the number of experiments in which an interaction is observed between 
proteins A and B (e.g., the number of yeast two-hybrid interactions or co-purifications 
involving both A and B), n = the total number of experiments in which protein A is 
observed, m = the total number of experiments in which protein B is observed, and N = 
total number of experiments with ≥ 1 interaction measured (e.g., the overall number of 
yeast two-hybrid interactions observed in a large-scale two-hybrid experiment, or the 
overall number of pull-down experiments with at least one interaction partner observed in 
a large-scale affinity purification mass spectrometry experiment).  The resulting 
probability score indicates how likely the specific interaction between proteins A and B 
was to be observed by random chance given the other interactions observed in the screen, 
in effect taking into account how promiscuous A and B are in their interactions. 
 
Figure 6 demonstrates the dramatic improvement in the confidence in yeast protein-
protein interactions under this hypergeometric error model, using as examples a genome 
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scale yeast two hybrid experiment data set (Ito et al. 2001) and interacting protein data 
from affinity purifications followed by mass spectrometry (Gavin et al. 2002).  The 
cumulative prediction accuracy with the hypergeometric error model shows equivalent 
power to the whole data set under the matrix model.  However, the model achieves a 
much higher resolution of information, separating out the high and low quality 
interactions in the set, leading to more powerful data integration and interpretation.  As 
discussed in earlier sections, the ‘spike’ model provides more accurate but less extensive 
interactions, while the ‘matrix’ model increases coverage at the expense of accuracy.  
However, the hypergeometric error model can differentiate the reliable interactions from 
the others in the original experimental data, resulting in generally more extensive 
coverage at accuracy equal to the spike mode.  Note that this approach is quite generic, 
and can be applied to many different forms of linkages, interactions, and predicted 
linkages.   
 
<Figure 6> 
 
V.  STRONGER INFERENCES VIA DATA INTEGRATION 
 
Data integration for predicting gene function has recently drawn considerable attention 
for a couple of major reasons.  First, no single experimental or computational approach 
has proven able to analyze the yeast gene set to completion, due either to biases in the 
system or to increasing technical difficulties in taken screens to 100% of the 
genes/proteins. Second, different approaches show bias in the sets of genes and classes of 
functional inference that they are more useful for.  Integrating inferences from multiple 
data types is therefore mandated.  Agreement between inferences drawn from distinct 
data sets also increases our confidence in their correctness.  In general, we expect better 
functional inferences when integrating multiple data sets than from even the best single 
data set.  There are many different approaches for data integration, ranging from quick-
and-dirty methods, such as the voting method, to more statistically empowered 
approaches, such as Bayesian networks. 
 
A. Simple voting methods 
 
There are many variations to the voting approach. If we have only binary (interact or not 
interact) inferences from the given data set, an intersection or a union method can be 
adopted (e.g., as in (Marcotte et al. 1999; Mellor et al. 2002)). While the former takes a 
subset of the data with support from multiple data sets after applying suitable thresholds 
for each analysis, the latter takes a combined set with support from at least one data set. 
The ‘intersection’ approach works best with redundant data sets and gives the better 
integration of the two while the ‘union’ approach performs well when relatively 
independent data sets are involved and tends to give improved integration without 
significant loss in accuracy.  If the data sets have associated confidence scores, the 
method could be extended by taking the maximum or the averaged scores of multiple 
lines of evidence in order to generate an integrated data set. 
 
B. Bayesian statistical methods 
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The foremost goal of a formal statistical approach to data integration entails the 
normalization of scores from different data sets with different features.  Normalizing all 
the data sets for integration can be performed using the reference sets discussed earlier.  
The final integrated data will be biased and characterized by the types of information 
implemented in it.  For example, if we want to learn protein-protein physical interactions 
using an integrated data set, our evaluation of the pre-integration data sets should be 
based on a reference set of protein-protein physical interaction. 
 
One of the common approaches to data integration is using a Bayesian network (e.g., as 
in (Jansen et al. 2003; Troyanskaya et al. 2003)).  In this approach, a graph is created 
with each node (vertex) representing a specific condition (a combination of data set and 
parameter) and probability of true instance.  If two different conditions are not 
completely independent (i.e., if A happens, B tends to happen as well), they are 
connected with some probability.  In this case, the construction of the graph is not 
entirely straightforward.  Finding the correct degree of dependence between conditions is 
critical for choosing an appropriate model for integration. 
 
There are two distinct styles of Bayesian network approach.  In the fully-connected 
Bayesian network, we assume that all conditions are connected, and find a model for the 
best integration by evaluating all possible combinations of conditions.  For a simple 
model, this approach is feasible, but for a complex one, the problem of exponentially 
increasing combinations precludes this approach.  Biological data, being highly complex, 
often face this problem. In an attempt to simplify the data integration, a naïve Bayesian 
network approach has been adopted in some instances. This simpler approach, however, 
assumes that the different data sets are completely independent.  Interestingly, such 
simple naïve Bayesian network approaches have performed well in functional genomics 
data integration (Jansen et al. 2003; Troyanskaya et al. 2003; Patil and Nakamura 2005), 
which may indicate that existing genomics data are relatively sparse, with only minimal 
overlap between different data sets. 
 
Into the future, however, we expect genomics data will continue to increase and the 
problem of measuring correlation between different data sets will have to be addressed.  
Therefore, it is imperative to identify an efficient way to handle information redundancy 
for integration of large data sets.  For example, one simple but incomplete approach to 
this is the weighted sum method (Lee et al. 2004), which has the merit of simplicity but 
at the cost of only treating a subset of correlations in the data sets.  An example of 
integration by this approach is shown in Figure 5. 
 
C. Other Methods 
 
A number of more complex probabilistic and kernel-based supervised approaches have 
been proposed (e.g., see (Yamanishi et al. 2004) for kernel canonical correlation analysis, 
(Jiang and Keating 2005) for a combined approach using probabilistic assignment of 
function combined with decision trees, and (Tanay et al. 2004) for graph partitioning 

 13



based approaches) that reliably assign biological function from combinations of high-
throughput data. 
 
Note that we have taken a fairly narrow view of data integration for function prediction 
here, focusing primarily on the guilt-by-association method as determined from network 
models of gene associations.  However, other methods worth noting include models of 
data integration that are completely independent of network structure, such as those based 
on learning association rules by training on reference sets (Clare and King 2003), as well 
as approaches for predicting genetic interactions (Wong et al. 2004) and diverse 
approaches for learning specific ontology descriptions or gene annotations for 
uncharacterized genes, such as by the effective propagation of information through gene 
networks (see, for example, (Vazquez et al. 2003; Deng et al. 2004; Deng et al. 2004; 
Karaoz et al. 2004; Nabieva et al. 2005)) or through algorithmic classifiers (Pavlidis et 
al. 2002). 
 
 
VI. Methods and Protocols for Employing Pre-calculated Functional 
Predictions 
 
<Box 2> 
 
In this section, we highlight several of the main functional- and comparative-genomics 
based integrated models of yeast gene function.  Each is available either as binary 
functional linkages between yeast genes or in the form of an internet server for 
interactively searching for functional linkages. 
 
A. AVID (Jiang and Keating 2005)  
 
URL: http://web.mit.edu/biology/keating/AVID/
 

1) The user can enter the gene name or the GeneOntology (GO) ID in the query box. 
 

2) AVID is a computational function prediction framework that integrates data from 
high-throughput experiments such as yeast two-hybrid, mass spectrometry, DNA 
microarrays, protein localization data and protein sequence similarity.  

 
3) AVID initially assumes that the query gene interacts with all other genes, then 

successively filters low confidence partners from the list based on varied criteria, 
resulting in a list of functional interactions with candidate genes at the level of 
three GO categories – Molecular Function, Biological Process and Cellular 
component. 

 
B. FinalNet (Lee et al. 2004) 
 
Available as supplemental data from the on-line publication, or from the following URL: 
ftp://genome-ftp.stanford.edu/pub/yeast/data_download/systematic_results/published_co 
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mputational_predictions/lee_pmid_15567862/ 
 

1) This dataset awaits an interactive web feature. It can be readily accessed, 
however, through the above Saccharomyces Genome Database (SGD) FTP site. 

 
2) The user can download the yeast_FinalNet.txt.gz and unzip the file as a text (.txt) 

file. 
 

3) This file has comprehensive listings of the interacting partners of all yeast genes 
computed by an integrated Bayesian formalism. The probabilistic functional 
prediction is calculated by computing a log likelihood score (LLS) for each 
functional genomics dataset to arrive at an integrated LLS score. The datasets 
include mRNA co-expression, Rosetta Stone gene fusions, phylogenetic profiles, 
literature mining (co-citation) and genetic and protein interaction experiments. 
This initial integrated network is further rescored by identifying linkages that are 
dependent on the network context. A Final Integrated Network is arrived at, on 
which is applied a threshold based upon ‘gold-standard’ small scale protein 
interaction assays. The resulting ‘ConfidentNet’ constitutes 34,000 linkages 
between 4,681 genes. Further hierarchical clustering yields a network with 627 
modules of functionally linked genes spanning 3285 genes, giving an estimate of 
protein systems in a yeast cell. 

 
C. LIANG (Samanta and Liang 2003) 
 
URL: http://www.systemix.org/PP/partners/index.php
 

1) The user can enter the name of the query gene in the query box.  The server will 
return candidate interacting partners. 

 
2) This function prediction works on the hypothesis that two proteins sharing 

common interacting partners more than just by random chance are likely to 
interact with each other with higher probability. The known interacting proteins 
from DIP (Database of Interacting Proteins; (Salwinski et al. 2004)) are taken to 
illustrate this hypothesis. Further analyses of the interacting partners of these 
proteins is done to generate the compete dataset.  

 
D. MAGIC (Multisource Association of Genes by Integration of Clusters) 
(Troyanskaya et al. 2003) 
 
URL: http://genome-www.stanford.edu/magic/ 
 
Currently, the MAGIC dataset does not have an interactive web interface. However the 
user can access the final output at the above internet site (also available from the FTP 
download site of the SGD database). The predicted interactions for a given gene can be 
seen as different GO category IDs at different stringencies or cut-off scores (Cut-off 0.9 
and Cut-off 0.75 available at the FTP site) 
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1) MAGIC defines gene pairs having ‘functional’ relationships (i.e., involved in the 

same biological processes, defining processes as in the Gene Ontology (GO) 
Database.) 

 
2) The Bayesian network that is implemented in MAGIC draws from known protein-

protein interactions in the GRID database and protein-DNA interactions in the 
Promoter Database of Saccharomyces cerevisiae (Zhu and Zhang 1999). 
Expression data is also incorporated. A score for each data source is calculated 
that represents the strength of each method’s confidence in the existence of a 
relationship between a gene pair. A combined probability score is then calculated.  

 
E. PIT (Probabilistic Interactome – Total) (Jansen et al. 2003) 
 
URL: http://networks.gersteinlab.org/intint/index-2.html   
 

1) A web interface exists to search these physical interaction predictions, in which a 
user can paste or type in the systematic name of the query gene and be given 
predicted interaction partners. 

 
2) Briefly, a probabilistic combination of multiple datasets is used to predict physical 

protein-protein interactions. The protein complexes represented in the MIPS 
database are used as the positive ‘gold-standard dataset’ whereas a negative gold-
standard dataset consisting of protein pairs in separate sub-cellular compartments 
are used to train the Bayesian network. Two separate probabilistic interactomes 
(PIs) are constructed, one called the PIP (PI-predicted) uses genomic context, 
mRNA co-expression, GO process, MIPS function and gene essentiality as 
datasets and the other called PIE (PI-experimental) that uses data from co-
immunoprecipitation/mass spectrometry and yeast two-hybrid experiments. These 
two interactomes along with the gold-standards are further integrated to a total PI 
(PIT) that represents a comprehensive view of known and predicted protein 
complexes in yeast. 

 
3) The user can choose a likelihood ratio cut-off (Lcut) as well as choose the 

probabilistic interactome version to be browsed for a particular analysis. An Lcut 
of 600 defines a threshold where a given protein pair is predicted to exist in the 
same complex with a better than 50% chance and therefore serves as a useful 
default.  

 
4) The output lists the proteins interacting with the query in an easily interpretable 

tabular form. 
 
F. PLEX (Protein Link Explorer) (Date and Marcotte 2005) 
 
URL: http://bioinformatics.icmb.utexas.edu/plex/
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1) PLEX returns functional associations predicted from phylogenetic profiles, 
operon neighbors, and gene fusions.  Click on ‘Submit a new job’ and paste a 
protein sequence into the PLEX query box or its Genbank GI number from the 
NCBI non-redundant database. 

 
2) Once the sequence is obtained, PLEX proceeds to compare the query sequence 

against ~350,000 proteins from 89 fully sequenced genomes using BLAST 
(Altschul et al. 1997) sequence alignments. A phylogenetic profile is constructed 
from BLAST scores of the top-matching homologs in each genome. The profile is 
displayed as a series of colored boxes, with blue indicating absence of the query 
in a given genome as opposed to red which indicated varying degrees of 
confidence with which the query is present in different genomes.  

 
3) After a profile is created, the user can compare it to the profiles of all known 

proteins in any of the 89 genomes by entering a mutual information score cut-off 
for the comparison of phylogenetic profiles. 

 
4) PLEX searches are iterative: the first search associates the query gene (which may 

be from any source) with genes from the database genomes; successive iterations 
return pre-calculated associations (including operon neighbors and gene fusions) 
among database genes. 

 
G. Predictome (Mellor et al. 2002) 
 
URL: http://predictome.bu.edu/index.php
 
1) Predictome contains pre-calculated associations among genes from yeast and other 
organisms.  The associations are derived from a variety of functional and comparative 
genomics approaches.  It can be searched via a web interface, in which the user can paste 
the gene name (derived from SGD) into the query box to get the proteins predicted to be 
associated with the query protein.  
 
2) The output yields putative protein links with the query protein by integrating both 
experimental (yeast two hybrid, co-immunoprecipitation and co-expression) and 
computational (phylogenetic profiles, gene fusion and gene neighbor) datasets. 
 
3) The user can further view the interaction results in a network format using the 
VISANT applet.  
 
 
H. PROLINKS (Bowers et al. 2004) 
 
URL: http://128.97.39.94/cgi-bin/functionator/pronav
 

1) Enter the GI number of the query protein or the gene name and the genome to 
query. 
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2) The user can then choose the sequence ID corresponding to the query gene name 

 
3) The annotation page that is displayed lists general information such as sequence, 

chromosome and existing annotation. Additional tabs in the page allow the user to 
display the homologs, the functional linkages ‘PROLINKS’ or to a graph 
depicting the protein interaction network involving the query protein. 

 
4) PROLINKS arrives at the output by computing the phylogenetic profile, Rosetta 

Stone, gene neighbor and gene cluster scores of a query protein. The user can 
further set a minimum confidence threshold to test for the strength of interactions.  

 
I. STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) (von 
Mering et al. 2005) 
 
URL: http://string.embl.de/
 

1) Enter the SWISS-PROT identifier of the query protein or its amino acid sequence 
in the query box. 

 
2) A search can be performed in the ‘COG’ mode which links with the COG 

database to classify the query protein to a particular COG category in an all-or-
none fashion. A ‘Protein’ mode search can also be done that relies on a matrix of 
pre-computed all-against-all protein similarity scores consisting of ~750,000 
proteins. 

 
3) Once the query protein is associated with a COG category or with partner proteins 

as the case may be, STRING computes a ‘combined’ score from seven individual 
sub-scores using a Bayesian prediction scheme. These include gene neighbors, 
gene fusions, phylogenetic profiles, mRNA co-expression, large-scale 
experiments (e.g., yeast two-hybrid), database imports that constitute previous 
knowledge, and literature mining (co-citation). This ‘joint’ probability score is 
often of higher confidence as compared to individual sub-scores. 

 
4) A final result is displayed as a network depiction with the individual sub-scores 

and the combined scores for every functional prediction. These scores serve to 
give a quick insight into the possible nature of interactions of a query protein, 
especially for proteins that are un-annotated.   

 
VII. AN EXAMPLE APPLICATION TO THE PARTIALLY 
 CHARACTERIZED GENE PRP43 
 
As an example, we will now take PRP43 (YGL120C), a yeast RNA helicase, through 
several of the function prediction databases discussed above.  PRP43 is an essential yeast 
DEAH box protein, one of a family of proteins thought to possess RNA helicase activity 
and that function extensively in the coordination and catalysis of the pre-mRNA splicing 
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reaction.  PRP43 itself, although not shown to exhibit an RNA helicase activity, was 
implicated to function in the disassembly of the U2/U5.U6 spliceosomal complex post-
catalysis and subsequent release of the lariat RNA (Staley and Guthrie 1998; Martin et al. 
2002). 
 
Figure 7 shows the functional associations of PRP43 predicted from the different 
methods introduced in Section VI.  The genes linked to PRP43 are labeled according to 
their broad functional categories (based upon their GO annotations and literature)—
‘mRNA processing’, including mRNA transactions, such as pre-mRNA splicing; ‘rRNA 
processing and biogenesis’, constituting the synthesis, processing and assembly of rRNAs 
into ribosomes; and ‘Other’, referring to functions besides these two categories.  
 
<Figure 7> 
 
Although it may appear at first glance in Figure 7 that the algorithms are returning 
different predictions, most of the apparent disagreement is simply a function of including 
only the top 10 associations from each — as the methods include different data types and 
have different scoring functions, they tend to exhibit trivial differences in the ranking of 
associated genes, and we have omitted the full set of predictions from many methods for 
reasons of space, concentrating only on the top 10 predictions per method. Nonetheless, 
although the specific predictions vary, certain linkages are identified by multiple 
algorithms, such as the linkages of PRP43 to ERB1, YER049W, CWC23, PWP2, PRP2, 
PRP28, DHR2,  PRP8, BRR2, PRP31 and PRP16 (see Figure 7J).  An examination of 
the broad functional categories of these predicted genes shows that the majority lie in 
mRNA processing such as pre-mRNA splicing, the known function of PRP43 (Martin et 
al. 2002).  However, a number of associations are inferred with genes implicated in 
rRNA processing and ribosome biogenesis.  This observation turns out to be in agreement 
with very recent data (Combs et al. 2006; Leeds et al. 2006) that indicate that PRP43 
serves an essential role in the biogenesis of both ribosome subunits while having a non-
essential role in pre-mRNA processing.  Thus, the two primary functions of PRP43 are 
correctly inferred by the algorithms.  Although further experiments would be needed to 
verify the exact candidates involved in this process with PRP43 and their manner of 
involvement, it is clear that integrated function prediction databases can be immensely 
valuable at generating new and testable hypotheses. 
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FIGURES 
Figure 1.  Alternate models for determining associations from functional genomics 
data.  (A) Direct measurements of interactions, such as by yeast two-hybrid or mass 
spectrometry, can be interpreted as only providing evidence of ‘bait’-‘prey’ associations 
(the ‘spike’ model), as providing evidence for ‘bait’-‘prey’ and ‘prey’-‘prey’ associations 
(the ‘matrix’ model), or can be assigned weighted confidence scores based on 
interactions from the rest of the screen, as described in Section IV.  (B) Genetic 
interaction data can provide evidence for associations between the synthetic lethal 
partners, or, less obviously, can provide evidence for linkages between genes synthetic 
lethal to the same set of other proteins. 
 
Figure 2. Functional associations derived from comparative genomics, in which the 
genomic organization of homologs or orthologs of the yeast genes may imply 
associations between the yeast genes.  The genomic organization of yeast genes’ 
bacterial orthologs into operons may imply functional associations between yeast genes, 
judged by (A) intergenic distances, and (B) conservation of gene neighbors.  Functional 
associations may also be inferred based upon (C) co-inheritance of genes, as measured by 
calculating and comparing phylogenetic profiles, or upon (D) fusions of homologous 
genes into composite genes.  
 
Figure 3.  An example of a recall-precision curve, displaying the performance of 
mRNA co-expression and phylogenetic profiling at predicting functional 
associations.  Recall (percentage of reference set positives correctly predicted as 
positive) and precision (percentage of predicted positives confirmed as positive by 
reference set) are based on a cumulative confusion matrix for the given recall level.  For 
good predictions, we expect the evaluation curve to tend toward to the right upper corner.  
The given recall-precision curves indicate that these particular functional associations 
(Lee et al. 2004) inferred from mRNA co-expression are better than those inferred from 
phylogenetic profiling, generally showing twice the precision at comparable levels of 
recall.  In both Figure 3 and Figure 4, KEGG pathways are used as the reference set 
(Kanehisa et al. 2004). 
 
Figure 4.  An example of a ROC curve, plotting the performance of mRNA co-
expression and phylogenetic profiling at predicting functional associations.  True 
positive rate (or true hit rate = percentage of reference set positives correctly predicted as 
positive) and false positive rate (or false hit rate = percentage of reference set negatives 
incorrectly predicted as positives) are plotted by ranking all predictions by their 
associated scores, then calculating the hit rates as a function of increasing rank.  Random 
guesses generally show equal rates of true and false hits, generating a diagonal line in the 
ROC curve.  Any prediction that is better than random guessing shows a curve above the 
diagonal.  Overall performance can be estimated by the area under the ROC curve.  For 
these particular data (the same data as in Figure 3), co-expression-based functional 
inferences out-perform phylogenetic profiling-based inferences. 
 
Figure 5.  Benchmarking functional interactions from various experimental and 
computational approaches against the KEGG pathway reference set. The data 
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plotted (analyzed as described in (Lee et al. 2004)) include a collection of small scale 
experimental interaction data from the Database of Interacting Proteins (DIP Small scale; 
(Xenarios et al. 2002)), yeast proteins co-cited in Medline abstracts (Co-cite), yeast genes 
whose mRNAs are co-expressed across 491 microarrays from the Stanford Microarray 
Database (Co-expression; (Gollub et al. 2003)), co-inherited yeast genes (Phylogenetic 
profile; (Date and Marcotte 2003)), yeast genes linked by gene fusion analysis (Rosetta 
stone), two spike-models and two-matrix models of mass spectrometry data (Gavin-spike, 
Gavin-matrix from (Gavin et al. 2002); and Ho-spike, Ho-matrix from (Ho et al. 2002)), 
three yeast two hybrid data sets (Uetz, (Uetz et al. 2000); Ito-core, Ito-noncore from (Ito 
et al. 2001)), and synthetic lethal interactions (Synthetic lethal, (Tong et al. 2004)).  Data 
sets with associated continuous scores were evaluated in binned groups of 1000 gene 
pairs each.  The reference set consists of ~49,000 positive examples, made by pairing 
genes belonging to the same KEGG pathway (Kanehisa et al. 2004), and ~629,000 
negative examples, made by pairing genes that do not belong to the same KEGG 
pathways.  The integrated data set was generated by the weighted sum log likelihood 
method of (Lee et al. 2004). 
 
Figure 6.  Re-interpreting interaction data sets using the hypergeometric error 
model.  Large scale yeast two-hybrid interaction sets and mass spectrometry interaction 
sets generally provide binary ‘scores’ (observed or not-observed).  The hypergeometric 
error model will generate continuous accuracy scores for these data.  These scores are 
illustrated for yeast two hybrid data (Ito et al. 2001) and mass spectrometry interaction 
data (Gavin et al. 2002).  Recall-precision curves for the error models are plotted using 
bins of 500 gene pairs.   For the two-hybrid data, the core data set (‘Ito-core’) is more 
accurate than the entire data set (‘Ito-all’).  The hypergeometric model shows 
substantially higher accuracies for the same level of coverage.  For the mass spectrometry 
data, the ‘spike’ model (‘Gavin-spike’) is more accurate, but has lower coverage, than the 
‘matrix’ model (‘Gavin-matrix’).  The hypergeometric model is considerably more 
accurate than the spike model at the same level of coverage, and eventually converges on 
the matrix model. 
 
Figure 7.  Functional associations of PRP43 predicted by seven algorithms. Default 
parameters were used for querying the gene in each of seven functional prediction 
internet servers, and in each case, only the top ten functional associations are shown (or 
fewer, if less than ten are returned passing the default confidence threshold).  Genes 
involved in mRNA processing are labeled in black text with white background,  gene 
involved in rRNA processing and ribosome biogenesis are labeled in white fonts on black 
background, and gene of other functions are labeled in grey text on a white background. 
(A) depicts the top 10 linkages as predicted by AVID, (B) depicts the top 10 linkages as 
predicted by FinalNet; (C) depicts the top 10 linkages as predicted by Liang et al. (D) 
depicts the top 10 linkages as predicted by MAGIC; (E) depicts the top 10 linkages as 
predicted by PIT (Probabilistic interactome – Total); (F) depicts the top 10 linkages as 
predicted by PLEX; (G) depicts the top 10 linkages predicted by PREDICTOME; (H) 
depicts all the linkages predicted by PROLINKS at a threshold greater than 0.7; (I) 
depicts the top 10 linkages predicted by STRING; (J) depicts the consensus linkages that 
are predicted by more than one server, considering only their top ten linkages.
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Box 1.  Data sets recommended for benchmarking functional predictions 
 
Functional annotation 
GO (Gene ontology) biological process  
http://www.geneontology.org/ontology/process.ontology 
GO is hierarchically organized, with the top level annotation most general and the bottom level most 
specific.  Generally, the middle range of annotation provides a reasonable reference set.  GO is notable for 
only annotating genes with the lowest annotation available and not listing the (implied) higher level terms, 
requiring the user to reconstruct these implied terms for a complete reference set. 
Eukaryotic clusters of orthologous groups (KOGs)  
ftp://ftp.ncbi.nih.gov/pub/COG/KOG/kog 
KOGs is a comprehensive but very general annotation set, with <30 different functional terms.  Due to its 
availability for many organisms, it is valuable for assessing poorly studied organisms.  
CYGD (the comprehensive yeast genome database) functional category, hosted by MIPS (Munich 
Information center for Protein Sequences)  
ftp://ftpmips.gsf.de/yeast/catalogues/funcat/ 
CYGD is a comprehensive and detailed annotation set specific for yeast. 
 
Pathway annotation 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway  
ftp://ftp.genome.jp/pub/kegg/pathways/sce/sce_gene_map.tab 
KEGG offers a three-level hierarchical annotation of pathways. 
 
Complex annotation 
CYGD (the comprehensive yeast genome database) complex, hosted by MIPS (Munich Information 
center for Protein Sequences)  
ftp://ftpmips.gsf.de/yeast/catalogues/complexcat/ 
GO (Gene ontology) cellular components  
http://www.geneontology.org/ontology/component.ontology 
Note: includes both complexes & subcellular locations, with similar organization as GO biological process. 
 
Cellular localization annotation 
Yeast GFP fusion localization database (hosted by UCSF)  
http://yeastgfp.ucsf.edu/ 
The most comprehensive experimental annotation for yeast protein sub-cellular localization.  It has, 
however, <30 different location terms, ranging widely in specificity.  
GO (Gene ontology) cellular components  
http://www.geneontology.org/ontology/component.ontology 
Note: includes both complexes & subcellular locations, with similar organization as GO biological process. 
TRIPLES (TRansposon-Insertion Phenotypes, Localization, and Expression in Saccharomyces) 
ftp://ygac.med.yale.edu/ygac_pub_ftp/localization_pub_data_9_4_01.tab 
Another localization annotation set, generated by random transposon-tagging of yeast genes. 
YPL.db (Yeast Protein Localization Database)  
http://genome.tugraz.at/ypl.html 
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Box 2: Predictions of yeast gene function via integrating multiple datasets 
 
AVID     (Jiang and Keating 2005) 
http://web.mit.edu/biology/keating/AVID/ 
 
FinalNet    (Lee et al. 2004) 
Online supplemental data with paper, also available for download from SGD database: 
ftp://genome-ftp.stanford.edu/pub/yeast/data_download/systematic_results/published_co 
mputational_predictions/lee_pmid_15567862/ 
 
LIANG    (Samanta and Liang 2003) 
http://www.systemix.org/PP/partners/index.php 
 
MAGIC    (Troyanskaya et al. 2003)  
http://genome-www.stanford.edu/magic/ 
 
PIT     (Jansen et al. 2003)  
http://networks.gersteinlab.org/intint/index-2.html   
 
PLEX     (Date and Marcotte 2005) 
http://bioinformatics.icmb.utexas.edu/plex/ 
 
Prediction of CCPs   (Zhang et al. 2004)  
Online supplemental data with paper 
 
PREDICTOME    (Mellor et al. 2002)  
http://predictome.bu.edu/index.php 
 
PROLINKS    (Bowers et al. 2004)  
http://dip.doe-mbi.ucla.edu/pronav 
 
STRING     (von Mering et al. 2005)  
http://string.embl.de/ 
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