
Molecular
BioSystems

This article was published as part of the

Computational and Systems Biology 
themed issue

Please take a look at the full table of contents to access the 
other papers in this issue.

www.molecularbiosystems.org/compsysbio


Global signatures of protein and mRNA expression levelsw

Raquel de Sousa Abreu,
a
Luiz O. Penalva,

a
Edward M. Marcotte

b
and

Christine Vogel*
b

Received 27th April 2009, Accepted 22nd July 2009

First published as an Advance Article on the web 1st October 2009

DOI: 10.1039/b908315d

Cellular states are determined by differential expression of the cell’s proteins. The relationship

between protein and mRNA expression levels informs about the combined outcomes of

translation and protein degradation which are, in addition to transcription and mRNA stability,

essential contributors to gene expression regulation. This review summarizes the state of

knowledge about large-scale measurements of absolute protein and mRNA expression levels, and

the degree of correlation between the two parameters. We summarize the information that can be

derived from comparison of protein and mRNA expression levels and discuss how corresponding

sequence characteristics suggest modes of regulation.

Making proteins

In a cell, ratios between protein and mRNA are mainly

determined by translation and protein degradation

(Fig. 1)—two processes that are highly regulated both at a

global and at a gene-specific level.1,2 Their deregulation can

lead to diverse diseases, ranging from cancer to Alzheimer’s

(Table 1). Thus, much effort has been placed on identification

of mRNA motifs or protein sequences that have regulatory

functions. Recently, high-throughput approaches have

been used to simultaneously measure protein and mRNA

concentrations allowing for systematic studies of protein

expression regulation on proteome-wide scale. Here, we

discuss the utility of these approaches in the study of global

regulation of translation and protein degradation.

Protein expression and turnover: an introduction to

mechanisms and regulation

Translation

Eukaryotic translation consists of initiation, elongation and

termination3,4 and requires a number of specialized factors.

Translation initiation mostly occurs in a cap-dependent

manner through a cap structure, m7GpppN5 (Fig. 2),

although exceptions are known, e.g. ref. 6 and 7: internal

ribosome entry sites (IRESs) recruit the ribosome directly

to the start codon, bypassing the requirement of the cap

structure.6,7 Ribosomes recognize a start codon within a

translation initiation site, i.e. the Kozak sequence8,9 which is

conserved across eukaryotes.10 Several factors can affect

translation initiation. For instance, ribosomes can bind to

uORFs (upstream open reading frames) positioned in the
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mRNA’s 50UTR and change levels of translation of the main

open reading frame in a competitive manner.11 Secondary

structures also affect translation by slowing down ribosome

passage,12 and a sub-optimal Kozak sequence can negatively

affect initiation.

Translation elongation constitutes the rate at which amino

acids from acyl-tRNAs are added sequentially to the growing

polypeptide. Three major elongation factors (eEF1A, eEF1B

and eEF2) are regulated via phosphorylation/desphosphorylation

in response to several stimuli.13 Elongation rates are also

affected by changes in initiation rates, as well as by the choice

of codons, and correspondingly, the abundance of the

respective tRNAs. The common assumption is that frequent

codons have more tRNA genes than infrequent codons; and

for this reason, codon and tRNA adaptation have been used

as proxies of translation efficiency.

Several processes prior to translation can influence

translation efficiency of a given mRNA. For example, the

poly(A) tail length of the mRNA affects transcript stability,

but it also correlates with translational efficiency: on average,

efficiently translated mRNAs have longer poly(A) tails and are

shorter, more stable, and more efficiently transcribed than

inefficiently translated mRNAs,14–16 although exceptions are

known.17 Translation can also be influenced by modification,

e.g. phosphorylation, or proteolysis of core components of the

translation machinery, as well as cis-regulatory elements

(sequence motifs) and specific trans-acting factors, e.g.

RNA-binding proteins (RBPs) and microRNAs.1,18–21 cis-

Regulatory elements that function as binding sites for specific

RBPs occur anywhere along the mRNA, but are mostly found

in either the 50 or the 30UTRs (Fig. 2), e.g. ref. 22. For

example, iron-response elements, adenosine- and uridine-rich

elements and specific secondary structures like stem loops are

very common.1 trans-Acting factors mostly function during

translation initiation.23 They can block the access of the

general initiation factor elF4E to the cap, prevent the inter-

action between elF4E and elF4G, interfere with elF4G and

elF3 interaction, or prevent ribosome recruitment (Fig. 2).18

Although protein biosynthesis is similar in all domains of life,

eukaryotic synthesis is more complex than the prokaryotic one.

An important difference is the coupling of transcription and

translation in prokaryotes: the bacterial nascent mRNA

molecule begins to be translated even before its transcription

from DNA is complete.24 In contrast, eukaryotic translation

takes place in the cytoplasm after transcription inside the

nucleus, leading to much more elaborate regulation of eukaryotic

gene expression. Other differences include: (a) eukaryotic

ribosomes are larger than prokaryotic ones, (b) in prokaryotes,

the initiating amino acid is N-formylmethionine rather than

methionine, and (c) mechanisms and regulation of translation

initiation. Eukaryotes use many more translation factors than

do prokaryotes, and interactions between these factors are

much more elaborate. Regulation in prokaryotes usually occurs

through blocking of the access to the initiation site, while in

eukaryotes several structural elements might be involved,

namely the m7G cap, sequences flanking the AUG start codon,

the position of the AUG codon relative to the 50 end of the

mRNA, and secondary structures within the 50UTR.23,25

Degradation

Protein degradation is highly specific and tightly regulated; it

comprises two major systems: lysosomal degradation and

ubiquitin mediated proteolysis. Lysosomal degradation

Fig. 1 Essential steps in gene expression. Genes are expressed by

production of mRNAs from DNA, and protein from mRNAs. Much

interest has been paid to the ‘first half’ of these processes, e.g.

transcription regulation. This review focuses on the ‘second half’ of

these processes, in particular translation and protein degradation and

how these influence the number of protein molecules observed per

mRNA.
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includes receptor-mediated endocytosis, pinocytosis, phago-

cytosis and autophagy.26 In ubiquitin–proteasome mediated

proteolysis, target proteins are ubiquitinylated and sub-

sequently degraded by the proteasome, as reviewed in ref. 27.

In eukaryotes, degradation regulation often occurs during

poly-ubiquitinylation (Fig. 2). It is the rate-limiting selectivity

step of ubiquitinylation and therefore proteolysis is mainly

determined by E3 ubiquitin-ligases that specifically recognize

Table 1 Regulatory elements of translation and protein turnover APP: amyloid precursor protein, ASYN: alpha synuclein, c-myc: v-myc avian
myelocytomatosis viral oncogene homolog, BACE1: b-site APP cleaving enzyme-1, the rate-limiting enzyme for b-amyloid (Ab) production, Bcl-2:
B cell lymphoma 2, DNMT3A/B: DNA methyltransferases 3A and 3B, ARE: AU-rich elements, Wnt-5a: wingless-type MMTV integration site
family, member 5A, COX-2: cyclooxygenase-2, TNFa: tumor necrosis factor (TNF superfamily, member 2), eIF4G: eukaryotic translation
initiation factor 4G, eIF4E: eukaryotic translation initiation factor 4E, eIF2a: eukaryotic translation initiation factor 2, subunit 1 alpha, 35 kDa,
b-ENaC: beta-subunit of the epithelial sodium channel, FMR1: fragile X mental retardation 1, PP2Ac: protein phosphatase 2A catalytic subunit,
Sod1: superoxide dismutase 1, FMRP: fragile X mental retardation protein, GARS: glycyl-tRNA synthetase, PABP: poly(A) binding protein,
IRE: iron-responsive element, IRES: internal ribosome entry site, I-kB: inhibitor of nuclear factor kB, Mdm2: Mdm2 p53 binding protein homolog
(mouse), Nedd4: neuronal precursor cell-expressed developmentally downregulated 4, Msi1: Musashi1, uORF: upstream open reading frame,
PCNA: proliferating cell nuclear antigen, FBW7: F-box and WD repeat domain-containing 7, p27/CDKN1B: cyclin-dependent kinase inhibitor
1B (p27, Kip1), SKP2: S-phase kinase-associated protein 2, SoSLIP: Sod1 stem loop interacting with FMRP, b-TrCP: b-transducin repeat-
containing protein, TPO: thrombopoietin, YARS: tyrosyl-tRNA synthetase

Translation

Regulatory element Target of regulation Regulatory process
Associated disease/
biological process

cis-Elements IRE APP Intracellular levels of APP are tightly regulated by
iron through interaction of the IRE RNA stem
loop with iron-regulatory proteins.

Alzheimer’s disease130

ASYN Presence of an IRE-like sequence suggests a
potential regulatory element through which iron
influx may increase ASYN expression.

Parkinson’s
disease131

IRES c-myc Single mutation in the c-myc IRES causes
enhanced initiation of translation via a
cap-independent mechanism and promotes
excess of c-myc production.

Multiple myeloma132

p27 ELAV/Hu proteins block the ribosome
entry site inhibiting IRES activity and p27
translation.133,134

Cancer135

uORF Mdm2 The long isoform (L-Mdm2) contains 2 uORFs
that decrease the overall Mdm2 translation
efficiency. Oppositely, S-Mdm2 (short 50UTR)
allows high translational efficiency and Mdm2
overexpression.136,137

Cancer138

TPO Thrombopoietin translation is strongly
inhibited by the presence of uORFs which
suppress efficient initiation.139 Inactivation
of uORFs by mutation leads to excessive
production of TPO and elevated platelets.

Hereditary
thrombocythemia140

ARE Wnt-5a HuR inhibits translation of Wnt-5a when bound
to highly conserved AU-rich sequences in the
30UTR of the Wnt-5a mRNA.141

Cancer142,143

COX-2 and TNFa The RNA-binding protein TIA-1 binds to AU-
rich elements in the 30UTR region of COX-2
and TNFa and acts as a translational silencer.
Defects in TIA-1 activity may result in
upregulated expression of COX-2 and TNFa.144,145

Cancer and
inflammation146,147

G-quartet, ‘‘kissing
complex’’ and
SoSLIP motifs

e.g. PP2Ac, Sod1 The RNA-binding protein FMRP interacts with
mRNAs (e.g. PP2Ac, Sod1) via G-quartet,
‘‘kissing complex’’ or SoSLIP (Sod1 stem loop
interacting with FMRP) motifs. This interaction
can be involved in the (i) retention of mRNAs in
translationally inactive messenger RNPs;148,149

(ii) inhibition of translation preventing ribosome
scanning;150 (iii) or positive modulation of
translation.151

Fragile X
syndrome152

(G/A)UnAGU
(n = 1–3)

Msi1 targets The RNA-binding protein Msi1 inhibits the
cap-dependent translation of its target mRNAs
by competing with eIF4G to bind PABP, and
thus inhibiting formation of the 80S ribosome
complex.153

Medulloblastoma,154

glioma,155,156

astrocytoma,156

retinoblastoma157 and
colorectal adenoma158
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Table 1 (continued )

Translation

Regulatory element Target of regulation Regulatory process
Associated disease/
biological process

Initiation
factors

eIF4E Angiogenesis factors,
onco-proteins,
pro-survival proteins
and proteins involved
in tumor invasion
and metastasis

Elevated eIF4E levels, caused by direct
overexpression or by hyper-phosphorylation
of 4EBP1, trigger enhanced assembly of the
translation initiation complex and thereby drive
cap-dependent translation.

Malignancy, cellular
transformation,
tumor growth and
metastasis159–161

eIF2a BACE1 Phosphorylation of the initiation factor eIF2a
increases the translation of BACE1 and causes
b-amyloid overproduction.

Alzheimer’s
disease162

Translation
machinery

Ribosomal pro-
teins

Protein synthesis Altered expression of some ribosomal proteins
has been reported in several human cancers
indicating the potential importance of
ribosome function and translational control
in tumor progression.

Cancer163–166

YARS and GARS Protein synthesis Mutations and deletions in these tRNA
synthetase genes cause impaired or altered
protein synthesis.

Neurodegenerative
disorders167,168

Signaling path-
ways

PI3K/Akt pathway mTOR When PI3K/Akt pathway is activated,
signaling can be propagated to various
substrates, including mTOR. mTOR activates S6
kinase-1, which activates ribosomal protein S6
and leads to increased protein translation.
It also phosphorylates 4EBP-1, causing it to
dissociate from eIF4E, and freeing eIF4E to
participate in formation of the translation
initiation complex.

Several forms of
cancer169

miRNAs e.g. miR-15 and
miR-16; miR-29;
let-7

e.g. Bcl-2;
DNMT3A/B; RAS

Expression of miR-15 and miR-16 causes
downregulation of Bcl2;170 miR-29 suppresses
DNMT3A/B;171 let-7 regulates the expression of
RAS and other genes involved in cell cycle and
cell division.172

Cancer, cardiovas-
cular diseases, and
immune system,173

and muscle dis-
orders174

Protein degradation

Ubiquitin and
ubiquitin-like
protein
conjugation

E1Ub, E1SUMO PCNA PCNA, the essential processivity factor of
polymerases, is regulated by ubiquitin
and ubiquitin-like modifiers. Mono- or
poly-ubiquitin or SUMO conjugation to PCNA
dictates the activation of specific
repair pathways.

DNA repair175,176

Ubiquitin
ligases

FBW7 e.g. cyclin E, c-myc,
c-jun and Notch

FBW7 is the substrate recognition component of
the SCF-type ubiquitin ligase. SCFFBW7

degrades several proto-oncogenes that function
in cellular growth and division pathways,
including c-myc, cyclin E, Notch and c-jun.

Cancer177

SKP2 and b-TrCP CDKs and CDK
inhibitors

The F-box proteins, SKP2 and b-TrCP,
provide the specific, rapid and timely
proteolysis of cell cycle regulators, which
ultimately control activation and inactivation of
CDKs and CDK inhibitors during cell cycle
progression.

Cancer biogenesis
and tumor
progression178

b-TrCP I-kB I-kB phosphorylation recruits the ubiquitin
ligase SCF-b-TrCP to I-kB which in turn
promotes Lys48-linked ubiquitinylation and
proteasomal degradation, thereby activating the
transcription factor NF-kB.

Immune and
inflammatory
responses,179,180 and
gastric carcinoma181

Nedd4 b-ENaC Mutation in the b/g subunit of the renal Na+

channel (b-ENaC), interdicts its interaction with
the E3 ligase Nedd4. The Na+ channel cannot
then be target for degradation and accumulates,
leading to excessive reabsorption of Na+

accompanied by H2O and causes a severe form
of early-onset hypertension.

Liddle
syndrome182,183
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degradation or destruction signals (degrons) of the target

protein and mediate the attachment of a poly-ubiquitin

chain.28,29 Ubiquitinylation serves as a secondary signal which

targets the substrate to the proteasome.

Primary degradation signals are encoded in the protein’s

sequence (Fig. 2). So-called N-degrons are part of the N-end

rule which relates the in vivo half-life of a protein to the identity

of its N-terminal residue.30 Other degradation signals are not

restricted to the N-terminus. One such sequence is PEST which

is rich in proline, glutamic acid, serine and threonine.31 PEST

sequences correlate with rapid protein turnover, and direct a

protein to the ubiquitin–proteasome pathway.32,33 Unstructured

regions, i.e. regions in the protein that do not assume a

particular three-dimensional structure, can also destabilize the

protein.34–36 The protein degradation signals are often condi-

tional or masked such that recognition requires a prior activa-

tion or a cryptic exposition, for example by subunit separation,

local unfolding or post-translational modification.37,38 Degrada-

tion signals, along with the global and gene-specific mechanisms

by which they are recognized, are still not well understood. The

signals have been characterized for individual proteins, but have

yet to be demonstrated for large-scale data.36,39

The ubiquitin pathway and the proteasome appear to be

present and highly conserved in all eukaryotes. In fact, yeast

and human ubiquitin differ at only 3 of 76 residues.40 In

prokaryotes, ubiquitin has not yet been found; however

prokaryotic homologs41,42 and ubiquitin-like proteins43 exist.

Similarly, homologs of the proteasome were found in

prokaryotes, but their physiological roles have not been

well-established yet.

Large-scale methods to study protein translation and

turnover

Much of our knowledge on translation and degradation

regulation traditionally comes from studies on individual

genes limiting our understanding of global aspects of

regulation. Fortunately, we now have access to more extensive

datasets resulting from high-throughput methods to measure

translation and to identify mRNA populations associated with

particular regulators.

Translation efficiency can be studied with a variety of

methods. We can employ microarrays to measure (i) mRNA

concentrations, (ii) association of mRNAs with specific

RNA-binding proteins, and (iii) association of mRNAs with

ribosomes, and thus the efficiency with which these mRNAs

are translated. RIP-Chip (RBP immunoprecipitation followed

by DNA microarray analysis) extracts mRNAs associated

with specific RNA-binding proteins,44,45 and hence assesses

translation regulation in the context of putative regulators.

A variant of this approach, called TRAP (translating

ribosome affinity purification), targets ribosomal proteins,

and it has been used to assess the ‘translation profile’ in

neurons,46,47 yeast48 and plant.49 Sucrose gradients serve to

separate mRNA populations according to their density, as

dictated by their levels of association with ribosomes.

Untranslated or free mRNA remains at the top of the gradient

while highly translated mRNA (polysomal fraction) is present

at the bottom. Arava et al. combined this method with

microarray analysis to estimate ribosome occupancy and

density along mRNAs.50,51 Recent work describes another

Fig. 2 Elements of eukaryotic translation and protein degradation regulation. The number of protein molecules present per mRNA is influenced

both by translation and protein degradation. Both rates are regulated by several processes whose signals are encoded in the mRNA and protein

sequences. Transcription and mRNA degradation (stability) affect the steady-state concentrations of mRNAs, but not (formally) the protein-

per-mRNA ratio—the latter of which is the focus of this review. Some processes, e.g. binding of miRNAs or RNA-binding proteins, affect both

translation and mRNA stability.
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method to measure translation.52 Ribosomes protect a region

of B30 nucleotides from nuclease digestion (footprints).

Strong association of a ribosome for a given mRNA leads to

many protected fragments. These fragments are converted to a

DNA library and sequenced at large scale. By comparing reads

of fragments obtained by nuclease digestion to fragments

obtained by random fragmentation, Ingolia et al. could efficiently

calculate levels of translation for 44600 yeast genes.52

Several datasets on translation efficiency and regulation

exist for yeast,50–54 as well as data on mRNA half-lives17

and targets of RNA-binding proteins.55–57 For humans, a

number of genome-wide datasets have also become available,

e.g. on polysomal profiling,58,59 mRNA decay,60,61 poly(A) tail

lengths,62 and the impact of miRNAs.63,64

Protein degradation is less well-studied at large scale than

translation efficiency and fewer methods exist. In a classic

experiment, cellular translation is inhibited with cyclo-

heximide, and decreases in protein abundance are measured

over time. This approach has been applied to yeast at large

scale, using a tagged protein library to monitor

protein decay.65 Recent work measured protein stability of

B6000 human proteins,39 using genetic constructs ensuring

comparable translation rates.

Several large-scale studies exist in which changes in

protein concentrations are compared to changes in mRNA

concentrations.66–69 For example, two recent studies examined

the effects of miRNA knockdown on protein and mRNA

expression:63,64 changes at the mRNA level (RKnockdown/RControl)

suggest regulation of mRNA stability and transcriptional

feedback; changes at the protein level (PKnockdown/PControl)

result from changes in mRNA stability, transcription, translation

and protein degradation. However, these and other studies

report only relative protein and mRNA concentrations and

cannot be used to compare protein and mRNA levels directly.

Absolute concentrations are required for the equations

described below and are the focus of this review.

Absolute concentrations are harder to obtain and less

available than relative concentrations. Absolute mRNA

concentrations have been estimated from single-channel

microarrays, SAGE data as well as next-generation deep

sequencing data. Dual-channel microarrays have also been

used to estimate absolute mRNA concentration, using

genomic DNA as reference. Absolute protein concentrations

have been estimated using Western blotting, 2D-gels in

combination with mass spectrometry, or libraries of

GFP-tagged proteins.39,70–73 As the latter are available only

for some organisms and sometimes only a small fraction of

genes, shotgun proteomics approaches employing quantitative

mass spectrometry have become a useful alternative to

estimate absolute concentrations for a large number of

proteins, e.g. ref 74 and 75.

Protein-per-mRNA ratios as a tool for studying

translation and protein degradation

In very basic terms, changes in concentration of a protein

depend on the mRNA concentration, translation efficiency

and degradation of the existing protein (Fig. 1). If transcription

and mRNA stability are in steady-state, we can treat

kTranslation and R as constants and combine them into a new

constant describing protein production kProteinProduction:

kProteinProduction = kTranslationR (1)

Protein degradation depends on protein concentration, and it

can be modeled in the form of a first-order rate equation,

using the kProteinDegradation as a rate constant. Combining

kProteinProduction and kProteinDegradation, we can now describe

the change in protein concentration dP during time dt as an

ordinary differential equation:

dP/dt = kProteinProduction � kProteinDegradationP (2)

This equation is central to common models describing protein

production and turnover reflecting the processes described in

Fig. 1. While the equation requires several assumptions

(discussed below), it is simple enough that it can be analyti-

cally solved (integrated) to provide an estimate of the protein

concentration P at any time point t, employing P0 as the

starting concentration:

Pt = (P0 � kProteinProduction/kProteinDegradation)e
�kProteinDegradationt

+ kProteinProduction/kProteinDegradation

= RkTranslation/kProteinDegradation(1 � e�kProteinDegradationt)

+ P0e
�kProteinDegradationt (3)

In biological systems, we often examine steady-state or

equilibrium conditions. For example, for a yeast culture

growing in log-phase, the measured molecule concentrations

correspond to the ‘average’ cell cycle state of all cells in the

population, and these concentrations are approximately

constant over time. In contrast, molecule concentrations in

individual growing and dividing cells are not in steady-state,

neither are cell populations which respond to stimuli by

inducing or repressing expression. However, after some

time t after a stimulus, the cell population may again reach

steady-state which is possibly different from the original one.

We may choose to compare measurements from two different

steady-states, e.g. cells grown in different media, or a wild-type

cell population vs. a population with a gene-knockout.

In steady-state, i.e. dP/dt = 0 for eqn (2) and t ) N for

eqn (3), the concentration P reaches an equilibrium of:

PN = kProteinProduction/kProteinDegradation

= RNkTranslation/kProteinDegradation (4)

This relationship is interesting for several reasons. We can

use eqn (4) to estimate missing variables. For example,

Beyer et al. predicted protein degradation rates for thousands

of yeast genes, given measurements of protein and mRNA

concentrations as well as translation rates.76 The predicted

rates agreed well with published data on protein stabilities.65,77

Eqn (3) and (4) show that the protein concentration is a

direct function of both the mRNA concentration as well as

translation and protein degradation rates. In other words, we

can use eqn (3) and (4) to predict protein concentrations for a

gene, given information on the concentration of the corres-

ponding mRNA and the rates. However, we often lack

measurements of translation and degradation rates, and

typically only mRNA data are abundantly available. Thus,
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the mRNA concentration has often been used to approximate

the protein concentration in the cell. As we can see from

eqn (4), the steady-state protein concentration is directly

proportional to mRNA concentration, and the proportionality

factor is kTranslation/kProteinDegradation. The proportionality

between protein and mRNA concentration holds also true

for the transient, non-steady-state case (eqn (3)): the higher the

mRNA concentration, the higher the protein concentration if

all other variables are fixed. However, despite this proportionality,

eqn (3) and (4) show that mRNA concentration can only

partially explain variation in protein concentration, and the

exclusive use of mRNA concentrations neglects the essential

roles of translation and protein degradation.

Since translation and degradation rates are difficult to

measure, we can use known protein and mRNA concentrations

to learn about the combined outcomes of the rates, as can be

seen from rearranging eqn (4):

PN/RN = kTranslation/kProteinDegradation (5)

The protein-per-mRNA ratio P/R described in eqn (5) is the

focus of the discussions below. Studies in bacteria, yeast, and

multi-cellular organisms have examined the protein-

per-mRNA ratio in its relationship to gene characteristics that

hint for regulation at the level of translation or protein

degradation. The protein-per-mRNA ratio informs about

the combined outcome of translation and degradation, but it

cannot inform us about the type of influence. Fortunately, this

information can come from sequence properties. By examining

sequence properties of genes with different protein-per-mRNA

ratios, we learn about the influence of regulatory processes on

production and degradation rates.

We use the protein-per-mRNA ratio to normalize for effects

of transcription, i.e. to ‘factor out’ the influence of mRNA

expression levels on the levels of protein expressed in the cell.

If there was no translation or degradation regulation,

P/R would be identical for all genes. In a plot of mRNA

versus protein concentrations, all data points would lie on a

straight line with a perfect correlation (e.g. Pearson’s R2 = 1).

In reality, this is not observed (Fig. 3A–C, Table 2). Protein-

per-mRNA ratios vary widely for genes measured from one

cellular sample. The deviation from a straight line is the

product of several processes: (i) measurement noise; (ii) noise

in gene expression regulation;72,78 (iii) inability to detect the

correct protein amounts due to post-translational modifi-

cations; and (iv) gene-specific regulation of translation and

protein degradation influencing protein expression levels in the

particular steady-state conditions under study.

Fig. 3 Protein versusmRNA concentrations across organisms. (A, B and C). Protein and mRNA concentrations correlate to a large extent across

bacteria, yeast and human. Data for E. coli were taken from ref. 74; the yeast proteomics data were averaged from concentrations reported in

ref. 70–72 and 94, as well as RNA concentrations from ref. 17, 97 and 129. The human data are from ref. 94: Daoy medulloblastoma cellular lysate

was analyzed via LC-MS/MS on an LTQ-Orbitrap and protein concentrations for 1025 proteins were estimated using APEX.74 mRNA

concentrations were estimated using Nimblegen arrays, (D) across years. The graph shows the correlations for three different groups of organisms

(bacteria, uni- and multi-cellular eukaryotes), with data points colored according to significance of the correlation. White data points are

non-significant correlation coefficients.
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The protein-per-mRNA ratio is different for different

genes, but it may also change for a given gene under

different conditions. One example is the yeast transcription

factor GCN4.79 Under logarithmic growth in rich medium,

GCN4’s protein-per-mRNA ratio is very low, as the gene is

transcribed but not translated due to interference of

several uORFs in the mRNA’s 50UTR. Under amino acid

deprivation, however, GCN4 translation is activated, allowing

the transcription factor to regulate genes of the starvation

response.

Table 2 Protein and matching mRNA measurements in various organisms. The table lists publications of absolute mRNA and matching protein
concentrations, as far as quantitative information was available. We show the squared Pearson correlation coefficient R2 even if some publications
quoted an unsquared R. In addition or instead, some publications provide the Spearman rank correlation coefficient Rs. All correlations are
significant at a P-value o 0.001, unless marked as %. LC-MS/MS: liquid chromatography-tandem mass spectrometry; APEX: absolute protein
expression; SAGE: serial analysis of gene expression; emPAI: exponentially modified protein abundance index; TAP: tandem affinity purification;
LC: liquid chromatography; 2D-PAGE: two-dimensional polyacrylamide gel electrophoresis; MALDI-MS: matrix-assisted laser desorption/
ionization mass spectrometry; SCX: strong cation exchange chromatography

Correlation

Organism N Method Comments Ref.R2 Rs

Bacteria
0.20–0.28 0.39–0.46 Desulfovibrio vulgaris 392–427 LC-MS/MS vs. NimbleGen

microarrays
3 conditions: lactate-exponential,
formate-exponential,
lactate-stationary

99,107

0.42 0.64 E. coli 1147 LC-MS/MS vs. Affymetrix
microarrays

To estimate protein concentration,
we normalized the reported unique
peptide count by the predicted
number of peptides

184

0.47 0.69 E. coli 437 LC-MS/MS vs. SAGE and
microarrays

APEX74 for protein quantitation 74

0.40 — Streptomyces
coelicolor

894 LC-MS/MS vs. microarrays emPAI96 vs. mRNA/gDNA for
quantitation

185

Uni-cellular eukaryotes
0.87 — Saccharomyces

cerevisiae
106 2D-PAGE vs. SAGE Correlation highly biased by a

small number of genes with very
large protein and mRNA levels

186,187

0.58 0.74 S. cerevisiae 66 2D-PAGE vs. SAGE, Affymetrix
microarrays

— 70

0.44 — S. cerevisiae 2044 MudPIT and 2D-PAGE datasets
vs. Affymetrix microarrays, SAGE

Higher and lower correlations at
specific subsets (subcellular
location and functional groups)

92

— 0.57 S. cerevisiae 4251 TAP/Western vs. Affymetrix
microarrays

— 71

— 0.58 S. cerevisiae 3600 Proteomic datasets from ref. 71
and 92 vs. microarrays, SAGE

— 76

0.73 0.85 S. cerevisiae 346 LC-MS/MS, 2D-PAGE, Western
Blot vs. SAGE and microarrays

APEX74 for protein quantitation 74

0.42 — S. cerevisiae 4600 Proteomic datasets from ref. 71
and 188 vs. deep sequencing of
ribosome-bound mRNAs

— 52

0.34 0.61 Schizosaccharomyces
pombe

1367 LC-MS/MS vs. microarrays — 114

— 0.37–0.60 P. falciparum 340–949 LC-MS/MS vs. microarrays Several time-points of the life
cell cycle

116

Multi-cellular eukaryotes
0.27–0.46 0.68 A. thaliana

(mustard weed)
4105 LC-MS/MS vs. microarrays 6 different organs; APEX74 for

protein quantitation
118

— 0.44–0.59 C. elegans
(nematode worm)

2695 SCX, LC-MS/MS vs. Affymetrix
microarrays and SAGE

Protein-Affymetrix and
protein-SAGE

75

— 0.36–0.66 D. melanogaster
(fruit fly)

2695 SCX, LC-MS/MS vs. Affymetrix
microarrays and SAGE

Protein-Affymetrix and
protein-SAGE

75

0.23% — H. sapiens 19 2D-PAGE vs. transcript imaging Liver 120
— 40.24% H. sapiens 28 2D-PAGE, MALDI-MS vs.

Affymetrix microarrays
76 lung adenocarcinomas and 9
non-neoplastic lung tissues

189

None — H. sapiens 3 — Prostate; MMP2, MMP9, TIMP1 190
0–0.40 — H. sapiens 58 Immunohistochemistry vs.

Affymetrix and Agilent
microarrays.

58 antigens in different prostate
cell types

93

0.09% — H. sapiens 71 2D-PAGE vs. Affymetrix
microarrays

Monocytes from 30 unrelated
women; Correlations varied in
different biological categories of
gene ontology

191

0.29 0.46 H. sapiens 1025 LC-MS/MS data from ref. 94
vs. NimbleGen microarrays

Daoy medulloblastoma cell line;
APEX74 for protein
quantitation; this study

This paper
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Simplifying assumptions

Before outlining what is known about protein-per-mRNA

ratios and their characteristics in different organisms, we

briefly point out simplifying assumptions made in eqn (1) to

(5) which may be addressed in more refined models. First,

future models may incorporate temporal changes in the

mRNA concentration, caused by transcription and mRNA

degradation. Similar to eqn (3), the mRNA concentration

at time t is estimated as a function of kTranscription and

kmRNADegradation, and the integrated term is substituted for R

in eqn (2):

dP/dt = kTranslation(C
0e�kmRNADegradationt

+ kTranscription/kmRNADegradation) � kProteinDegradationP

(6)

A detailed derivation and discussion of eqn (6) are provided by

Hargrove and Schmidt.80

Second, future studies may include non-linear or

non-parametric approaches. Indeed, protein and mRNA

concentrations correlate better at log- than at linear-scale

(Fig. 3), and thus protein degradation in eqn (2)

(kProteinDegradationP) may be replaced by kProteinDegradationlog(P)

or higher-order equations such as kProteinDegradationP +

k2ProteinDegradationP
2 + . . . To address the non-linearity of

biological processes, we use a non-parametric correlation

coefficient in comparisons of protein and mRNA concentrations,

i.e. Spearman rank Rs (Table 2). In contrast to Pearson’s R2,

Rs measures the correspondence between rank-ordered data

points disregarding the actual value. In Table 2 we list both R2

and Rs for a variety of organisms.

Third, a refined model of protein production and turnover

may treat translation not as a rate constant, but as a function

of other variables. For example, the translation ‘rate’ of a

protein is a composite of the rate of peptide bond formation

between amino acids,78 and a gene-specific translation rate

which depends on ribosome occupancy and density,51 but also

on tRNA availability. Ribosome occupancy and density along

the mRNA, in turn, are influenced by the cellular ribosome

concentration, as well as sequence properties and secondary

structures of the mRNA that may help or hinder ribosome

attachment. Thus, a more complex model may treat trans-

lation as a function of mRNA and protein concentrations,

ribosome, tRNA or amino acid concentrations, or for example

the expression of translation and other regulatory factors.

Changes in protein localization as well as time delays between

transcription, translation and degradation may also be

included. Similar reasoning applies to kProteinDegradation.

Finally, the relationships discussed above do not include

stochasticity in gene expression. Stochastic variation, i.e.

noise, occurs both during measurement of the participating

variables (measurement noise), as well as during gene

expression per se (biological noise). Biological noise originates

from inherent stochasticity of biochemical processes,

differences across individual cells in a population, subtle

environmental differences and genetic mutations.81 Noise can

be intrinsic, i.e. inherent to the gene under measurement, or

extrinsic, reflecting global or pathway-specific differences in

expression over time. Noise in gene expression influences

genetic selection and evolution at the molecular and cellular

level.81–84 Stochasticity can be modeled using an additional

term e in eqn (2). It can also be estimated using a discrete

stochastic model in which E(P) is the expected value of the

protein concentration drawn from a Poisson distribution

centered around kProteinProduction/kProteinDegradation,
85 in

analogy to eqn (3).

E(P) = kProteinProduction/kProteinDegradation (7)

The relationship between transcription and translation

influences the levels of noise: frequent transcription followed

by inefficient translation results in less intrinsic noise in protein

levels than infrequent transcription followed by efficient

translation.81 Few proteins produced from a large number of

mRNAs result in less noise, and indeed some key regulators in

Escherichia coli have very low translation rates.86 Similarly,

essential genes in yeast have comparatively low rates of

translation.78

Studies assessing the contribution of stochasticity to

translation regulation target individual genes in specific

systems, e.g. ref. 87, or tagged genes in populations allowing

for analysis of single cells.86,88–91 These studies differ from the

genome-wide measurements discussed below; the latter cannot

inform about cell-to-cell variation, but the variation observed

in these measurements is likely to originate primarily from

measurement noise.

Steady-state concentrations of protein molecules

per mRNA and their correlates

For a little over a decade now researchers have been able to

estimate and compare protein and mRNA concentrations

from different organisms (Table 2). While the ‘holy grail’ of

these comparisons seems to lie in finding high correlations,92

correlation coefficients between mRNA and protein

concentrations vary widely across organisms, and are often

surprisingly low. In bacteria, the squared Pearson’s correlation

coefficient (R2) ranges from 0.20 to 0.47, in yeasts from 0.34 to

0.87, and in multi-cellular organisms from 0.09 to 0.46

(Table 2, Fig. 3).

The squared Pearson correlation coefficient describes how

much variation in one variable can be explained by changes in

another variable. For example, the R2 for several recent

measurements lies around a value of B0.4 (Fig. 3D), implying

that B40% of the variance in protein expression can be

explained by changes at the transcript level, B60% by other

changes. While there is a clear and significant correspondence

between the protein and mRNA concentrations in protein

extracts from various organisms, more than half of the

variation in protein concentrations cannot be explained by

variation in mRNA concentrations. The remaining variation

derives from organism-specific regulation of translation

and protein degradation, but also from differences in the

accuracy of the underlying methods that provided the

measurements.

Multi-cellular organisms display, on average, the lowest

correlations between protein and mRNA concentrations

(Table 2, Fig. 3D). Bacteria have slightly lower correlations

than yeast and Plasmodium—which is surprising given that
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bacteria lack many post-transcriptional regulatory processes

that eukaryotes have. On the other hand, since transcription

regulation of individual genes in bacteria could be limited by

the operon structure of their genome, gene expression may be

fine-regulated at the level of translation leading to a lack of

correlation between protein and mRNA. Of the six human

datasets available only two have significant correlations

(ref. 93 and data from ref. 94; Fig. 3C). However, fruit fly

and worm have high Spearman rank correlations between

protein and mRNA concentrations75 (Table 2; Fig. 3D

excludes these organisms because of missing R2 values).

Our ability to accurately measure protein and mRNA

concentrations influences the observed protein vs. mRNA

correlation, and this ability seems to be improving over time;

the number of highly significant measurements has increased

during the last few years (Fig. 3D). In particular in yeast,

construction of TAP-tagged and GFP-tagged strain

collections71,95 has enabled estimates of protein concentrations

of several thousands of genes, and these measurements are

comparatively accurate. In addition, sensitivity of mass

spectrometry based approaches has improved considerably,

and methods to measure absolute protein concentrations have

been developed.74,96 Single-channel microarray analyses,

SAGE97 and deep sequencing98 have allowed more accurate

measurement of absolute mRNA concentrations. The most

significant (but not the highest) correlation between protein

and mRNA concentrations in yeast (R2 = 0.42, Table 2;

P-value o 10�300, Fig. 3D) stems from a very recent study

which was the first not to use total mRNA, but only trans-

lationally active transcripts, i.e. those that are bound to

ribosomes52 when comparing these to protein measurements.

Sequence characteristics correlating with protein-per-mRNA

ratios

Biological explanations for variation in the protein-

per-mRNA ratio (or lack of correlation between protein and

mRNA concentrations) come from analyses of sequence and

other properties of the respective genes and proteins. The

protein-per-mRNA ratio for a particular gene can be very

high (or very low) because it is necessary for the cell to fine-

regulate translation and/or degradation of the protein product

under the steady-state condition examined. For a given gene,

the protein-per-mRNA ratio can differ depending on the

cellular conditions. As discussed above, several sequence-

encoded features qualify as potential correlates, as they are

assumed to influence the efficiency of translation or protein

degradation (Fig. 2). ‘‘Correlates’’ are characteristics that

correlate significantly with a variable of interest. In an analogy

to factor analysis, correlates could be regarded as factors

whose (linear) combination explains variation in the protein-

per-mRNA ratio.

Below we summarize these findings on correlates of protein-

per-mRNA ratios, mostly coming from analyses in bacteria99

and yeast.70,71,76,100–105 Most of the present studies analyzed

the correlation of each sequence feature individually with the

protein-per-mRNA ratio in the cell. Such an approach is

useful, but it neglects the inter-correlation between different

sequence features, for example, nucleotide composition may

correlate with mRNA secondary structures or with codon

usage. Some studies addressed the inter-correlation by

employing multiple regression and other methods. Whenever

appropriate, we also mention findings on sequence correlates

of translation and degradation rates.

The relationship between protein and mRNA concentrations

also informs about a simple property of gene expression: the

average number of protein molecules produced per mRNA.

In E. coli, this number centers around 560,74 in yeast it is an

order of magnitude larger.70,74 For individual genes, this

number can vary by orders of magnitude. Thus gene

expression comprises an impressive amount of recycling: each

mRNA molecule in the cell is translated into protein several

hundreds to thousands of times before its degradation.

Bacteria

In bacteria, codon usage and amino acid composition have the

strongest correlation with the protein-per-mRNA ratio,

explaining each 410% of the total protein-per-mRNA

variation, respectively.106,107 Other characteristics such as

mRNA stability, protein stability, composition of translation

initiation site (Shine–Dalgarno sequence), start and stop

codon context, or gene length have smaller roles.106,107 This

finding is somewhat unexpected as it suggests translation

regulation at the level of elongation, i.e. choice of codons,

rather than initiation, e.g. Shine–Dalgarno sequence. Codon

usage is commonly assumed to influence translation via tRNA

availability: codons with rare tRNAs slow down translation

and vice versa. A recent analysis in E. coli has shown that

mRNA secondary structure, rather than codon usage,

regulates expression of individual genes.108 For a given gene,

codon usage has no influence on its expression level; however,

the authors suggest that globally, across all genes, optimal

codons were selected for highly expressed genes to maximize

elongation speed.108

Uni-cellular eukaryotes

In yeast, the protein-per-mRNA ratio is also positively

correlated with codon usage, the sequence around the trans-

lation initiation site, and tRNA adaptation.77,109 It is also

correlated with experimental data on translation state,51

protein half-life110 and the mRNA concentration.76,77,110

Minor contributors are mRNA stability, 50UTR secondary

structures, as well as amino acid composition.74 Similarly to

bacteria,100 elongation-related features of translation rather

than initiation-related features affect the protein-per-mRNA

ratio the most.110

Proteins with large protein-per-mRNA ratios tend to be of

low molecular weight;74 consistent with the inverse correlation

between codon adaptation (as a proxy of P/R) and molecular

weight.111 In contrast, mRNA concentration and protein

molecular weight are not correlated112—rendering the

influence of molecular weight (and sequence length) specific

to translation and protein stability. Similarly, mRNA and

protein expression have different impacts on protein structure

and evolutionary rate,113 suggesting distinct pressures

associated with cost of transcription and translation. For

example, while evolutionary rate is negatively correlated with

This journal is �c The Royal Society of Chemistry 2009 Mol. BioSyst., 2009, 5, 1512–1526 | 1521



mRNA expression along the entire sequence, the negative

correlation with protein expression is smaller within a protein

domain, i.e. structured, stable regions, than outside. The

authors relate this to the biologically different roles of the

molecules:113 mRNAs are messengers, while proteins convey

functional benefits.

In fission yeast, deviation from a correlation between

protein and mRNA levels could be explained to some degree

by differential phosphorylation and ubiquitinylation.114 Yeast

mRNAs with weakly folded 50UTRs have higher translation

rates, and higher abundances of the corresponding proteins.115

The authors also found a positive correlation between

transcript half-life and ribosome occupancy that is more

pronounced for short-lived transcripts which suggests competition

between translation and mRNA degradation.115

Gene function influences both the strength of the correlation

between protein and mRNA, and the value of the protein-per-

mRNA ratio. Similar to what has been observed at the level of

transcription regulation, translation regulation under different

conditions results both in generic and in gene-specific

responses.77 In fission yeast, correlation is strong for kinases,

cell cycle genes, signaling and metabolic proteins, but weak in

some protein complexes.114 The same is observed for cell cycle

genes in baker’s yeast when averaging correlations or when

averaging concentrations across a population of cells in

different cell cycle stages.92 In contrast, cell cycle genes from

individual cells in specific cell cycle stages are highly regulated

at the level of transcription, translation and degradation,

and protein and mRNA concentrations will not correlate.

Eukaryotic genes with low protein-per-mRNA ratios may

undergo ‘‘translation on demand’’76 similar to GCN4

mentioned above: translation of the mRNAs is held back

(causing a low protein concentration) until the protein

products are needed.

Extensive proteomics and transcriptomics datasets also exist

for the seven life stages of the uni-cellular protist Plasmodium

falciparum.116 While the authors observed correlation

coefficients of up to R2 = 0.53 (Rs = 0.72) (Table 2), they

could only identify few sequence motifs in the UTRs whose

presence correlated with protein-per-mRNA ratios. A more

recent study revealed extensive post-transcriptional regulation

for 500 Plasmodium proteins, in particular at the level of gene

isoform expression, post-translational modifications, and

temporal delays between transcription and translation.117

Multi-cellular eukaryotes

In contrast to yeast and bacteria, fewer datasets on protein

and matching mRNA concentrations are available for

multi-cellular organisms compared. This lack is mostly due

to the difficulties in large-scale data acquisition, as the

eukaryotic gene structure is more complex than the prokaryotic

one (e.g. splice variants) and tagged libraries as those for yeast

do not exist for whole animal or plant genomes.

A study inCaenorhabditis elegans andDrosophila melanogaster75

confirms the inverse correlation of expression levels with

gene length—however, the authors consider that the mass

spectrometry based protein detection biases against short

genes. The overall correlation between mRNA and protein

concentrations proved to be highly significant, but modest

compared to yeast and bacteria (Table 2); the number of

protein molecules per transcript varies widely. The correlation

is particularly poor for genes of signal transduction and

transcriptional regulation, possibly due to extensive post-

transcriptional regulation, or due to their low (and hence

error-prone) estimated concentrations. This finding for worm

and fly contrasts observations in yeast: genes of signal

transduction had high correlations between protein and

mRNA concentrations.114 In worm and fly, there is no

correlation of the protein-per-mRNA ratio with GC content,

coding sequence or UTR lengths, but there is a weak, but

significant and positive correlation with protein half-lives of

orthologous yeast proteins65 suggesting that protein stability is

one of the major factors determining P/R.

A study in the plant Arabidopsis thaliana describes a good

correlation between protein and mRNA levels (Rs = 0.68 to

0.52, Table 2),118 similar to the correlations observed for worm

and fly. Under dehydration stress, the presence of upstream

start codons, stable 50UTRs and high GC content were found

to repress ribosome attachment and hence translation in

plant.119

In human, these analyses have so far been confounded by

technical limitations: protein expression datasets are either

very small (e.g. for o100 proteins59,120,121) or concentrations

were measured not as absolute quantities, but only relative to

a reference set.63,64,67 The resulting correlations between

protein and mRNA concentrations are very modest

(Table 2, Fig. 3).

Conclusions

The relationship between protein and mRNA concentrations

is a simple measure informing about the combined outcomes

of complex processes: the global steady-state regulation of

translation and protein degradation. Biologically meaningful

variation in protein-per-mRNA ratios depends on our ability

to measure concentrations accurately and at large scale, and

the last years have seen improvements in both methods and

significance of the observed correlations (Fig. 3D). In yeast

and bacteria, and to a lesser extent animals and plants, there is

a substantial and significant correlation between protein and

mRNA concentrations (Table 2, Fig. 3). Typically B30 to

even B85% of the variation in protein levels can be attributed

to variation in mRNA expression. The other 15 to 70% of the

variation is explained by post-transcriptional and post-

translation regulation and by measurement errors. Differences

in the protein vs. mRNA correlation between prokaryotes

and eukaryotes or uni- and multi-cellular organisms are

surprisingly small: the most significant measurements of

protein vs. mRNA concentrations collected during the last

years may center around R2 = 0.4 (Fig. 3D). If this observation

holds true in future, it would imply that the contribution

of translation and protein degradation to gene expression

regulation is similar across organisms, and that the processes

play a large, perhaps even dominant role in regulation of

protein expression levels.

Much attention has been paid to general characteristics of

protein-per-mRNA ratios, in particular those encoded in the
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gene sequence. We can use these sequence characteristics in

combination with mRNA expression data to explain observed

variation in protein expression levels. Gene length correlates

with protein-per-mRNA ratios in all organisms. It is not clear

why protein length and translational efficiency are linked, and

what the underlying causality may be. Highly abundant

proteins demand efficient and correct folding to avoid

accumulation of toxic unfolded proteins in the cell,111 and

this demand may require short sequences. However, this

reasoning does not explain why ribosome density is lower in

long than in short yeast mRNAs.50,51,112 The variation in

ribosome density may arise from differences in translation

initiation between long and short genes50,51,112 or a decrease in

density along the sequence due to ribosome infidelity. Indeed,

a recent study52 has found high ribosome densities in the first

30 to 40 codons compared to the rest of the sequence. Long

sequences may also be expressed at low levels because their

protein synthesis is energetically more costly, i.e. it requires

more amino acids and cellular energy. Thus, we do not know

whether highly expressed proteins tend to be short because of

their frequent translation, or whether they are frequently

translated because they are short. It is also possible that the

mRNA length has no direct influence on translational

efficiency but is an independent parameter under the same

influence of a third variable, i.e. both are needed for high

expression.

In bacteria and uni-cellular organisms, codon and tRNA

adaptation are strong correlates of the protein-per-

mRNA ratio.77,106,107,109 In multi-cellular organisms,

this relationship has not been demonstrated (yet); however,

we observe it indirectly through a link between codon usage

and gene length, and the link between length and

protein expression discussed above.122,123 Future work may

address in particular multi-cellular organisms, for which

only few large-scale datasets exist. These organisms are

expected to have many more regulatory features

(e.g. miRNAs, translation factors, splicing) than uni-cellular

organisms, and also require more complex regulation,

spatially and temporally, for example in different tissues or

during development.

Gene expression regulation is characterized by extensive

inter-correlations both between rates of transcription, trans-

lation and degradation, and between sequence-encoded

correlates of these. There are positive and statistically signifi-

cant correlations between transcription and translation rates,

protein concentrations and translation, mRNA concentration

and transcription, as well as molecule stabilities in

yeast.65,74,76,77,124 Correspondingly, more abundant mRNAs

tend to be shorter and more efficiently translated as reflected

by their higher ribosome occupancy and, to a lesser extent,

higher ribosome density.16,50,51,125

High protein concentrations can result from both frequent

transcription and high mRNA stability, as well as from

frequent translation and high protein stability. While many

ribosomal proteins maximize all these processes, some

metabolic proteins have high translation rates and are stable,

but transcription rate is relatively low.126 Protein stability

usually concurs with translation, i.e. proteins of high trans-

lation levels are also stable. In contrast, mRNA stability often

opposes transcription.112,126 Less stable molecules are costly

for the cell, but allow flexible responses to environmental

stimuli,127 i.e. low molecule stability may be appropriate for

genes whose expression needs to change rapidly, for example

genes of the TCA cycle, glycolysis and gluconeogenesis in

yeast.126 The coordination between changes in transcription

and translation in response to stimuli has been termed

‘‘potentiation’’:53 genes that are upregulated in their transcrip-

tion under different conditions also become more efficiently

translated. Inter-correlations between variables suggest that

the underlying causality between the measures is highly

complex. During evolution, gene expression regulation has

been optimized at multiple levels, and there are different

strategies of gene expression regulation. To account for these

inter-correlations between variables, future work needs

to include multivariate methods, just as factor analysis or

multiple regression.

Some surprising findings have emerged from the studies

discussed here. For example, evidence in both bacteria and

yeast suggests that elongation, rather than translation

initiation, is the pre-dominant step during translation and its

influence on the protein-per-mRNA ratio—which is surprising

as in multi-step reactions it is often the first step that is

rate-limiting and tightly regulated. Further, recent work has

pointed to an interesting twist in the relationship between

transcription and translation. Both between fission and

budding yeast126 as well as between fruit fly and nematode

worm75 protein expression levels appear to be more conserved

than mRNA expression levels of the respective orthologous

genes. The observation is unexpected since much of divergence

between organisms has been attributed to rapid changes at the

level of transcription regulation, e.g. ref. 128. If this is true,

translation and protein degradation regulation must have

diverged as rapidly to counteract the trends at the tran-

scription level and to produce protein concentrations that

are similar across organisms. However, proteins are the

active species in the cell, and hence protein levels may be

required to be more conserved than mRNA levels, similar to

amino acid sequences being better conserved than nucleotide

sequences. To what extent the finding may be an artifact of

limited dynamical ranges of protein expression data or may

be real remains to be shown. Polysomal profiling, for

example, has shown that translation efficiency is largely

conserved between fission and budding yeast.16 More work

will have to be done to resolve these contradictions, and other

surprises may come once we obtain more large-scale datasets

on mRNA and matching protein concentrations, in particular

for human.
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