Supplemental Information

Molecular Cell, Volume 39

Defining the Pathway of Cytoplasmic Maturation

of the 60S Ribosomal Subunit

Kai-Yin Lo, Zhihua Li, Cyril Bussiere, Stefan Bresson, Edward M. Marcotte, and Arlen W. Johnson

Table S1. Strains Used in This study

Strain	Genotype	Source
W303	<i>MAT</i> α ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1	(Santos and
	-	Ballesta, 1994)
W303'	MATa ade2 his3 Δ 1 leu2 Δ 0 trp1 ura3 Δ 0	Goyenechea
	1	and Warren,
		unpublished
W303-	MATα ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1	(Santos and
GP0	URA3::P _{GAL1} -RPP0	Ballesta, 1994)
BSY28	MAT α can 1 Δ ::MFA1pr-HIS3 lyp1 Δ his3 Δ 1 leu2 Δ 0 ura3 Δ 0	Goyenechea
20120	$met15\Delta0 \ sdo1ts$	and Warren,
		unpublished
BY4741	MATa his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ met $15\Delta 0$	Open
		Biosystems
FWY111	MATa ade2 his3 Δ leu2 Δ trp1 Δ ura3 Δ afg2-18 (drg1ts)	(Pertschy et al.
1 11 1111	$\frac{1}{1}$	(1 chischij ci ul.) 2007)
Y5563	MATα can1 Δ ::MFA1pr-HIS3 lyp1 Δ his3 Δ 1 leu2 Δ 0 ura3 Δ 0	(Menne et al.,
15505	$met15\Delta0$	2007)
AJY1539	MATa his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ met $15\Delta 0$ CRM1(T539C-HA)	(Hedges et al.,
11511557		(incages et al., 2005)
AJY1699	MATa his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ tif 6Δ ::KanMX with pAJ1194	This study
	$(P_{GAL}::TIF6-myc URA3 CEN)$	1110 00000
AJY1700	$MAT\alpha$ his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ tif 6Δ ::KanMX with pAJ1194	This study
110 1 1 / 00	$(P_{GAL}::TIF6-myc URA3 CEN)$	Tills Stady
AJY1903	$MATa his 3\Delta 1 leu 2\Delta 0 ura 3\Delta 0 met 15\Delta 0 arx1::KanMX$	(Hung and
11511705	reila::KanMX	Johnson, 2006)
AJY1909	MATa ade2 his3 Δ leu2 Δ trp1 Δ ura3 Δ ARX1-GFP::HIS3MX	(Hung and
11311707		Johnson, 2006)
AJY1917	MATa his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ met $15\Delta 0$ rei 1Δ ::KanMX	(Hung and
11011717		Johnson, 2006)
AJY1948	MATa his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ met $15\Delta 0$ ARX1-GFP::HIS3MX	Hung,
AJ 1 1 940		unpublished
AJY2467	MATa his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ met $15\Delta 0$ rlp 24Δ ::KanMX with	This study
1191270/	pAJ898 (RLP24-HA URA3 CEN)	inis study
AJY2474	$MATa his 3\Delta 1 leu 2\Delta 0 ura 3\Delta 0 met 15\Delta 0 jjj 1\Delta::KanMX$	This study
AJY2547	MATa his3 $\Delta 1$ leu2 $\Delta 0$ ura3 $\Delta 0$ lys2 $\Delta 0$ yvh1 Δ ::Nat ^r	(Lo et al., 2009
AJ I 234/	$\frac{1}{1}$	(L0 Ct al., 2009

AJY2551	MATa ura $3\Delta 0$ his $3\Delta 1$ leu $2\Delta 0$ lys $2\Delta 0$ mrt 4Δ ::KanMX	(Lo et al., 2009)
AJY2553	MATa ura3∆0 his3∆1 leu2∆0 lys2∆0 yvh1∆::NAT ^r mrt4∆::KanMX	(Lo et al., 2009)
AJY2909	$MATa his 3\Delta 1 leu 2\Delta 0 ura 3\Delta 0 met 15\Delta 0 TIF6-GFP::HIS3MX$	Research Genetics
AJY2976	$MATa his 3\Delta 1 \ leu 2\Delta 0 \ ura 3\Delta 0 \ yvh 1\Delta$::Kan MX	This study
AJY2981	MATa ade2 his3 Δ leu2 Δ trp1 Δ ura3 Δ KanMX::P _{GAL1} -3xHA- EFL1	This study
AJY3005	MATα his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 sdo1 ^{ts} tif6Δ::KanMX with pAJ2451 (TIF6 LEU2 CEN)	This study
AJY3006	MAT α his 3 $\Delta 1$ leu 2 $\Delta 0$ ura 3 $\Delta 0$ met 15 $\Delta 0$ sdo 1 ^{ts} tif6 Δ ::KanMX with pAJ2250 (TIF6(V192F) LEU2 CEN)	This study
AJY3013	MATα his3Δ leu2Δ ura3Δ KanMX:: P_{GALI} -3xHA-EFL1 tif6Δ::KanMX with pAJ2451 (TIF6 LEU2 CEN)	This study
AJY3014	MAT α his 3 Δ leu2 Δ ura 3 Δ KanMX:: P _{GAL1} -3xHA-EFL1 tif6 Δ ::KanMX with pAJ2250 (TIF6(V192F) LEU2 CEN)	This study
AJY3040	$MATa$ his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ met $15\Delta 0$ MRT4-GFP::HIS $3MX$	Open Biosystems
AJY3072	<i>MATa his</i> $3\Delta 1$ <i>leu</i> $2\Delta 0$ <i>ura</i> $3\Delta 0$ <i>met</i> $15\Delta 0$ <i>jjj</i> 1Δ :: <i>KanMX TIF6-GFP</i> :: <i>HIS</i> $3MX$	This study
AJY3073	MATa his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ yvh 1Δ ::KanMX TIF6- GFP::HIS $3MX$	This study
AJY3074	MATa his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ met $15\Delta 0$ rei 1Δ ::KanMX TIF6- GFP::HIS $3MX$	This study
AJY3075	$MAT\alpha$ his3 $\Delta 1$ leu2 $\Delta 0$ ura3 $\Delta 0$ met15 $\Delta 0$ lys2 $\Delta 0$ mrt4 Δ ::KanMX TIF6-GFP::HIS3MX	This study
AJY3078	$MATa \ ade2 \ his3\Delta \ leu2\Delta \ trp1\Delta \ ura3\Delta \ TIF6-GFP::HIS3MX$	This study
AJY3079	MATa ade2 his3 Δ leu2 Δ trp1 Δ ura3 Δ drg1ts TIF6- GFP::HIS3MX	This study
AJY3080	MATα ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 URA3::P _{GAL1} -RPP0 TIF6-GFP::HIS3MX	This study
AJY3083	<i>MATa</i> ade2 his3 Δ leu2 Δ trp1 Δ ura3 Δ KanMX::P _{GAL1} -3xHA- EFL1 TIF6-GFP::HIS3MX	This study
AJY3088	MATa ade2 his3 Δ leu2 Δ trp1 Δ ura3 Δ drg1 ^{ts} ARX1- GFP::HIS3MX	This study
AJY3089	MATα ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 URA::P _{GAU} -RPP0 ARX1-GFP::HIS3MX	This study
AJY3086	MAT α can1 Δ ::MFA1pr-HIS3 lyp1 Δ his3 Δ 1 leu2 Δ 0 ura3 Δ 0 met15 Δ 0 sdo1ts ARX1-GFP::HIS3MX	This study
AJY3093	$MATa his3\Delta 1 leu2\Delta 0 ura3\Delta 0 met15\Delta 0 arx1\Delta::KanMX rei1\Delta::KanMX TIF6-GFP::HIS3MX$	This study
AJY3090	MAT α can1 Δ ::MFA1pr-HIS3 lyp1 Δ his3 Δ 1 leu2 Δ 0 ura3 Δ 0 met15 Δ 0 ARX1-GFP::HIS3MX	This study

AJY3098	$MATa ura3\Delta0 his3\Delta1 leu2\Delta0 lys2\Delta0 yvh1\Delta::NATr mrt4\Delta::KanMX TIF6-GFP::HIS3MX$	This study
AJY3100	$MATa \ ade2 \ his3\Delta \ leu2\Delta \ trp1\Delta \ ura3\Delta \ MRT4-GFP::HIS3MX$	This study
AJY3101	MATa ade2 his3 Δ leu2 Δ trp1 Δ ura3 Δ afg2-18 (drg1 ^{ts}) MRT4- GFP::HIS3MX	This study
AJY3102	MATα ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 URA3::P _{GAL1} -RPP0 MRT4-GFP::HIS3MX	This study
AJY3110	$MAT\alpha ade_{2-1} ura_{3} leu_{2} his_{3} yvh_{1}\Delta::NAT^{r} URA_{3}::P_{GAL1}-RPP0$	This study
AJY3118	$MATa$ his3 $\Delta 1$ leu2 $\Delta 0$ ura3 $\Delta 0$ met15 $\Delta 0$ rei1 Δ ::KanMX ARX1- GFP::HIS3MX	This study
AJY3121	MAT his3 $\Delta 1$ leu2 $\Delta 0$ ura3 $\Delta 0$ jjj1 Δ ::KanMX ARX1- GFP::HIS3MX	This study

Plasmids	Relevant markers	Source
pAJ538	<i>NMD3-13xmyc LEU2</i> CEN	(Ho et al., 2000)
pAJ582	NMD3-GFP LEU2 CEN	(Hedges et al., 2005)
pAJ754	<i>NMD3(AAA)-GFP LEU2</i> CEN	(Hedges et al., 2005)
pAJ758	<i>NMD3(AAA)-GFP URA3</i> CEN	(Hedges et al., 2005)
pAJ898	<i>RLP24-HA URA3</i> CEN	This study
pAJ901	LSG1-myc URA3 CEN	(Kallstrom et al., 2003)
pAJ903	LSG1-myc LEU2 CEN	(Kallstrom et al., 2003)
pAJ1003	<i>TIF6-GFP LEU2</i> CEN	This study
pAJ1004	<i>TIF6-GFP URA3</i> CEN	This study
pAJ1025	ARX1-GFP LEU2 CEN	This study
pAJ1015	ARX1-GFP URA3 CEN	(Hung and Johnson, 2006)
pAJ1018	<i>REI1-myc URA3</i> CEN	(Hung and Johnson, 2006)
pAJ1028	<i>REI1-myc LEU2</i> CEN	This study
pAJ1139	<i>RLP24-HA HIS3</i> CEN	This study
pAJ1682	arx1-S347P URA3 CEN	This study
pAJ1875	<i>RLP24 HIS3</i> CEN	This study
pAJ1895	<i>RLP24∆C-HA HIS3</i> CEN	This study
pAJ2064	<i>P_{GAL}::RLP24 URA3</i> CEN	This study
pAJ2065	<i>P_{GAL}∷rlp24∆C-HA URA3</i> CEN	This study
pAJ2074	<i>NOG1-myc LEU2</i> CEN	This study
pAJ2075	DRG1-myc LEU2 CEN	This study
pAJ2239	DRG1-myc URA3 CEN	This study
pAJ2250	<i>TIF6(V192F) LEU2</i> CEN	This study
pAJ2423	arx1-S347P-GFP URA3 CEN	This study
pAJ2425	ARX1 URA3 CEN	This study
pAJ2451	<i>TIF6 LEU2</i> CEN	This study
pAJ2481	<i>NLS_{SV40}-YVH1-GFP LEU2</i> CEN	(Lo et al., 2009)

Table S2. Plasmids Used in This Study

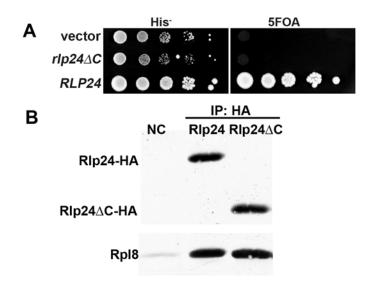


Figure S1, Lo et al

Figure S1. Rlp24 Δ C does not complement *rlp24\Delta* but retains 60S subunit binding. (A) AJY2467 (*rlp24\Delta* with plasmid pAJ898 (*RLP24-HA URA3*)) was transformed with vector, *rlp24\DeltaC-HA* (pAJ1895) or *RLP24* (pAJ1875). Ten-fold serial dilutions were plated on His drop out and on 5FOA media to select against the wild-type *RLP24 URA3* vector. (B) Rlp24-HA (pAJ1139) or rlp24 Δ C-HA (pAJ1895) was expressed in BY4741, extracts were prepared and immunoprecipitated. Western blotting was done with anti-HA and anti-Rpl8 antibodies.

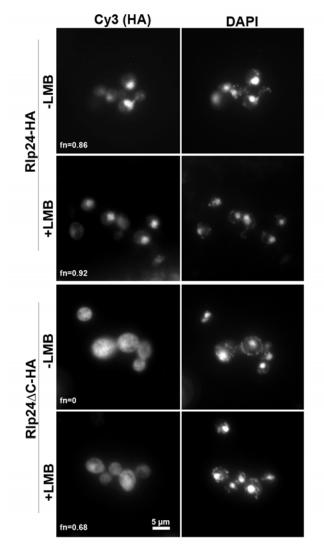


Figure S2, Lo et al

Figure S2. Rlp24 Δ C can recycle to the nucleus. The leptomycin B-sensitive strain AJY1539 containing Rlp24-HA (pAJ1139) or Rlp24 Δ C-HA (pAJ1895) was treated with 0.1µg/ml LMB as indicated for 30 minutes, fixed with 3.7% formaldehyde and prepared for indirect immunofluorescence. Cy3 was used to visualize Rlp24 or Rlp24 Δ C and DAPI for DNA.

Supplemental Experimental Procedures

Strains and Plasmids

AJY2474, AJY2467, AJY2956, and AJY2957 were obtained by transforming the indicated plasmids into the appropriate heterozygous diploid deletion strain (Research Genetics) followed by sporulation. The GAL1 promoter and 3xHA tag was amplified from pFA6A pGAL-3HA::KanMX (Longtine et al., 1998) and integrated into W303 to generate AJY2981. AJY3005 and AJY3006 were derived from crossing BSY28 and AJY1699 (tif6Δ pTIF6), and AJY3013 and AJY3014 were from crossing AJY2981 with AJY1700 (tif6Δ pTIF6).

To make pAJ1875 RLP24 was amplified with primers AJO585

(GGCGTCGACTACGTTGATTCAAATGGC) and AJO613

(GCGCGACGTCACATCTCTAACTCCTAAG). The fragment was digested with Smal and SalI and ligated into the same sites of pRS413. To make pAJ1895, PCR was carried out with primers AJO582 (GCGACTCGAGTGATATCTATCGCTTTTCTAGGA) and AJO1005 (GAATTAATTAATTTAGCCAACTTTCTGGC). The fragment was digested with SalI and PacI and ligated into the same sites of pAJ1139. pAJ2064 (*GAL:RLP24-HA*) and pAJ2065 (*GAL:rlp24* Δ *C-HA*) were made with the same primers but different templates. AJO1064 (GCGGAATTCATGAGAATTTATCAATGCCA) and AJO1037 (GCTACGGCTAGAGCTCTGGAGCTTTTGAATC) were used to amplify rlp24 Δ C from pAJ1139 or RLP24 from pAJ1895. The PCR products were digested with EcoRI and PacI and ligated into pAJ1810. pAJ2074 (*NOG1-myc*) was made by PCR amplification using AJO1097 (CGTGAGCTCCTCTGGCTGTCTTGCAGATT) and AJO1098 (ACGTTAATTAAACGGAAATCTGTCTTACCGAC), and ligating the SstI and PacI cut fragment into the same sites of pAJ1026. To make pAJ2075 (*DRG1-myc*), *DRG1* was amplified with AJ01099 (CGTCGGCCGAGTGGGCCCGTGGTTTATCA) and AJ01100 (ACGTTAATTAACGAAGATGAACCGCTTCTTAG). The PCR fragment was digested with EagI and PacI and ligated into the same sites of pAJ1026.

HeLa Cell Work

Plasmid Construction

DUSP12 was amplified from a full length cDNA clone (MGC: 10337, IMAGE: 3958403, OpenBiosystems) by using primers DUSP12-F1 (AGGGAGACCCAAGCTTATGTTGGAGGCTCCGGGC) and DUSP12-R1 (CGTTACTAGTGGATCCCCTATTTTTCCTGTTTGTGATCCCAA), and inserted into pcDNA3-EGFP between HindIII and BamHI to generate pcDNA3-DUSP12-EGFP.

Cell Culture and Transfection

HeLa cells were cultured in glass bottom 6-well plates containing DMEM with 10% fetal calf serum and maintained at 37°C with 5% CO₂. At about 30% confluency, HeLa cells were transfected with 10nM siRNA specific to either P0 or DUSP12 (ON-TARGETplus SMARTpool from Thermo Fisher Scientific) by using RNAiMAX (Invitrogen) for 48 hrs. ON-TARGETplus Non-targeting Pool (Thermo Fisher Scientific) was used as negative control for siRNA transfection. Knockdown efficiency was monitored by Western blotting using mouse anti-P0 (Abnova) or chicken anti-DUSP12 antibody (USBiological). GAPDH, as a loading control for western blot, was probed with mouse anti-GAPDH (Santa Cruz Biotechnology). Goat anti-mouse or goat anti-chicken HRP

8

conjugated secondary antibodies (Santa Cruz Biotechnology) were used for Western blotting. For plasmid transfection, FuGENE HD transfection reagent (Roche) was used following the manufacturer's instructions; after 12 hrs, HeLa cells were fixed with 4% formaldehyde for 15 min and nuclei were stained with Hoechst 33342 (Invitrogen).

Immunofluorescence and Microscopy

HeLa cells were fixed with 4% formaldehyde in PBS for 15 min at room temperature followed by permeabilization with cold methanol for 10 min at -20°C. Cells were blocked with blotting grade 1% BSA (Promega) for 1 hr at room temperature and then incubated with mouse anti-MRTO4 (Santa Cruz Biotechnology) and rabbit anti-eIF6 (Cell Signaling) antibodies in blocking buffer at 4°C overnight. After washing three times with PBS, cells were incubated with goat anti-mouse IgG Texas Red conjugated (Santa Cruz Biotechnology) and goat anti-rabbit IgG Alexa Fluor 488 conjugated (Invitrogen) secondary antibodies for 1 hr at room temperature. Cell nuclei were stained with Hoechst 33342 (Invitrogen). Fluorescence was visualized on an inverted microscope (Nikon Eclipse TE2000-E) fitted with a Plan Apo 60x/0.95 objective and a digital camera (Cascade II 512; Photometrics) controlled with the NIS Elements software (AR 3.0). Images were prepared using Photoshop.

Supplemental References

- Hedges, J., West, M., and Johnson, A.W. (2005). Release of the export adapter, Nmd3p, from the 60S ribosomal subunit requires Rpl10p and the cytoplasmic GTPase Lsg1p. The EMBO journal *24*, 567-579.
- Ho, J.H., Kallstrom, G., and Johnson, A.W. (2000). Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit. The Journal of cell biology *151*, 1057-1066.
- Hung, N.J., and Johnson, A.W. (2006). Nuclear recycling of the pre-60S ribosomal subunit-associated factor Arx1 depends on Rei1 in Saccharomyces cerevisiae. Molecular and cellular biology 26, 3718-3727.
- Kallstrom, G., Hedges, J., and Johnson, A. (2003). The putative GTPases Nog1p and Lsg1p are required for 60S ribosomal subunit biogenesis and are localized to the nucleus and cytoplasm, respectively. Molecular and cellular biology *23*, 4344-4355.
- Lo, K.Y., Li, Z., Wang, F., Marcotte, E.M., and Johnson, A.W. (2009). Ribosome stalk assembly requires the dual-specificity phosphatase Yvh1 for the exchange of Mrt4 with P0. The Journal of cell biology *186*, 849-862.
- Longtine, M.S., McKenzie, A., 3rd, Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J.R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953-961.
- Menne, T.F., Goyenechea, B., Sanchez-Puig, N., Wong, C.C., Tonkin, L.M., Ancliff, P.J., Brost, R.L., Costanzo, M., Boone, C., and Warren, A.J. (2007). The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nature genetics 39, 486-495.
- Pertschy, B., Saveanu, C., Zisser, G., Lebreton, A., Tengg, M., Jacquier, A., Liebminger, E., Nobis, B., Kappel, L., van der Klei, I., *et al.* (2007). Cytoplasmic recycling of 60S pre-ribosomal factors depends on the AAA-protein Drg1. Molecular and cellular biology 27, 6581-6592.
- Santos, C., and Ballesta, J.P. (1994). Ribosomal protein P0, contrary to phosphoproteins P1 and P2, is required for ribosome activity and Saccharomyces cerevisiae viability. The Journal of biological chemistry *269*, 15689-15696.