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    Chapter 20   

 Label-Free Protein Quantitation Using Weighted 
Spectral Counting       

         Christine   Vogel    and    Edward   M.   Marcotte         

  Abstract 

 Mass spectrometry (MS)-based shotgun proteomics allows protein identi fi cations even in complex 
biological samples. Protein abundances can then be estimated from the counts of MS/MS spectra 
attributable to each protein, provided that one corrects for differential MS-detectability of the contrib-
uting peptides. We describe the use of a method, APEX, which calculates Absolute Protein EXpression 
levels based on learned correction factors, MS/MS spectral counts, and each protein’s probability of 
correct identi fi cation. 

 The APEX-based calculations consist of three parts: (1) Using training data, peptide sequences 
and their sequence properties, a model is built that can be used to estimate MS-detectability ( O  i ) for 
any given protein. (2) Absolute abundances of proteins measured in an MS/MS experiment are 
calculated with information from spectral counts, identi fi cation probabilities and the learned  O  i -values. 
(3) Simple statistics allow for signi fi cance analysis of differential expression in two distinct biological 
samples, i.e., measuring relative protein abundances. APEX-based protein abundances span more than 
four orders of magnitude and are applicable to mixtures of hundreds to thousands of proteins from any 
type of organism.  

  Key words:   Quantitative proteomics ,  Protein expression ,  Label-free mass spectrometry ,  Spectral 
counting  

  Abbreviations  

  APEX    Absolute Protein EXpression   
  MS    Mass spectrometry   
  MS/MS    Tandem mass spectrometry     
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 Mass spectrometry (MS) based shotgun proteomics is a fast and 
relatively easy method for large-scale protein identi fi cation. A typical 
shotgun proteomics experiment proceeds by tandem MS (MS/MS) 
analysis of peptides from proteolytically digested proteins, followed 
by  in silico  matching of the observed MS/MS spectra against a 
database of theoretical peptide spectra derived from the expected 
protein sequences. Typical database search engines include 
SEQUEST or MASCOT ( see  also Chapter   28    ). Proteins are 
identi fi ed through combined evidence for their contributing pep-
tides, resulting in a list in which each protein is associated with a 
con fi dence score (or probability) of correct identi fi cation, e.g., 
from ProteinProphet  (  1  ) . In addition, an MS dataset provides 
information on the types and number of different peptide spectra 
associated with each protein, as well as peak heights corresponding 
to ion intensities. 

 A number of approaches have been developed to quantify pro-
tein observations from peak heights in shotgun proteomics experi-
ments by introducing internal reference standards, often by addition 
of isotopically labeled peptides  (  2,   3  )  (for summary  see  Chapter   7    ). 
These reference standards can be derived from cells grown in labeled 
medium, as in SILAC  (  4  )  ( see  Chapters   13     and   14    ), by derivatizing 
natural samples, as in ICAT  (  5  ) , or can instead be synthesized 
and added to samples, as in isotope dilution (e.g., AQUA (  6  ) ) ( see  
Chapter   17    ). The necessity (and expense) of synthesizing thousands 
of isotopically labeled peptides has prevented easy scaling to full 
proteomes, even when employing unlabeled peptides  (  7  ) . 

 Thus, development of label-free quantitation methods for mass 
spectrometry has been of high interest. Peak intensities have been 
used to estimate protein concentrations, e.g., through average the 
intensities of contributing peptides  (  8,   9  )  ( see  Chapter   16    ). Other 
approaches have considered quantitation from the MS/MS sam-
pling statistics in a shotgun proteomics experiment ( see  Chapter   22    ). 
Both the coverage of unique peptides in a protein (i.e., percentage 
of possible peptides per protein actually observed) and the total 
number of repeat observations of MS/MS spectra from all pep-
tides in a protein (spectral count) approximate protein abundance 
 (  10–  17  ) . However, both measures have shortcomings, such as cov-
erage showing saturation (at 100%), spectral counts not accounting 
for protein size (larger proteins contribute more peptides), both 
approaches ignoring sampling depth, i.e., the total number of MS/
MS experiments that go into the calculation, and neither approach 
considering the prior odds of observing any particular peptide in 
the experiment, i.e., the MS-detectability. Peptides vary consider-
ably in their ability to be detected by an MS instrument due to, for 
example, chemical sequence properties that affect peptide ioniza-
tion  (  18  ) . Although such trends can be partly predicted from a 

  1.   Introduction
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peptide’s amino acid composition  (  19–  25  ) , many quantitation 
approaches have not incorporated these predictions to adjust 
observed spectral counts. 

 Here, we present protocols for implementing a quantitative 
method, called APEX (Absolute Protein EXpression index) which 
addresses each of these limitations using protein identi fi cation 
scores, spectral counts and prior estimates of the number of unique 
tryptic peptides expected for the protein ( O  i  value) to calculate 
absolute protein expression indices  (  26  ) . We estimate the  O  i  value 
employing machine learning techniques accounting for protein 
size, sequence properties, ionizability and other properties 
in fl uencing MS detectability. The number of MS/MS spectra 
observed in the experiment, i.e., repeat peptide observations, is 
then normalized by the  O  i  value for each protein, i.e., the number 
of unique peptides expected, and serves as an estimate of the pro-
tein’s abundance. In addition, we normalize by the total number 
of spectra observed in the experiment to enable comparison 
between experiments with different sampling depths. 

 APEX is a robust and rapid method to quantify absolute pro-
tein abundance. It is appropriate for large-scale protein expression 
measurements where absolute abundance estimates are desirable 
and especially where isotope-labeling is impractical. In comparison 
to intensity-based methods, it is an extremely easy and still reliable 
method. In contrast to other non-MS-based techniques  (  27–  30  ) , 
APEX can be used for large-scale datasets and differential protein 
expression without construction of fusion protein libraries, label-
ing, or internal standards. 

 APEX-based protein abundances span over four orders of mag-
nitude and are applicable to mixtures of hundreds to thousands of 
proteins sampled from any organism of known sequences  (  26  ) . We 
developed and tested APEX on two different electrospray ionization 
MS instruments (ThermoFinnigan Surveyor/DecaXP + iontrap 
(LCQ), ThermoFinnigan LTQ-Orbitrap); however, the method is 
equally applicable to other MS instruments. We successfully applied 
APEX to proteomes of yeast  (  26  ) ,  Escherichia coli ,  Pseudomonas 
aeruginosa   (  31  ) , mouse  (  26  ) ,  Mycobacterium   (  32  ) ,  Arabidopsis   (  33  ) , 
rice  (  31  ) , as well as human  (  34  ) . Related methods based on spectral 
counting were used, for example, for the  fi ssion yeast  (  35  ) , worm, 
and  fl y proteome  (  36  ) .  

 

      1.    Mass spectrometry data of peptides. Raw data needs to be 
postprocessed using MS analysis software of choice (see below). 
For model training (Subheading  3.2.1 ), a well-de fi ned MS 
dataset is necessary for which several proteins are con fi dently 
identi fi ed (or known to be present).  

  2.   Materials

  2.1.   Equipment
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    2.    Mac, PC, or Linux/Unix workstation.  
    3.    Amino acid sequences for proteins of interest, e.g., FASTA  fi le.  
    4.    Information on amino acid properties, e.g.,  aaindex1   fi le from 

  ftp://ftp.genome.jp/pub/db/community/aaindex/    .  
    5.    Files/scripts from the APEX Web site,   http://www.marcotte-

lab.org/APEX_Protocol/    .      

      1.    Software to analyze MS raw data (Sequest, Mascot; 
PeptideProphet  (  37  )  and ProteinProphet  (  1  ) , see   http://
tools.proteomecenter.org/TPP.php    ).  

    2.    Scripting language for text parsing (e.g., Perl, Python). For a 
collection of example Perl scripts, see   http://www.marcotte-
lab.org/APEX_Protocol/    .  

    3.    WEKA (  http://www.cs.waikato.ac.nz/~ml/weka/    ) machine 
learning software.  

    4.    Alternatively to Setup 2 and 3: the APEX Quantitative 
Proteomics Tool installed on Windows PC, freely download-
able from   http://pfgrc.jcvi.org/index.php/bioinformatics/
apex.html      (  38  ) .       

 

  This protocol describes APEX in three sections (Fig.  1 ). First, 
using a high-quality MS dataset, vectors of sequence features, and 
machine learning techniques, we build a computational model that 
is able to predict peptide MS detectability ( see  Subheading  3.2.1 ). 
The resulting model is organism- and sequence-independent and 
can be reused for any set of sequences analyzed on the same MS 
instrument. That means that Subheading  3.2.1  can be omitted in 
future analyses if a suitable model is available. Then, we predict 
protein MS detectability ( O  i -values) as the sum of the respective 
peptide MS detectabilities predicted using the model and amino 
acid sequence features ( see  Subheading  3.2.2 ). This section is simi-
lar to Subheading  3.2.1  with respect to preparation of the input 
data  fi les. However, peptide observations are not known but pre-
dicted using the model created in Subheading  3.2.1 . Again, once 
 O  i -values have been calculated for a particular set of sequences and 
experimental setup, this step can be omitted in future analyses.  

 Second, using postprocessed mass spectrometry data,  O  i -values 
for the detected proteins and an estimate of the total number of 
molecules per cell ( C ), we calculate indices of absolute protein 
expression (APEX) for a given protein i ( see  Subheading  3.3 ). 

 Third, for detection of relative protein abundances in two dif-
ferent samples, we present a test for statistically signi fi cant differential 

  2.2.   Setup

  3.   Methods

  3.1.   General Practice
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http://www.marcottelab.org/APEX_Protocol/
http://tools.proteomecenter.org/TPP.php
http://tools.proteomecenter.org/TPP.php
http://www.marcottelab.org/APEX_Protocol/
http://www.marcottelab.org/APEX_Protocol/
http://www.cs.waikato.ac.nz/~ml/weka/
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protein expression (Fig.  1 ). The statistical test ( Z -score) is based 
only on spectral counts; for an estimate of expression fold change 
between the two samples, APEX expression values need to be cal-
culated as described in Subheading  3.3 . 

 We describe this protocol with the example of yeast cell lysate 
analyzed on the LTQ-Orbitrap Classic (Thermo). Additional infor-
mation may also be obtained from ref.  39 . On the APEX Web site 
(  http://www.marcottelab.org/APEX_Protocol/    ), we provide 
input and output  fi les created during the process, a suite of corre-
sponding Perl scripts, as well as data for analysis. [Squared brack-
ets] in this text mention Perl scripts corresponding to the described 
step in the analysis. We also provide example data for training and 
prediction of MS detectability of  E. coli ,  P. aeruginosa , yeast, rice, 
mouse, and human proteins both for the LTQ-Orbitrap and/or an 
LCQ Deca Plus, as well as a  Z -score analysis of yeast grown in 
minimal and rich media. The models trained on these (or other) 
datasets can analyze data of any origin if the same parameters have 
been used for data postprocessing. 

  Fig. 1.    APEX pipeline—overview. The protocol describes three different calculations. 
(1) Using training MS/MS data, a model is created to describe peptide MS detectability. 
This model is then used to predict peptide MS detectability for any test data  fi le. (2) Using 
 O  i -values (summed probabilities of peptide MS-detectability) and MS/MS data, we calcu-
late APEX, an estimate of absolute protein expression. (3) Two MS/MS data  fi les can be 
statistically compared calculating a  Z -score. Fold-changes of expression levels are based 
on APEX estimates described in step 2. Reprinted from ref.  39  with permission from 
Macmillan Publishers Ltd.       
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 In our example analysis, we train prediction of peptide MS 
detectability on a set of 89 yeast proteins which are well-observed 
in an LTQ-Orbitrap MS/MS experiment, and then estimate  O  i  
values for all proteins in the entire yeast genome. As an example, 
the TFC3 protein (YAL001C) has ~500 theoretical peptides from 
a tryptic digest with  £ 2 missed cleavages. Only four different pep-
tides are observed in the given MS/MS dataset with a total of  fi ve 
spectral counts (Fig.  2 ). Given the sequence properties of all ~500 
contributing peptides and a trained model, TFC3’s  O  i  value is 
60.24, i.e., about 60 peptides are expected for this protein to be 
observed in an LC-MS/MS analysis on an LTQ-Orbitrap. With an 
average of 4,000 molecules/protein and a total of 2,033 proteins 
detected in total, the APEX value for TFC3 is estimated to be 
~110 molecules/cell.   

       1.    If not already done so, postprocess MS/MS raw data with soft-
ware of choice (e.g., Sequest or Mascot, and PeptideProphet 
 (  37  ) /ProteinProphet  (  1  ) ) and parse for proteins of con fi dent 
identi fi cation (e.g., false discovery rate <5%). The  fi nal output 
lists should be available in the .xml and –prot.xml  fi le format to be 
parseable with our Perl scripts [np_parse_ProteinProphet.pl].  

    2.    From these proteins, select a set of ~30–150 proteins identi fi ed 
at high con fi dence ( see   Note 1 ). Even for these well-identi fi ed 
proteins, not all theoretically possible peptides will be observed. 
A comparison of the sequence properties of the observed versus 
the nonobserved peptides mapping to these proteins is used 
for training of the computational model (Fig.  2a ).  

    3.    Digest the amino acid sequences for the proteins  in silico  into 
(tryptic) peptides, for example using Proteogest  (  40  )  at   http://
www.utoronto.ca/emililab/proteogest.htm    . Trypsin cleaves 
after lysine (K) or arginine (R) unless they are followed by pro-
line (P) (Fig.  2b ).  In silico  digestions usually account for 0, 1, 
or 2 missed cleavages per peptide. Missed cleavages strongly 
increase the number and types of peptides per protein, i.e., 
they impact the respective  O  i  value. In our example, we include 
up to 2 missed cleavages; however, we observe zero missed 
cleavages for most peptides, i.e., the tryptic digest appears to be 
nearly complete. If only one or zero missed cleavages are to 
be allowed, the model should be rebuilt accordingly. For model 
building, it is suf fi cient to digest only the proteins in the train-
ing dataset; however, we typically digest the whole proteome 
and then select the respective training proteins (see APEX Web 
site for Perl scripts). The choice of the maximum allowed num-
ber of missed tryptic cleavages should be the same for training, 
testing and application of APEX.  

    4.    Describe sequence features (attributes) for all peptides [np_
peptide_properties.pl] ( see   Note 2 ). Attributes should include 

  3.2.  Training and 
Testing of a Model 
for Prediction 
of Peptide and Protein 
MS Detectability

  3.2.1.  Training

http://www.utoronto.ca/emililab/proteogest.htm
http://www.utoronto.ca/emililab/proteogest.htm
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the peptide length (number of amino acids) and the amino 
acid frequencies (relative and absolute). Attributes can also 
include the molecular weight, number of unique theoretical 
peptides, hydrophobicity, solubility, solvent accessibility, etc. 
or features identi fi ed by Mallick et al.  (  24  )  to characterize pro-
teotypic peptides. We collected all amino acid features from the 
AAindex (  http://www.genome.jp/aaindex/    ). Attributes can 

  Fig. 2.    Preparation of input  fi les. We use two basic types of input data. ( a ) Postprocessed 
MS/MS-data from which information on the probability of correct protein identi fi cation ( p  i ), 
the types of contributing (observed) peptides and the number of their MS/MS spectral 
observations is extracted. A total of  fi ve MS/MS spectra map to the example protein, 
YAL001C. ( b ) Sequence feature data calculated for  in silico  digested protein sequences 
using known amino acid features. The feature vectors can be extended to any length; the 
most important features are described in literature  (  24,   26  ) . The example protein YAL001C 
is described for a prediction of peptide MS detectability; for its peptides the panels list the 
length, molecular weight and two arbitrary features. Reprinted from ref.  39  with permission 
from Macmillan Publishers Ltd.  Asterisk —total spectral count per protein       

 

http://www.genome.jp/aaindex/


328 C. Vogel and E.M. Marcotte

be numerical, continuous or categorical. Consistent with 
Mallick et al.’s work, we include both the  sum  and the  average  
values for any amino acid characteristic as a peptide feature.  

    5.    For each of the peptides assign “1” if it has been observed in 
the selected proteomics data ( step 2 ) and, “0” if it has not been 
observed. When using Peptide- and ProteinProphet output, 
observation of a peptide is marked as “Contributing_
peptide=‘Y’” in the –prot.xml  fi le.  

    6.    Convert the peptide feature vectors including MS observation 
(1, 0) into WEKA .arff  fi le format (Fig.  2b ) which lists all fea-
tures (attributes) in the order in which they occur in the fea-
ture vector, as well as the feature vectors in form of comma 
separated values [np_arf_to_arff_TRAINING.pl] ( see   Note 5 ). 
The  fi le format does not contain peptide identi fi ers; they need 
to be stored separately. Note that they could be kept in the  fi le, 
but would have to be unselected in the WEKA explorer prior 
to training.  

    7.    Create a model of peptide MS detectability using WEKA ( see  
 Notes 4, 6 ). The process requires a lot of computer memory 
(depending on the size of the training set), thus we recom-
mend allocating extra memory to WEKA when opening it or 
using the command line options. Here, we describe the steps 
to be taken with WEKA Explorer Java user interface. To open 
WEKA and allocate 500 MB memory, enter “java -Xmx512m 
-jar < your directory here>/weka.jar.” Computing times quoted 
here are obtained allocating 1,800 MB of memory to WEKA 
with no other processes running.  

    8.    In WEKA, load the .arff  fi le in the “Preprocess” tab (Fig.  3a ) 
and then switch to “Classify” (Fig.  3b ). Select classi fi ers in the 
“Classi fi er—Choose” option:  fi rst select CostSensitiveClassi fi er 
under “meta” classi fi ers. Then, select in the popup window 
bagging under “meta” classi fi ers. Click on the text bar listing 
Bagging and select RandomForest under “meta” classi fi ers. 
Of course, one can chose not to use Bagging or to use a different 
classi fi er. However, in our experience this performs best.  

 Within the popup window for the CostSensitiveClassi fi er, 
de fi ne a “costMatrix” ( see   Note 3 ). Cost-sensitive training is 
crucial as the training dataset is heavily biased towards one class 
(e.g., here 91% of  nonobserved  peptides) and a cost matrix 
counteracts this bias by weighted use of the training data. 
Adjust the matrix size to 2. In our example, the cost matrix 
looks like as follows:  

 0.00  0.91 

 0.09  0.00 
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  Fig. 3.       Use of WEKA. The screenshots illustrate how use of the WEKA Explorer can look like.  Ovals  mark steps described in 
this protocol. ( a ) Uploading the .arff  fi le. ( b ) Choosing the classi fi er and de fi ning cost matrix and other parameters. ( c ) 
Training output. ( d ) Prediction output. Reprinted from ref.  39  with permission from Macmillan Publishers Ltd.       
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 It implies that during learning, the contribution of true-
positives, i.e., observed peptides, is weighted as 91% while they 
represent only 9% of the data. Vice versa, true-negatives, 
i.e., nonobserved peptides, represent 91% of the data and are 
down-weighted in their contribution. The cost matrix can 
also be saved and uploaded in later uses. Specify 10 in the 
Cross-Validation tab for tenfold cross-validation.  

    9.    Start calculations by clicking on “Start.” Depending on com-
puter power and dataset size, model building with cross-valida-
tion takes several minutes.  

    10.    The output  fi le contains information on the success of the train-
ing (Fig.  3c ). For example, the  F -measure which is the weighted 
harmonic mean of precision and recall [2 ×  precision  ×  recall /
( precision  +  recall )] of class prediction. The closer the  F -measure 
is to 1, the larger are the precision and recall and the better is 
the prediction. In many training sets, most peptides are  not  
observed; prediction of peptide observation is harder than 
prediction of nonobservation. Therefore, we recommend pay-
ing special attention to the  F -measure (as well as precision, 
recall) of  observed  peptides (class 1); the larger this  F -measure, 
the better is the model. The  F -measure should be >0.5. 

 In the yeast example, observed peptides (class 1) are pre-
dicted with an  F -measure of 0.61, i.e., with precision and recall 
of 0.59 and 0.63, respectively. Nonobserved peptides (class 0) 
are predicted with much higher precision (0.96) and recall 
(0.96), and the  F -measure is 0.96.  

    11.    Once the training is  fi nished and a quality model has been 
 created (see Note 8), save the model as a .model  fi le by right-
clicking in the “Results list” section and selecting “Save model.” 

 Subheading  3.2.1  can be omitted if a model has been built 
and saved in previous calculations for a particular MS instru-
ment and setup ( see   Notes 7 ,  9 , and  10 ). We found that models 
are similar between MS instruments using the same ionization 
method and mass range, and the resulting  O  i  values correlate 
strongly. However, since, for example, an LCQ is less sensitive 
than an LTQ-Orbitrap,  O  i  values are generally smaller on 
the former instrument than on the latter.      

      1.    Postprocess MS/MS raw data as in Subheading  2.1 ,  item 1  
(Fig.  2a ) to obtain –prot.xml  fi les. This time include all proteins 
of interest, e.g., with <5% false discovery rate. Parse the  fi le to 
obtain a tab-delimited text  fi le [np_parse_ProteinProphet.pl].  

    2.    Digest the amino acid sequences for all proteins of interest 
(above)  in silico  into (tryptic) peptides, using the same param-
eters as in Subheading  3.2.1 ,  step 3 , i.e., allow for the same 
number of missed cleavages. Beware that this  fi le easily becomes 
large; a yeast genome with ~6,000 genes  in silico  digests into 
~921,000 peptides ( £ 2 missed cleavages).  

  3.2.2.   Testing (Predictions)
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    3.    Analyze all peptides for their sequence features using the same 
attributes as in Subheading  3.2.1 ,  step 4  [np_peptide_proper-
ties.pl].  

    4.    Convert peptide feature vectors into WEKA .arff  fi le format 
similar to Subheading  3.2.1 ,  step 6  [np_arf_to_arff_TEST.pl]. 
At the end of each feature vector, place a question mark “?” 
instead of the “1” or “0” describing peptide observation 
(Fig.  2b ).  

    5.    Predict probability of observation (peptide MS detectability) 
using WEKA. In the “Preprocess” tab, load the .arff  fi le cre-
ated in  step 4 . In the “Classify” tab, load the model created in 
Subheading  3.2.1  by right-clicking within the “Result list” sec-
tion and choosing “Load model.” If you do not yet have a 
model available, create it according to Subheading  3.2.1  Select 
CostSensitiveClassi fi er, Bagging, and Random Forests as 
classi fi ers and de fi ne a cost matrix as described in 
Subheading  3.2.1 ,  step 8 . Do  not  select Cross-Validation. 
Select the “Supplied test set” option and upload the test .arff 
 fi le, i.e., the  fi le for which you like to obtain predictions. Under 
“More Options,” unselect to output the model and select to 
display the output predictions. After loading the existing 
model, right-click within the “Result list” section and select 
“Re-evaluate existing model with current dataset.”  

    6.    Start calculations by clicking on Start. Depending on computer 
power and dataset size the calculations can take several 
minutes.  

    7.    Cut and paste the output  fi le into a text  fi le or save it by right-
clicking in the “Result list” section and selecting “Save result 
buffer.” The second but last column of the output  fi le provides 
the probability of peptide observation (Fig.  3d ), i.e., the class 
1 probability, and this value is used for further calculations. 
Note that while peptide MS detectability is binary during train-
ing ( observed / nonobserved ), it is continuous when calculating 
 O  i  (class 1 probability: value between 0 and 1).  

    8.    Match the peptide identities to probabilities of peptide obser-
vation of the WEKA output  fi le [np_PeptidePredictions_to_
ProteinOi.pl]. Sum over the probabilities for all peptides 
mapping to a protein; this sum is the  O  i  value of the protein, 
i.e., the  expected  number of observed peptides. Store these  O  i  
values in a data  fi le.     

 Once calculated for an organism for a particular experimental 
setup, the  O  i  values can be reused for any number of MS/MS anal-
yses of the same proteins. The APEX Web site provides  O  i  values 
for the entire proteomes of  E. coli , yeast and human for analysis 
on an LCQ and an LTQ-Orbitrap using a given protocol, mass 
range, etc. (provided on the APEX Web site).   
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      1.    Postprocess MS/MS raw data as described in Subheading  3.2.1 , 
 step 1 . For each protein identi fi ed in the MS/MS experiment, 
we need the probability of correct identi fi cation  p  i  and the total 
number of observed MS/MS spectra  n  i . Parse the –prot.xml  fi le 
to obtain a tab-delimited text  fi le [np_parse_ProteinProphet.pl].  

    2.    Calculate  O  i  values for each protein as described in 
Subheading  3.2.2 , i.e., the expected number of unique pep-
tides per protein corrected by the differential peptide MS 
detectability.  

    3.    Estimate the total number of protein molecules per cell  C . 
A total of 5 × 10 7  molecules/cell for yeast (  29  )  and 2–3 × 10 6  
molecules/cell for  E. coli   (  41,   42  )  have been suggested. This 
total number of molecules will be split amongst the proteins 
identi fi ed in the MS experiment. Since the number of proteins 
identi fi ed can vary between different experiments, an alternative 
way to estimate  C  is to multiply the number of proteins identi fi ed 
by an estimate of the average number of molecules per protein. 
For yeast, an average of ~2,000–10,000 molecules per protein is 
expected  (  26,   27,   29  ) , for  E. coli  < 1,000  (  26,   41,   42  ) . In our 
example experiment, 2,033 proteins were identi fi ed with <5% 
false discovery rate on the LTQ-Orbitrap; thus, we estimate 
 C  = 2,033 proteins × 4,000 molecules/protein  »  8.1 × 10 6  mole-
cules. Third, if not cellular lysates but a synthetic protein 
mixture is used,  C  can be estimated using the total concentra-
tion of proteins in the sample (if known). Fourth,  C  can also be 
set to a constant (e.g., 1 or 100) which results in APEX values 
of proteins  relative  to each other in the sample. Note that this 
use of the term  relative  differs from that in Subheading  3.4  
which considers a protein’s abundance in two different 
samples.  

    4.    Calculate APEX protein absolute protein expression values 
using Eq.  1  [np_APEX_from_Oi_and_protlist.pl].
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   (1)       

 In Eq.  1 ,  n  i  is the total spectral count for protein i (total number of 
MS/MS spectra attributable to protein i),  O  i  is the expected unique 
peptide count for protein i (sum of peptide MS detectabilities for a 
given protein), and  p  i  is the protein identi fi cation probability. 
Values for  n  i  and  p  i  are extracted from postprocessed MS/MS data; 
 O  i  is computed as described above. 

 As a control for correct APEX calculations, we that recom-
mend the user conducts a spike-in experiment as described in the 
original publication  (  26  ) . In such an experiment, a mixture of 

  3.3.  Estimation 
of Absolute Protein 
Expression Levels
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proteins of known abundances is spiked into cellular lysate and 
APEX is used to estimate protein concentrations in the mixture. 
This control experiment may be conducted once in the lab to 
assure that the setup produces reliable estimates of protein concen-
trations. It does not have to be repeated frequently.  

      1.    Postprocess MS/MS raw data of both samples as described in 
Subheading  3.2.1 ,  step 1 , including parsing of the –prot.xml 
 fi les [np_parse_ProteinProphet.pl]. For each protein identi fi ed 
in the MS/MS experiment, we need the probability of correct 
identi fi cation  p  i  and the total number of observed MS/MS 
spectra  n  i .  

    2.    Calculate APEX-based protein abundance estimates as described 
in Subheading  3.3  [np_APEX_from_Oi_and_protlist.pl]. The 
expression fold change between the two samples 1 and 2 can 
then be expressed as the ratio APEX i,1 /APEX i, 2 . If a protein is 
absent in one sample, its spectral count is  n  i  = 0 and an APEX-
based fold-change cannot be calculated. However, a  Z -score 
describing the signi fi cance of the expression change can always 
be calculated.  

    3.    Calculate the total number of observed MS/MS spectra (total 
spectral counts)  N  for each sample. This sum includes only 
peptides of con fi dent identi fi cation (above threshold). Convert 
the spectral counts  n  i  into fractions    fi    =  n  i / N .  

    4.    Calculate for each protein the overall proportion    fi  ,0  = ( n  i,1  +  n  i,2 )/
( N  1  +  N  2 ). The proportion    fi  ,0  is the null expectation in the event 
that protein i is present at the same level in both samples. The 
calculation can be done for proteins which are con fi dently 
identi fi ed in  both  samples, and for proteins which are only 
identi fi ed in  one  sample but assumed to be absent in the other 
sample.  

    5.    Calculate for each protein a  Z -score of differential expression 
according to

     
i,1 i,2

i,0 i,0 1 i,0 i,0 2

,
(1 ) / (1 ) /

f f
Z

f f N f f N

−
=

− + −
   (2)  

where  N  1  and  N  2  are the total spectral counts in samples 1 and 
2,    fi  ,0  is the overall proportion of a protein’s spectral counts, 
and    fi  ,1  and    fi  ,2  are the proportions of a protein’s spectral counts 
in sample 1 and 2, respectively. Note that script [np_two_ fi les_
Zscore.pl] performs  steps 3 – 5  and provides  Z -scores as the 
output of a comparison of two .apex  fi les.     

 Two-sided  P -values require |Z| > 1.96 for  P -value < 0.05; 
|Z| > 2.58 for  P -value < 0.01. Proteins of high abundance in both 
samples can be signi fi cantly differentially expressed even if the actual 
expression fold-change is small. Thus, we recommend examining 

  3.4.  Estimation 
of Relative Protein 
Expression 
(Comparison 
of Two Samples)
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both  Z -scores and expression fold-changes for each protein. The 
APEX Web site contains an example of differential protein expres-
sion analysis (yeast grown in minimal versus rich medium).   

 

     1.    Selection of high-quality training data. 
 High-quality training data is crucial for successful model build-
ing and model performance. The training set of proteins (and 
its size) should be chosen so that (1) recall and precision 
( F -measure) in cross-validation are maximized ( see  
Subheading  3.2 ,  step 10 ); and (2) time for model calculation 
is within desired time frame. In general, the larger the fraction 
of  observed  versus  nonobserved  peptides in the data (i.e., the 
larger the number of true-positives compared to true-nega-
tives), the better is the model performance. This fraction seems 
more important than the actual number of proteins (or pep-
tides) selected to be in the training dataset (~30–150). 
However, the larger the training dataset, the more time is 
required to build a model. 

 We usually select a training dataset based on high protein 
identi fi cation probabilities as well as high spectral counts per 
protein from a trusted dataset. The protein identi fi cation prob-
abilities are an output from the ProteinProphet  (  1  )  software. If 
the user decides not to use Peptide- and ProteinProphet, train-
ing proteins could be selected based on high scores obtained in 
the primary database search (with SEQUEST, MASCOT, or 
similar) ( see  Chapter   28    ). Alternatively, training proteins could 
be chosen based on knowledge of their presence in other data 
(e.g., from Western blot experiments or if using a synthetic 
mixture). In other words, as long as the user is con fi dent that a 
certain set of proteins is present in the sample, he or she can 
compare their observed peptides to their nonobserved peptides 
and learn MS-detectability from these. For our setup, we found 
that ion suppression does not seem to play a big role, as the 
complexity of the mixture (i.e., how many proteins are con-
tained in it) only marginally affects the  O  i  values. 

 Usually, we obtained the best model when selecting pro-
teins based on high protein identi fi cation probability (e.g., 
1.00) and high spectral counts per protein (e.g., >200)—rather 
than when selecting for high probabilities/spectral counts 
per peptide. However, note that these cutoffs are MS/MS 
dataset- and machine-dependent and should be reevalu-
ated for different experimental setups. Our cutoffs provide a 
guideline for experimentation. 

  4.      Notes

http://dx.doi.org/10.1007/978-1-61779-885-6_28
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 For example, when creating a training  fi le for model for 
data collected on a Thermo LTQ-Orbitrap, we analyzed yeast 
cellular lysate identifying 89 proteins of high protein 
identi fi cation probability ( p  i  = 1.00) and with least 200 total 
spectral counts per protein. For these proteins, 9% (1,331) of 
the peptides were observed in the MS/MS experiment; 91% 
(13,279) of peptides were not observed.  

    2.    The number and types of attributes included is important for 
model performance. 
 We observed the best model performance when including a 
total of 66 attributes (Table  1 ). These length, molecular 
weight, relative and absolute amino acid frequencies, second-
ary structure,  fi ve attributes identi fi ed by Mallick et al.  (  24  )  
and four additional attributes. As described by Mallick et al. 
 (  24  ) , different instruments, in particular different ionization 

   Table 1 
  Features used for training. The number and types of peptide sequence attributes is 
important for performance of the training/testing of peptide MS detectability. Except 
for length, all amino acid attributes and their descriptions originate from AAindex 
(  http://www.genome.jp/aaindex/    ). For all attributes except for length and amino acid 
composition, both total (sum) and average values along sequence are included in the 
description of peptide properties (.arf and .arff  fi les)   

 Attribute type 
 Source (reference number 
in AAindex)  Comment 

 Length 

 Molecular weight Fasman     (  43  )   FASG760101  Strongly correlated with 
Length (can be left out 
to reduce redundancy) 

 Relative amino acid frequencies  Instances of type of amino acid 
in sequence divided by length 

 Absolute amino acid frequencies  Instances of type of amino acid 
in sequence 

 Correlated with Length 

 Normalized frequency of alpha-helix 
Chou Fasman  (  44  )  

 CHOP780201  Secondary structure 

 Normalized frequency of beta-sheet 
Chou Fasman  (  44  )  

 CHOP780202  Secondary structure 

 Normalized frequency of beta-turn 
Chou Fasman  (  44  )  

 CHOP780203  Secondary structure 

 Propensity to be buried inside Wertz 
Scheraga  (  45  )  

 WERD780101  Main attribute for 
MUDPIT-ESI identi fi ed 
by Mallick et al.  (  24  )  

(continued)

http://www.genome.jp/aaindex/
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techniques, require selection of different sequence attributes 
that in fl uence MS detectability. Assuming that most users may 
operate a MudPIT ESI type instrument, we focus here on the 
calculations of  O  i  values for these.   

    3.    Training with a cost matrix. 
 If no cost matrix is speci fi ed, model performance is very poor, 
in particular if there is a strong class bias in training data. The 
reason lies in the overabundance of true-negatives, i.e., nonob-
served peptides. In fact, we recommend reversing or leaving 
out the cost matrix as a control experiment: decreasing model 
performance ( F -measure) compared to correct use of a cost 
matrix veri fi es setup of the calculations. Classi fi ers other 
than Bagging and RandomForests may also perform well, as 
discussed in the original APEX publication  (  26  ) .  

 Attribute type 
 Source (reference number 
in AAindex)  Comment 

 Isoelectric point 
Zimmerman et al.  (  46  )  

 ZIMJ680104  Main attribute for 
MUDPIT-ESI identi fi ed 
by Mallick et al.  (  24  )  

 Net charge Klein et al.  (  47  )   KLEP840101  Main attribute for 
MUDPIT-ESI identi fi ed 
by Mallick et al.  (  24  )  

 Atom-based hydrophobic moment 
Eisenberg McLachlan  (  48  )  

 EISD860102  Main attribute for 
MUDPIT-ESI identi fi ed 
by Mallick et al.  (  24  )  

 Positive charge 
Fauchere et al.  (  49  )  

 FAUJ880111  Main attribute for 
MUDPIT-ESI identi fi ed 
by Mallick et al.  (  24  )  

 Normalized  fl exibility parameters 
( B -values), average 
Vihinen et al.  (  50  )  

 VINM940101  Additional attribute 

 Normalized van der Waals 
volume Fauchere et al.  (  49  )  

 FAUJ880103  Additional attribute 

 Apparent partition energies 
calculated from Chothia index 
Guy  (  51  ) ; Amino acid side-chain 
partition energies and distribution 
of residues in soluble proteins 

 GUYH850105  Additional attribute 

 Transfer energy, organic solvent/
water Nozaki Tanford  (  52  )  

 NOZY710101  Additional attribute 

Table 1
(continued)
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    4.    WEKA crashes during training or testing. 
 The Java-based WEKA explorer uses a lot of memory, espe-
cially when handling large  fi les. If WEKA crashes during model 
building (training), consider allocating more memory or reduc-
ing dataset size by  fi ltering the training data more stringently 
( see  Subheading  3.2.1 ,  step 2 ). Alternatively, use the com-
mand-line to set up WEKA runs, avoiding the memory-con-
suming Java-based interface. 

 When applying the model to predict peptide MS detect-
ability, we found that for a test  fi le with 100,000 lines, at least 
1,500 MB memory is required ( see  Subheading  3.2.1 ,  step 7 ). 
If the test  fi le contains more than 100,000 lines, we recom-
mend splitting the  fi le into smaller .arff  fi les, assigning more 
memory when starting WEKA ( see  Subheading  3.2.1 ,  step 7 ) 
and/or using the WEKA command line interface. For example, 
the peptide  fi le for the whole yeast genome needs to be split 
into approximately ten separate .arff  fi les with each 100,000 
lines or fewer. Unselect “Output model” under “More options” 
to save the memory required to output the model.  

    5.    An error message appears when uploading the .arff training or 
testing  fi le. 
 Thoroughly check the .arff  fi le format. Check that the number of 
attributes listed in the header is the same as the number of attri-
butes (features) in the data rows. Ensure that all rows with data 
entries have the same number of attributes listed. Check for cor-
rect description of attribute types, e.g., as  string ,  numeric  or  class . 
Very that rows lack peptide names or other identi fi ers. If nothing 
helps, try uploading our example .arff  fi les and work from there.  

    6.    Training results in a poor model, e.g., the  F -measure for 
 observed  peptides is <0.5. 
 Check that the correct cost matrix is used, as described in 
Subheading  3.2.1 ,  step 8 . Check quality of the training data ( see  
 Note 1 ). Consider reducing your training set to fewer proteins, 
possibly hand-select them for their quality of peptide identi fi cation. 
Check that peptides classi fi ed as observed have high peptide 
identi fi cation scores (or probabilities). Check that proteins in the 
training set are not degenerate, i.e., that several proteins of differ-
ent names do not map to the same group of peptides. Check that 
peptides in the training set are not degenerate, i.e., that their 
observation is not mapped to several proteins of different names. 
(When selecting our training data, we exclude all degenerate pro-
teins and peptides.) Ensure you use WEKA correctly by training 
on one of the  fi les provided on the APEX Web site and compar-
ing your training outputs with our result  fi les. 

 Check types of peptide attributes ( see   Note 2 ). Modify the 
kinds and number of attributes used to describe peptide 
sequences. Not all 66 attributes used in our example set are equally 
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important for training. Performing different tests in the “Attribute 
selection” section in WEKA (Ranker-PrincipalComponents, 
Ranker-InfoGain, and BestFirst-CfsSubset), we identi fi ed 
attributes describing peptide length, the isoelectric point, 
hydrophobicity, solvent access, solubility, volume, secondary 
structure as most important, while among amino acid frequencies 
the number of C, R, and K were top-ranked (see APEX Web 
site). Consider adding attributes listed by Mallick et al.  (  24  )  as 
important for your experimental setup (if not yet included).  

    7.    You are unable to use saved/previous WEKA models. 
 Newer WEKA versions are often incompatible with older versions’ 
models. Thus, one has to retrain the model for the new version of 
WEKA. Input  fi les are provided on the APEX Web site.  

    8.    Quality control. 
 When establishing the APEX protocol, we encourage the 
reader to use the Perl scripts and sample data  fi les provided 
on our Web site as a control for correct setup. Probabilities of 
peptide MS detectability may also be compared to predic-
tions by Mallick et al.  (  24  )  and by the Peptide Detectability 
Predictor at   http://darwin.informatics.indiana.edu/applica-
tions/PeptideDetectabilityPredictor/    . Other tests of the 
quality of APEX estimates are described in the original publi-
cation  (  26  ) .  

    9.    When to retrain the model. 
 A number of additional options are worth keeping in mind. 
Some users may prefer to retrain the  O  i -values for each organism 
they use, assuming that organism-speci fi c properties (e.g., 
amino acid composition, the extent of posttranslational 
modi fi cations) may in fl uence the overall MS-detectability of 
the peptides. Other users even consider retraining for every 
experiment. In principle, the  O  i -values are robust when similar 
experimental conditions apply. While a model built on one 
organism’s data might be usable to predict MS-detectability for 
another other organism, mammalian proteins may, for example, 
be more heavily phosphorylated than bacterial proteins, and 
phosphorylation impacts MS-detectability of peptides containing 
serine, threonine, or tyrosine. In this case, retraining with a 
mammalian dataset to be used to predict mammalian APEX 
values is reasonable. 

 The user should, however, retrain the Oi-values if the mass 
spectrometry equipment or protocols change. For example, 
different MS instruments, and in particular different ionization 
techniques strongly in fl uence MS detectability. Experimental 
conditions such as oxidization of cysteine residues using iodo-
acetamide also in fl uence MS detectability of cysteine contain-
ing peptides.  

http://darwin.informatics.indiana.edu/applications/PeptideDetectabilityPredictor/
http://darwin.informatics.indiana.edu/applications/PeptideDetectabilityPredictor/
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    10.    Future possible re fi nements. 
 We provide this protocol not only for easy calculation of abso-
lute and relative protein expression values but also encourage 
the reader to experiment and optimize the method to suit his or 
her needs. Several re fi nements are possible. For example, when 
training for peptide MS detectability, actual peptide identi fi cation 
probabilities could be taken into account: instead of using a 
binary classi fi cation ( observed ,  nonobserved ) one would use a 
continuous value. Peptide charge states and prior modi fi cations 
(e.g., on Cysteine residues) may also be considered. Further, the 
user may try and estimate how the number of missed cleavages 
may affect the total number of peptides observed, and incorpo-
rate that into the calculation. In addition to charge state, more 
complex features such as bi-amino acid frequencies may be 
included in the training process; however, the user should be 
careful to avoid over fi tting, i.e., to have disproportionally many 
features compared to the size of the dataset. 

 When including more features, the user should keep two 
aspects in mind. First, ideally the feature values show a mound-
shaped frequency distribution which is easy to check in WEKA. 
If the distribution is far from Gaussian, one should consider (log) 
transforming the values to achieve a better distribution. Many 
learning algorithms require normally distributed feature values. 
Second, if two features are highly intercorrelated (e.g., Spearman’s 
 R  > 0.9), for example sequence length and molecular weight, one 
of the features should be left out to reduce redundancy.  

    11.    Further information and tools. 
 For APEX calculations, the primary publication  (  26  )  and the 
APEX protocol  (  39  )  provide further help. APEX is also imple-
mented in a free software tool developed by John Braisted and 
colleagues at the J. Craig Venter Institute, Rockville, MD  (  38  ) . 
The software, called the APEX Quantitative Proteomics Tool, 
is freely available from   http://pfgrc.jcvi.org/index.php/bioin-
formatics/apex.html    . We recommend the user to try this Java-
based tool. It essentially involves the same steps as described 
here, but does not require the use of Perl scripts. Using the Perl 
scripts (and modifying these) allows the user to include further 
developments such as those described in  Note 10 .          
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