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WHAT IS PROTEIN FUNCTION?

Perhaps the most significant finding from the more than 80 genomes

that have been sequenced as of 2002 has been the extent of our igno-

rance about the constituents of cells. In virtually every genome

sequenced, the majority of genes have never been studied directly. In

spite of this, for about half of the genes at least one near or distant rel-

ative has been studied, so we glean our knowledge from the activities

of these relatives. Until recently such methods for extending informa-

tion to proteins with similar sequences or structures (homology-based

methods) have been the only form of inference about protein function.

Homology-based annotation, with algorithms such as BLAST (Alt-

schul et al., 1997; http://www.ncbi.nlm.nih.gov/BLAST), has

been wildly successful in extending knowledge from the small set of

experimentally characterized proteins to the tens of thousands of pro-

teins found in genome sequencing projects. However, these methods

perform as one might expect: they provide information only for pro-

teins with very closely related functions. They reveal little about pro-

teins that work together but typically have unrelated sequences or

structures. Thus, the homology-based methods cannot be used to re-

construct metabolic or signaling pathways or other protein interaction

networks. That such a bias exists shows that there are different aspects

to protein function; methods that reveal one aspect do not necessarily

reveal others.

The two most important aspects of protein function, defined in figure

9.1, will be referred to as the molecular function and the cellular function

of proteins. The homology-based methods tend to find only the molec-



ular functions of proteins, but tell little about the context in which pro-

teins operate. In fact, the context is crucial: proteins virtually never

function alone in cells, but often interact with many partners. It has

been estimated that an average protein will physically interact with

2–10 partners (Marcotte et al., 1999a). It can also be estimated that a

protein will functionally interact—that is, participate in the same path-

way—with even more proteins, perhaps two to three times the number

of physical interactions. This interconnectedness is an important feature

of the cellular organization and regulation of proteins. For this reason,

protein networks are the subject of widespread study.

A new class of computational methods has been developed that finds

the cellular function of proteins. This type of method is not based on

comparisons of sequence or structure, but instead analyzes other

Figure 9.1 Two important components of protein function are the molecular (biochemi-

cal) function and the cellular (contextual) function (e.g., see Kim, 2000; Eisenberg et al.,

2000). The molecular function of a protein is essentially the traditional view. It is the spe-

cific action that the protein engages in, such as binding, activation, inhibition, catalysis,

fulfilling a structural role, etc. The cellular function is the system of interactions that the

protein participates in, the context within which it operates. Other aspects of function in-

clude the intracellular location of proteins and the times and conditions under which

proteins are expressed.
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attributes associated with genes. Broadly speaking, these nonhomology

methods draw inferences about relationships between genes by ana-

lyzing the context in which the genes are found. This chapter will

present an overview of these methods, along with a discussion of their

applications for finding protein function, reconstructing cellular path-

ways, revealing new metabolic systems, and even revealing physical

properties of proteins, such as their locations in cells.

GENOMES CONTAIN CONSIDERABLE INFORMATION ABOUT

PROTEIN FUNCTION

It is easy to think only of the coding potential of genes, since that seems

most immediately important for producing a protein. However, genes

have many different properties besides their coding potential, and in-

formation about the relationships between genes is often encoded in

these other properties. Important contextual properties of genes include

their position and order on the chromosome, the flanking control

regions, the distribution of homologues in other species, the occurrence

of fusions between genes, and so on. Table 9.1 summarizes many such

genomic sources of functional data and lists data derived from meas-

urements of protein and mRNA expression patterns.

Just as homology-based methods analyze conserved sequences or

structures to find proteins with related molecular function, so non-

homology methods analyze conserved contextual properties to find

proteins with related cellular function. At the heart of nonhomology

methods is the fact that proteins working together in the cell have

shared constraints—they must be encoded by the same genome, they

often are coregulated, they occasionally are fused into a single gene,

they must at some point be coexpressed, and so on. Nonhomology

methods exploit these constraints to identify proteins working together.

DISCOVERING PROTEIN FUNCTION FROM GENOMIC DATA

Finding Function from Domain Fusions

One of the most straightforward nonhomology methods needs large

numbers of protein sequences but does not require complete genomes.

It has been known for years that proteins encoded as separate genes in

one organism often are found in another organism fused into a single
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Table 9.1 Analysis of ‘‘contextual’’ information associated with genes

Contextual Information Applications

Information in genomes about

the relationships between genes

Information derived from a

single genome

Intergenic distance

Intragenomic conservation

of regulatory sequences

Operon reconstruction

Operon and regulon

reconstruction

Information derived from

comparisons of multiple

genomes

Distribution of sequence

homologues among

different organisms

Calculation of phylogenetic

profiles for pathway

reconstruction and cellular

localization

Conservation of relative

gene position

Operon reconstruction

Domain fusions Pathway reconstruction

Intergenomic conservation

of regulatory regions

Identification of

coregulated genes

Information in expression data

about the relationships

between genes

Clustering genes by their

expression profiles

mRNA expression profiles Identification of

coregulated genes and

pathway or operon

reconstruction

Spatial expression profiles Pathway reconstruction

Protein expression profiles Pathway reconstruction

Clustering genes by the

expression levels of all other

genes in one or more

experiments

Genomewide expression

as a gene phenotype

Pathway reconstruction

Beyond simply coding for genes and their regulatory sequences, genomes are rich in

information about the relationships between genes. Analysis of this information allows

reconstruction of cellular systems, pathways, and genetic networks. For the last entry,

the expression of all other genes is used as the phenotype when the gene in question is

disrupted. Genes are then clustered to maximally match their phenotypes.
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polypeptide. Two such examples are shown in figure 9.2. In each of the

two examples, the separately encoded E. coli proteins are drawn be-

neath the fusion protein from another organism. In both cases, the E.

coli proteins are members of the same pathway. In the bottom example,

the nitrite reductase proteins physically interact to form an active

nitrite reductase enzyme.

In fact, this trend is surprisingly common (Marcotte et al., 1999a;

Enright et al., 1999), especially among metabolic proteins (Tsoka and

Ouzounis, 2000). Thousands of such fusion events can be found—in

yeast, more than 45,000 pairs of proteins can be found as fusion pro-

teins in other organisms (Marcotte et al., 1999a). Almost universally,

the cellular functions of the component proteins are very closely re-

lated. Searching systematically for these fusion events therefore rapidly

generates functional links between proteins. For this reason, the fusion

proteins have been called ‘‘Rosetta Stone’’ proteins for their ability to

decode the functional links between component proteins (Marcotte et

al., 1999a).

Figure 9.2 Two examples of the domain fusion or Rosetta Stone method of finding

functional links. In each example the two lower proteins can be inferred to be functionally

linked because of the existence of the top fusion protein. For example, if we did not al-

ready know that the E. coli nitrite reductase large and small subunits formed a hetero-

complex, they could be inferred to be functionally linked after finding the K. pneumoniae

fusion protein.

227 Predicting Protein Function and Networks



Rosetta Stone links are found by aligning a query protein’s amino

acid sequence against protein sequences from genomes or a large se-

quence database such as GenBank. The statistically significant hits from

this search include sequence homologues and candidate Rosetta Stone

proteins. These hits are then used as the query proteins for a second set

of searches against the sequence database. The statistically significant

hits from this second round of searches are then tested for similarity to

the original query protein. Those second-round hits without sequence

similarity to the original query protein are proteins with Rosetta Stone

links to the original query protein.

Not all fusions convey the same degree of confidence in the resulting

functional linkage. Individual domains have different propensities to

participate in these gene fusion events, and many cell signaling

domains, such as SH3 or tyrosine kinase domains, can be found fused

into literally hundreds of different genes. These promiscuous domains

still can be used to generate functional linkages, but it has been found

that limiting the Rosetta Stone analysis to nonpromiscuous domains

increases the functional similarity of the linked proteins. This filtering

step can be performed either by explicitly forbidding links generated

by promiscuous domains (Marcotte et al., 1999a; http://www.doe-

mbi.ucla.edu) or by requiring strong sequence homology or even

orthology between the individual proteins and the Rosetta Stone pro-

tein (Enright et al., 1999; Enright and Ouzounis, 2000). Regardless, it is

possible to generate thousands of significant links between pairs of

proteins in a genome by this method.

Finding Function from Coinheritance

One important consequence of the genomic revolution is the finding

that genomes have mosaic compositions, containing genes with widely

varying phylogenetic origins. This trend is especially strong among

prokaryotes due to processes such as horizontal gene transfer (Jain et

al., 1999; Koonin and Galperin, 1997), but is true to a considerable ex-

tent in eukaryotes as well (Marcotte et al., 2000). These variable phylo-

genetic origins of genes are another aspect of gene context for use in

these analyses.

This phylogenetic diversity can be explicitly described for each gene

by calculating its phylogenetic profile (Pellegrini et al., 1999, with related
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concepts in Gaasterland and Ragan, 1998; Huynen et al., 1998; Ouzou-

nis and Kyrpides, 1996; and Tatusov et al., 2001). A phylogenetic pro-

file describes the presence or absence of a gene across a set of

organisms with sequenced genomes. Genes with similar phylogenetic

profiles are therefore always inherited together or absent from the same

organisms. This similarity is unlikely to happen by chance if enough

species are examined, and such proteins are thus extremely likely to

function together. For 30 genomes, there are about 230, or 109, possible

phylogenetic profiles, making random matches of profiles unlikely.

When enough different species are examined to be statistically signifi-

cant, genes with similar phylogenetic profiles are inferred to be func-

tionally linked.

Constructing a phylogenetic profile for a gene requires performing

sequence alignments between that gene and all genes from each of the

fully sequenced genomes. Because thousands of sequence alignments

must be calculated, rapid alignment algorithms like BLAST (Altschul et

al., 1997) are typically used. The phylogenetic profile of a gene is then

calculated as a vector in which each entry represents a measure of se-

quence similarity between that gene and the most similar sequence

match in a given genome. This measure of sequence similarity Si; j can

be as simple as a binary code: Si; j ¼ 1 if a sequence homologue of gene i

is present in genome j and Si; j ¼ 0 if no homologue exists. Alter-

natively, the measure of sequence similarity can be a real, valued mea-

surement reflecting the degree of sequence similarity present. One such

measure that has empirically been shown to work satisfactorily is

Si; j ¼  1=logðEÞ, where E represents the expectation value from the se-

quence alignment between gene i and the top-scoring sequence match

in genome j (Marcotte, 2000). Real-valued phylogenetic profiles calcu-

lated in this fashion are shown in figure 9.3.

Once a phylogenetic profile is calculated for each of the genes in

a genome, functional links can then be inferred between genes with

similar phylogenetic profiles. The simplest approach is to treat phylo-

genetic profiles as coordinate vectors positioning genes in a high-

dimensional space, then calculating distances between genes, using such

distance metrics as the Manhattan, Euclidean, or Mahalonobis distance.

Genes positioned close together in space can be inferred to be coin-

herited, and therefore functionally linked. Another approach is to apply

a statistical test such as a Fisher exact test on the binary phylogenetic

profile vectors to identify coinherited genes.
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Figure 9.3 Examples of phylogenetic profiles for a number of yeast proteins. Each pro-

file, drawn horizontally, indicates the degree of sequence similarity of a protein—for ex-

ample, MLH1—to the most similar protein in each of the fully sequenced genomes (listed

as abbreviations across the top.) Where there is no sequence homologue, the profile has

a white square, and where there is a statistically significant sequence homologue, the

square is colored to indicate the degree of homology, with black being most similar. Three

functional classes of proteins are profiled; profiles are shared within a functional class but

are quite distinct between classes.
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As an alternative to calculating pairwise links, the genes can simply

be clustered into coinheritance groups on the basis of similarity be-

tween their phylogenetic profiles. Many such clustering approaches

have been developed in computer science and statistics for clustering

points in high-dimensional spaces, such as k-means clustering, which

are appropriate for this task.

Finding Function from Relative Gene Position

Another powerful method for finding functionally linked genes comes

from examining the conservation of relative positions of genes in

genomes (Dandekar et al., 1998; Tamames et al., 1997; Overbeek et al.,

1999). As with the two previous methods, this aspect of gene context

can be analyzed in a straightforward fashion. The essence of the

method is that the order of genes in genomes tends to randomize over

time. Therefore, if two genes have similar positions relative to one an-

other in several genomes, the genes are likely to be functionally linked.

In the simplest case, this means that the genes are immediate neighbors

in several genomes, but the method could theoretically be extended to

any separation between the genes. On-line tools for investigating the

genomic neighbors of a gene include the Entrez genome (http://

www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Genome) and

WIT (http://wit.mcs.anl.gov/WIT2) databases.

This method exploits the trend for prokaryotic genes to be organized

into operons, in which genes with a related function are clustered close

together on the genome to allow coordinate transcription and transla-

tion of the genes. Operons seem to be uncommon in most eukaryotes,

occurring mainly in unusual gene families such as the cadherins (Wu

and Maniatis, 1999). However, in prokaryotes, operons are virtually the

norm, and where genes from an operon are conserved in multiple spe-

cies, this method allows very reliable functional links to be inferred. In

fact, it has been shown that the observation of two genes as immediate

neighbors in two reasonably unrelated organisms is sufficiently statis-

tically significant to infer a functional link between the proteins (Over-

beek et al., 1999), as diagrammed in figure 9.4A and B.

A rough calculation of significance goes as follows. Given two adja-

cent genes in a genome, we would expect by random chance to find the

genes adjacent in a second genome of n genes, with all genes, but not

gene order, conserved between the two genomes, only two times out of
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n 1. So, given a typical bacterial genome of n ¼ 4000 genes, we would

expect to find the two genes adjacent with a random probability

p ¼ 2=ð3999Þ, or 5! 10 4. Because of the ubiquity of operons and the

low random likelihood of conserved neighbors, the coverage of this

method can be quite high, and thousands of pairwise functional links

can be generated (Huynen et al., 2000a).

Finding Function from Intergenic Distances

A second promising method has been described that analyzes gene

position to find functional links between proteins. This method is

explicitly formulated to detect operons and works by analyzing the

number of nucleotides separating neighboring genes (Salgado et al.,

2000). Genes organized in bacterial operons are cotranscribed on a sin-

gle mRNA and translated in a coordinated fashion. This coordination

of transcription and translation for the genes in an operon probably

places a selective pressure on keeping genes close together, as com-

pared to an absence of selection for adjacent genes not in the same

operon. Thus, adjacent genes with short intergenic distances tend to be

in the same operon; adjacent genes with long intergenic distances tend

not to be.

One advantage of this method is that it can be performed for genes

unique to a genome—no gene conservation is required for the method

to operate. This ability to work on ORFans, the genes found only in a

Figure 9.4 (A) Comparing the genome of organisma1 with the genomes of several other

organisms allows a number of inferences to be drawn about the relationships between the

genes of organism a1. In the figure, genes, depicted as labeled white boxes, are arranged

on the genomes, drawn as heavy black horizontal lines. First, the genes A and B can be

found fused in organisma2, suggesting that A and B are functionally linked. Second, the

genes A, B, and C are found in the same set of organisms (a1, 2, and 5) and are absent

from the same set of organisms (a3 and 4). This coinheritance suggests A, B, and C are

functionally linked. Third, genes B and C are neighbors in more than one genome, sug-

gesting a selective pressure to maintain their relative positions. Likewise, the intergenic

distance between genes B and C is much smaller than the typical intergenic distance,

suggesting that B and C may belong to an operon. Fifth, the mRNA of genes C and D are

coexpressed in many different experiments, suggesting C and D are coregulated or func-

tion together. Each of these inferences can be conceptualized as generating a functional

linkage between two proteins. (B) The resultant network of functional links. Predicted

networks can be compared can complemented by experimental networks, such as the ex-

perimentally derived link between C and E.
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single genome (Fischer and Eisenberg, 1999), sets this method apart

from the other genomic methods described above. In this respect, the

analysis of intergenic distance has more in common with analysis of

expression data, which can also provide functional links for ORFans.

Finding Function from Regulatory Regions

The last obvious contextual property of genes useful for assigning pro-

tein function is the presence of regulatory regions found outside of

gene coding regions. These regulatory sites in DNA are recognized and

bound by transcription factors, enhancers, and repressors to control the

transcription of the neighboring genes. Because genes with related

functions are often coregulated, it would seem reasonable to create

functional links between genes with similar regulatory regions.

Unfortunately, regulatory regions are notoriously difficult to identify.

Judging the similarity between them is equally difficult. Although con-

sensus sequences have been identified for most major regulatory sites

(e.g., see the Eukaryotic Promoter Database, http://www.epd.isb-

sib.ch), the sites recognized by a given transcription factor or poly-

merase are often quite varied. Nonetheless, progress has been made in

identifying shared regulatory regions upstream of coexpressed genes

(Roth et al., 1998) and upstream of coinherited genes, Rosetta Stone

linked genes, and genes coconserved in operons (Manson McGuire and

Church, 2000). Since genes in these categories are often functionally re-

lated, it seems likely that the inverse process, clustering genes by their

regulatory regions, will also yield functional information. An attempt

at this process (Pavlidis et al., 2001) shows that such functional infor-

mation is available, although the method is not currently as powerful

as methods exploiting other sorts of contextual information. However,

such analyses of regulatory regions are likely to improve dramatically

with the explicit knowledge of transcription factor binding sites gen-

erated from DNA microarray mapping of transcription factor specific-

ities (Iyer et al., 2001).

DISCOVERING PROTEIN FUNCTION FROM EXPRESSION DATA

The genomic analyses discussed above examine static genomes and

draw inferences from the state of the genomes at one point in time.

However, genomes and cells are dynamic systems, and considerable
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information can be gleaned about cellular systems by analyzing these

dynamics. We might argue that genomes are dynamic on two time scales:

the evolutionary and the immediate. The methods discussed above an-

alyze events on the evolutionary time scale. Now we turn to events on

the more immediate time scale.

Finding Function from mRNA Expression Patterns

DNA microarrays and EST sequencing have produced literally millions

of discrete measurements of gene expression. This flood of data has in

turn stimulated many analyses of gene expression profiles. In general,

the analyses share the following form: A set of measurements of the

expression of a number of genes under different conditions is available,

from DNA microarrays (e.g., as in Lashkari et al., 1997), serial analysis

of gene expression (SAGE; Velculescu et al., 1995), or expressed se-

quence tags (EST; Adams et al., 1991). Expression vectors are then con-

structed for the genes, each vector describing the expression of a given

gene under a range of cellular conditions, cell types, genetic back-

grounds, and so on. These expression vectors are then clustered to find

genes with similar expression patterns (Eisen et al., 1998). Given

enough independent experiments (>100) with sufficient variation in the

conditions, genes clustered in this fashion tend to be functionally re-

lated (Marcotte et al., 1999b). Fortunately, unlike complete genome

sequences, data of this sort are readily generated. It is possible to per-

form large numbers of microarray experiments, producing enough ex-

pression data to find statistically significant functional links. Many

expression data sets are publicly available from sites such as the Stan-

ford Microarray Database (http://genome-www4.stanford.edu/

MicroArray/SMD).

A variation of this approach involves analysis of SAGE or EST libra-

ries collected from various tissues and cell conditions (e.g., the dbEST

database: http://www.ncbi.nlm.nih.gov/dbEST/index.html).

In this approach, mRNAs from cells are reverse transcribed into cDNAs

and sequenced. Since many thousands of mRNAs are typically se-

quenced, the EST or SAGE library is a fairly representative selection

of the mRNAs present under those cellular conditions, and thus can

serve in a fashion analogous to microarray expression measurements.

EST and SAGE libraries vary widely in size and completeness, so

calculations of expression vectors with their data are not entirely
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straightforward. However, related analysis can be performed, such as

Guilt-by-Association, which essentially creates functional links between

genes based on their copresence and coabsence from EST libraries

(Walker et al., 1999).

Coexpression analyses have advantages and disadvantages in regard

to genomic data for functional predictions. The primary disadvantage,

beyond having to collect additional data, is that the functional infer-

ences from coexpression are relatively weak until a large body of ex-

pression data is collected (Marcotte et al., 1999b). However, this is more

than compensated for by the advantage of learning information about

any gene for which expression can be detected, regardless of its con-

servation in other species. Coexpression analysis and the prediction of

operons using intergenic distances (Salgado et al., 2000) are currently

the only two computational methods capable of generating functional

information for ORFans (Fischer and Eisenberg, 1999).

Finding Function from Spatial Expression Profiles

The expression methods discussed above typically give no information

about the intracellular location of the expressed molecules. However,

spatial expression data should be useful for pathway reconstruction,

since we expect functionally linked proteins to be found at similar

subcellular locations. Therefore, the converse will often be true: pro-

teins that are always expressed at the same locations probably function

together. This approach to finding protein function is quite technically

demanding, but in spite of the difficulty, one group has collected such

spatial expression data for more than 1750 genes expressed in Xenopus

oocytes (Gawantka et al., 1998). More recently, the data have been in-

corporated into a database and methods to measure similarity between

mRNA spatial expression patterns have been developed (Pollet et al.,

2001). Although considerable work remains, this work establishes the

viability of this method for generating functional information.

Finding Function from Protein Expression Profiles

Gathering expression data for an entire proteome, or all of the proteins

encoded by a genome, is only now becoming feasible, due largely to the

development of high-throughput mass spectrometric analyses of pro-
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teins (Shevchenko et al., 1996; Hunt et al., 1986; Gygi et al., 1999; Jensen

et al., 2000). Although such protein expression data are not yet widely

available, they will be a valuable complement to the mRNA expression

data from EST libraries and chips. What is not yet clear is how well

protein expression data will correlate with mRNA expression data.

Early results comparing protein expression by mass spectrometry

and mRNA expression by SAGE suggested that mRNA and protein

expression patterns are quite different (Gygi et al., 1999). Recent devel-

opments with DNA chips have allowed quantification of mRNAs being

actively translated through analysis of polysomal mRNA fractions.

These chip-based measurements of protein expression show strong

correlation with chip-based measurements of mRNA expression (Joe

DeRisi, personal communication). Nonetheless, it is likely that the pro-

tein expression patterns will hold considerable value for inferring pro-

tein function.

In theory, protein expression data can be analyzed similarly to

mRNA expression data. It is likely that expression data will be col-

lected for many of the proteins in a proteome over many different

cellular conditions. As with mRNA expression data, these protein

expression data will compose expression vectors that can be clustered

and analyzed much as the mRNA data are.

However, protein expression data may contain an additional element

absent from mRNA expression data: mass-spectrometric methods have

the capability not only to measure protein expression levels but also to

identify protein modifications. Posttranslational modifications of pro-

teins are widespread in cells, both spontaneous unregulated events

such as oxidation, and enzymatic modifications such as lipidation,

phosphorylation, and ADP ribosylation. Such modifications often

modify the activity or localization of the proteins. Thus, it seems likely

that protein expression profiles will catalog not only expression pat-

terns but also protein states, such as on, off, activated, repressed, and so

on. These protein state vectors will provide a rich source of data for

protein function prediction.

MEASURING PROTEIN FUNCTION AND TESTING PREDICTIONS

Before testing any of these predictive methods, one must develop a

metric for measuring protein function. At first glance, protein function
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would seem difficult to quantify. However, several metrics have been

developed that perform quite well, allowing optimization and calibra-

tion of the methods.

Perhaps the most obvious metric is that of testing that the methods

recover known functional relationships. Using a database of known

pathways, such as the KEGG (Kanehisa and Goto, 2000; http://

www.genome.ad.jp/kegg/kegg2.html) or EcoCyc (Karp et al.,

2000; http://ecocyc.pangeasystems.com/ecocyc) database of

metabolic pathways, or the DIP database of protein interactions

(Xenarios et al., 2001; http://dip.doe-mbi.ucla.edu), each

method is evaluated by its coverage, the fraction of experimental links

correctly predicted by the algorithm, and by its accuracy, the fraction of

predicted links that are verified by an experimental link.

Unfortunately, the measurement of accuracy cannot be very exact,

since our knowledge of experimental pathways is limited and few

pathways are known completely. Thus, absence of a link from the ex-

perimental database does not necessarily mean the link is wrong. Due

to this limited knowledge, we can measure false negative predictions

accurately (failure to predict an experimental link), but cannot evaluate

false positive predictions (prediction of a functional link where none

exists). To some extent, the accuracy measurement, while not correct in

an absolute sense, can be treated as a relative value for optimization

and for comparisons between algorithms.

A second metric that performs well in practice is that of key word re-

covery or category matching (Marcotte et al., 1999b). For this approach,

genes of known function are first classified into a limited set of func-

tional categories. Many databases have such categorizations incorpo-

rated, sometimes explicitly (as in the MIPS database of yeast proteins;

Mewes et al., 1998) and sometimes implicitly (as in the key words

associated with proteins in the SWISSPROT protein sequence database;

Bairoch and Apweiler, 2000). Testing predictions is then reduced to

checking for agreement between the predicted and known key words

or categories for each characterized protein, and finding the average

agreement over all characterized proteins. An example is calculating

hkey word recoveryi ¼

1

A

XA

i¼1

Xx

j¼1

nj

N
;

where x is the number of key words known for the protein i being
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tested, N is the number of key words predicted for the protein, and nj is

the number of times key word j from the protein’s known annotation

appears in the predicted key word list. The average key word recovery

is calculated for all A characterized proteins.

For many of the predictive methods, the prediction is not of a given

functional category but of a link between two proteins. In these cases,

for all predicted protein pairs involving proteins of known function, the

overlap between the key words or categories of the two proteins can be

calculated with a function such as the Jaccard coefficient:

hkey word overlapi ¼

1

P

X

P

i¼1

k1 X k2

k1 W k2

� �

;

where for each of the P pairs of linked, characterized proteins, the k1

key words of one protein are compared against the k2 key words of the

linked protein partner. The number of key words in the intersection is

divided by the number of key words in the union to give a normalized

measure of the overlap between the two sets of key words. The value of

this overlap averaged over all P pairs gives a measure of the accuracy

of the prediction algorithm. To optimize and compare prediction algo-

rithms, this measurement of method accuracy can be combined with

the measured coverage of known pathways.

ASSIGNING PROTEINS TO FUNCTIONAL CATEGORIES

One simple way to implement these methods is to test if proteins be-

long to given functional categories (Pavlidis et al., 2001; Marcotte et al.,

2000). To do this, an algorithm is trained to recognize the characteristics

of proteins in a given functional category. Such a discrimination algo-

rithm requires a set of quantitative features for each protein. Effec-

tively, these features are treated as coordinates mapping the protein

into a high-dimensional feature space. When the features are chosen

appropriately, proteins belonging to a given functional category fall in

a distinct region of this feature space and proteins from other func-

tional categories fall in other regions.

Many of the contextual properties of genes can be interpreted as fea-

tures. For example, the phylogenetic profile of a protein is a vector in

which each element describes the degree of similarity of the protein to

the most similar sequence in a given genome. When interpreted as a list
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of features, the phylogenetic profile describes the mapping of a protein

into a phylogenetic space. The attributes of this space are the following: It

is an n-dimensional space, where n is the number of genomes used to

calculate the phylogenetic profile. The axes of the space are not

orthogonal—some genomes are quite similar to each other, so some

axes are more correlated than others. (If we choose, we can orthogon-

alize the space—for example, by applying a whitening transformation.)

Last, proteins are not evenly distributed in this space. Certain system-

atic biases occur in the types of proteins encoded by a genome, and

these in turn introduce biases in the genes’ locations in phylogenetic

space. For example, each genome contains a fraction of genes unique to

that species; these genes all map to the same region of phylogenetic

space. Likewise, certain genes are broadly conserved among only

eukaryotes or prokaryotes—again, these genes all map to the same

general region of phylogenetic space. However, proteins with a related

function cluster in this space, as do eukaryotic proteins localized to

similar cellular compartments (Marcotte et al., 2000).

A discrimination algorithm defines a set of boundaries in this high-

dimensional space that separate proteins with the desired function

from all other proteins. Numerous algorithms have been adapted from

statistics and computer science for this purpose, including Bayesian

classifiers (elegantly described in Mosteller and Wallace, 1984), support

vector machines (Pavlidis et al., 2001), neural network discriminators,

and linear discrimination functions (Marcotte et al., 2000). The advan-

tage of this method of predicting function is that one can test for very

specific functions, as well as calculate the degree of confidence in the

results.

INTEGRATING METHODS TO DISCOVER PROTEIN FUNCTIONAL

AND INTERACTION NETWORKS

The discrimination algorithms described above work under the as-

sumption that a set of functionally related proteins is known, and more

proteins with the same function are desired. In this approach, the

algorithms must be trained on a set of positive examples, proteins

whose functions are known to match the desired function, as well as on

a set of negative examples.

However, a naive approach can be useful to discover what trends are

in the data and to look for naturally occurring clusters. The naive
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approach is also biologically motivated: it is now becoming apparent

that proteins are organized into large interaction networks in the cell.

One such experimentally derived protein interaction network is shown

for the proteins of yeast in figure 9.5, derived from high-throughput

measurements of protein interactions (Uetz et al., 2000; Ito et al., 2000)

and from mining biological literature for all previously known yeast

Figure 9.5 The proteins of yeast interact in an extensive network. Here, the vertices of

this graph are 1722 yeast proteins participating in 2612 experimentally observed inter-

actions, drawn as edges connecting the interacting partners. Two regions are expanded

to show an interaction network involving the ras protein and an interaction network

involving several DNA replication factors (RFC1–5). Many experimental techniques are

represented, including high-throughput two-hybrid interaction screens (Uetz et al., 2000;

Ito et al., 2000), mass spectrometry, and co-immunoprecipitation. The interactions are

available courtesy of Ioannis Xenarios, curator of the Database of Interacting Proteins

(Xenarios et al., 2001).
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protein interactions (Xenarios et al., 2001). Such networks reinforce the

notion that proteins never work alone. Ideally, the predictive methods

should reveal exactly these sorts of networks.

To discover such networks, the predictive methods can be applied to

produce functional links between pairs of proteins. Although the links

are generated in a pairwise fashion, extensive networks of proteins re-

sult when links are calculated for all of the genes in a genome. Different

types of networks are calculated, depending on the method used. For

example, mRNA expression links may produce coexpression networks,

and phylogenetic profiles will produce coinheritance networks. How-

ever, networks provide a logical framework for combining methods.

Using the metrics described earlier, each method can be optimized to

link proteins with a comparable degree of confidence. Then, links gen-

erated by each method can be combined to create a functional interac-

tion network. A simplified example is diagrammed in figure 9.4B,

derived from the gene context information for one the organisms (a1)

in figure 9.4A.

Actual networks calculated for all of the proteins encoded in a

genome are much more complicated. Figure 9.6 shows such a predicted

functional network for 2240 proteins of yeast. Inspection of the network

shows that it has considerable diversity in its structure, with many

highly connected subnetworks. Examination of such subnetworks

shows reasonable correspondence to many known pathways (e.g., see

Pellegrini et al., 1998; Marcotte, Pellegrini, Ng, et al., 1999; and Mar-

cotte, Pellegrini, Thompson, et al., 1999). Uncharacterized proteins can

therefore be assigned function by linking them with known pathways.

This approach allowed preliminary assignment of functions to more

than half the uncharacterized proteins of yeast (Marcotte, Pellegrini,

Thompson, et al., 1999; http://www.doe-mbi.ucla.edu/) and to

10% of the genes of M. genitalium (Huynen et al., 2000b).

Analysis of these predictive networks and their correspondence to

metabolic, signaling, and interaction networks is an ongoing area of

study. Open topics of study include defining subnetworks, cliques, and

network properties; determining which functional links correspond to

physical interactions and which have other interpretations; and dy-

namic models of networks. Predictive networks can be incorporated

into metabolic pathway models, such as those discussed in chapter 10

or those incorporated into the E-cell project, described in chapter 11.
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For these models, predictive networks may be especially useful for

completing input pathways known only partially from experiment.

DISCOVERING NEW METABOLIC SYSTEMS

An especially tantalizing aspect of the study of protein networks is

the discovery of novel cellular systems. Molecular biology has until

recently generated knowledge about proteins one at a time, each

researcher studying the system of his or her desire. The overall effect

has been a somewhat random patterning of knowledge over the

proteome.

Figure 9.6 A network of predicted functional links between yeast proteins. As in figure

9.5, proteins are drawn as vertices of the graph, and functional links are drawn as edges

between functionally linked proteins. In all, 2240 proteins are shown participating in

12,012 functional links, as calculated from phylogenetic profiles (adapted from Marcotte,

2000).
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However, the functional and physical interaction networks give the

best and most complete estimates of cellular pathways and systems.

Examining the networks shows exactly which systems have been well

studied and which have been neglected entirely. By searching for such

unstudied systems, the network analysis allows systematic discovery of

novel pathways.

One such novel system from Mycobacterium tuberculosis is dia-

grammed in figure 9.7. This system was found in a search for tightly

functionally linked but unannotated genes. The genes are linked by a

number of redundant functional linkages, increasing the likelihood that

the genes really function together. Of the seven genes in this putative

Figure 9.7 Novel pathways are revealed in computationally predicted networks. Shown

here is a network of M. tuberculosis genes linked together by a combination of predictive

methods. Multiple methods support each other in linking the genes, increasing confidence

that the proteins participate in the same pathway. At the time of this writing, functions

were unknown for all of the genes, with the exception of homology of Rv3741c and

Rv3742c to oxygenase subunits. This homology suggests that the genes in the network

may participate in a novel metabolic pathway in M. tuberculosis.
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pathway, none have a known function, although two are estimated

from sequence homology to be subunits of an uncharacterized oxygen-

ase. Here, the network analysis reveals only the cellular functions, but

not the molecular functions, of the proteins. We can only speculate,

based upon the oxygenase proteins, that this system is a novel meta-

bolic pathway in M. tuberculosis. Defining all such new systems is the

first step; what follows is perhaps the harder work of characterizing

and understanding the new systems.
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Tools for investigating the genomic neighborhood of a gene include the Entrez genome

web site: http://ww.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Genome and

the WIT database: http://wit.mcs.anl.gov/WIT2

The Eukaryotic Promotor database lists the consensus regulatory sequences derived from

promotors of many eukaryotic genes: http://www.epd.isb-sib.ch

DNA microarray protocols, numerous experiments, and data are available from the

Stanford Microarray Database:

http://genome-www4.stanford.edu/MicroArray/SMD

Additional measurements of gene expression are available in Expressed Sequence Tag

databases such as dbEST: http://www.ncbi.nlm.nih.gov/dbEST/index.html

Many known metabolic pathways and networks have been characterized in the KEGG

database: http://www.genome.ad.jp/kegg/kegg2.html

EcoCyc database: http://ecocyc.pangeasystems.com/ecocyc

Database of Interacting Proteins: http://dip.doe-mbi.ucla.edu

Last, several sequence databases also provide functional annotation of the genes that can

be used in benchmarking programs that predict gene function. Among these annotated

databases are

MIPS: http://www.mips.biochem.mpg.de/

Swiss-Prot: http://ca.expasy.org/sprot/

Gene Ontology Consortium: http://www.geneontology.org
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