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A major goal in proteomics is the comprehensive and
accurate description of a proteome. This task includes
not only the identification of proteins in a sample, but also
the accurate quantification of their abundance. Although
mass spectrometry typically provides information on pep-
tide identity and abundance in a sample, it does not di-
rectly measure the concentration of the corresponding
proteins. Specifically, most mass-spectrometry-based
approaches (e.g. shotgun proteomics or selected reaction
monitoring) allow one to quantify peptides using chro-
matographic peak intensities or spectral counting infor-
mation. Ultimately, based on these measurements, one
wants to infer the concentrations of the corresponding
proteins. Inferring properties of the proteins based on
experimental peptide evidence is often a complex prob-
lem because of the ambiguity of peptide assignments and
different chemical properties of the peptides that affect
the observed concentrations.

We present SCAMPI, a novel generic and statistically
sound framework for computing protein abundance
scores based on quantified peptides. In contrast to most
previous approaches, our model explicitly includes infor-
mation from shared peptides to improve protein quanti-
tation, especially in eukaryotes with many homologous
sequences. The model accounts for uncertainty in the
input data, leading to statistical prediction intervals for
the protein scores. Furthermore, peptides with extreme
abundances can be reassessed and classified as either
regular data points or actual outliers.

We used the proposed model with several datasets and
compared its performance to that of other, previously
used approaches for protein quantification in bottom-up

mass spectrometry. Molecular & Cellular Proteomics
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The comprehensive and quantitative analysis of proteins
expressed in various organisms, tissues, or cell lines provides
important insights into systems biology that cannot be in-
ferred with the use of genomics or transcriptomics ap-
proaches (3). Although protein identification remains an im-
portant topic of ongoing research, the focus has moved to
quantification in recent years. Not only is it important to know
which proteins are present in a sample, but the abundance of
these molecules is also of major interest. For instance, one
would like to be able to identify which are the most or least
abundant proteins in a sample, or to compare the concentra-
tion of the same protein in two samples taken under different
biological conditions. In medical sciences, for example, bio-
markers can be used to distinguish healthy from ill patients or
allow one to monitor the efficiency of a treatment by compar-
ing a molecule’s concentration before and after therapy (4).

Most methods for analyzing mass spectrometry (MS)-
based1 proteomics data rely on a sequential approach: first
identification and then quantification of the peptides and pro-
teins in a sample (5, 6). Peptide identification is based on
finding the peptide sequences corresponding to the mea-
sured spectra, and it has been intensely studied. A wide range
of solutions have been proposed, for example, in Refs. 7–10.
A recent review of the main approaches can be found in Ref.
11. The inference of protein abundance relies on quantitative
information about the corresponding peptides, usually either
chromatographic peak intensities (ion-currents) or spectral
counts (the number of recorded MS/MS spectra). Thus, the
peptides are usually quantified first, and then this knowledge
is transferred to the protein level.

The protein inference problem (12) consists of deciding
which protein sequences are present in a sample based on
the set of identified peptide sequences.2 It has been ad-
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dressed in many works, including Ref. 10 and Refs. 13–19.
The methods vary according to the underlying model, the
implied independence assumptions, and the way of handling
shared peptides (which match to several protein sequences
and are also called degenerate (or degenerated) peptides).

Many different approaches for protein quantification have
been published in the past few years. Some of them are
applied directly to raw data (e.g. SuperHirn (20), MaxQuant
(10), Progenesis (21), and OpenMS (22)), primarily to obtain
quantitative information in the form of intensities or spectral
counts for the peptides. Other tools are exclusively designed
to combine or transform peptide abundances into quantitative
data at the protein level (e.g. emPAI (23), APEX (24), mSCI
(25), TOPn (2), MSstats (26), SIN (27), and SRMstats (28)).
Further differences between the approaches arise from their
use of peak intensities or spectral counts as measures for the
peptide abundance, whether they specialize in absolute or
relative quantification, which mass spectrometric technique is
used (discovery-driven, directed or targeted MS (29)) and
which, if any, isotopic labeling of the peptides is supported.
Most publications proposing a procedure based on peptide
intensities actually provide an elaborate solution for quantify-
ing peptides (allowing one to combine replicates or normalize
the data) but rely on a very simple averaging approach to
combine these scores into estimates for protein concentra-
tions. Notably, none of the methods mentioned above—in-
cluding methods based on spectral counts—take full advan-
tage of the information withheld in shared peptides. Instead,
the degenerate peptides are grouped, reassigned to single
proteins, or even discarded in order to derive a simple solution
to the identification and quantification of proteins. Studies
focusing on the inclusion of shared peptides in the protein
quantification process include Refs. 30–33.

Although shared peptides make the protein quantification
problem more difficult and can introduce errors in the esti-
mates when not handled properly (30), they also hold essen-
tial information. Being able to use this additional knowledge is
of great importance, especially when working with higher
eukaryotes. In such organisms it is difficult to observe enough
unique peptides per protein (peptides matching to a single
protein) for quantification (32). Furthermore, a lot of valuable
information is lost when shared peptides or indistinguishable
proteins are discarded or grouped.

Here we present SCAMPI, a statistical model for protein
quantification. In contrast to most existing approaches,
SCAMPI includes quantitative information from shared pep-
tides. Furthermore, it is generic in the sense that (i) input can
come from various experiments (e.g. SRM or shotgun, iso-
tope-labeled or label-free) and (ii) the choice of method used
to compute the peptide abundances is left to the user. In
addition, an abundance score is computed for each protein
matching to at least one experimentally observed peptide (no
grouping). The implemented model holds several parameters
that are trained on the dataset, allowing it to be adapted to

different types of input/instrumentation/experiments. The un-
derlying assumptions are clearly stated, and a proper statis-
tical framework is used. In comparison to models such as
those described in Refs. 30–32, SCAMPI offers a novel ap-
proach involving a probabilistic framework and generic for-
mulation. In contrast to previous models handling shared
peptides, SCAMPI readily provides a prediction interval for
each protein abundance score and allows one to reassess the
peptide abundances.

The “Results” section of this paper describes the application
of SCAMPI to three datasets and compares its performance to
that of some previously used protein quantification methods,
namely, TOPn (2) and MaxQuant (10), which are briefly dis-
cussed below. The examples shown rely on intensity-based
peptide abundances. Applications to spectral count data might
be possible, but this would require further investigation.

TOPn—This approach quantifies a protein based on its
identified unique peptides exhibiting the most intense mass
spectrometry response (best flyer peptides). TOPn is based
on the assumption that the peptide specific MS response of
the best flyer peptides is approximately constant throughout
the whole proteome. The validity of this assumption was
empirically tested and demonstrated for the first time by Silva
et al. (2) and was applied at a proteome-wide scale by Malm-
ström et al. (34). Additional information contained in shared
peptides is disregarded by TOPn. The approach attempts to
predict the protein concentration by averaging the peptide
concentration of its n most abundant peptides, with n often
set at 3. If this requirement of having three unique peptides
quantified for each protein were applied strictly, TOP3 would be
able to estimate concentrations for only a small fraction of the
proteins in samples from higher eukaryotes (with many similar
protein sequences). In practice, however, proteins are often
quantified even if they have only one or two unique peptides.

MaxQuant—This method was originally designed for relative
protein quantification based on peptide intensities. MaxQuant
allows one to align, normalize, and quantify spectra over multi-
ple peptides and then combines these results to compute rel-
ative protein abundances. The issue of shared peptides is
avoided through the grouping of indistinguishable proteins.

Besides relative comparisons of protein quantities, our
method can also be used for absolute quantification through
the use of carefully selected anchor proteins (e.g. 1, 34–36).
Absolute values are required in order to determine stoichiom-
etries of protein complexes and to facilitate mathematical
modeling, for example, of cell signaling. Absolute protein
quantification is also important for many questions in molec-
ular biology and medical sciences, for example, when one
would like to compare results obtained on different platforms,
with different settings, or across various species.

An additional feature provided by our model is the possi-
bility of using the computed protein abundance scores to
reassess the peptide input scores. Dost et al. (32) also briefly
mention this option as an advantage of using approaches
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including shared peptides. As mentioned above, shared pep-
tides hold additional information and thus allow one to dis-
cover discrepancies in the input data that might be missed
when focusing only on unique peptides.

The model is fully described in the section “Materials and
Methods,” and some of its properties are further highlighted in
the “Discussion.” Its performance with several datasets is
evaluated in the “Results” section and compared with the
results obtained with other protein quantification approaches.

MATERIALS AND METHODS

Our proposed model is designed to estimate protein abundance
scores based on experimental quantitation knowledge gained at the
peptide level via MS-based approaches (e.g. shotgun proteomics or
SRM). The model is applied to one sample (one biological replicate) at
a time. The input data consist of n identified peptide sequences and
their m matching protein sequences in a given sample. Choices such
as how to handle charge states, modifications, or semitryptic pep-
tides are left to the user (see “Workflow and Input Data” in the
supplemental material for details).

For each peptide, the model requires an input score Ui (i � 1, . . ., n)
that is assumed to be proportional to the peptide’s abundance. As
values for Ui, one can, for example, use a (log-transformed) meas-
urement of the total ion current (intensity) of a peptide. The aim of the
model is to infer the abundance Cj for each protein matching to at
least one experimentally quantified peptide (j � 1, . . ., m). As an
underlying data structure, the model uses a bipartite graph, with one
set of nodes representing the peptides and the other one the proteins.
There is an edge between two nodes if and only if the peptide
sequence is part of the protein sequence (inclusion). The graph is
composed of many connected components (also called subgraphs)
that are referred to as ccr (r � 1, . . . , R). Each connected component
holds nr peptides and mr proteins. Fig. 1 exemplifies the notation.

The data on peptide level, Ui, are known from experiments. The
protein abundance Cj is a latent variable. The main goal of the

presented approach is to compute estimates Ĉj. To address this

aim, we designed a model for Ui, from which we will later infer the

estimates Ĉj:

Ui � � � � �
j�Ne�i�

Cj ��i, with

C1, C2, . . ., Cm �
i.i.d.� ��, 1� (Eq. 1)

�1, �2, . . ., �n �
i.i.d.� �0, �2�

where Ne(i) denotes the set of proteins having a common edge with
peptide i (neighbors of i) and �1, . . ., �n are independent of C1, . . .,
Cm. The parameters �, �, �, and � are unknown and will be estimated
from the data. Briefly, we assume that Ui depends linearly on the
abundance of the neighboring proteins. Furthermore, we include an
intercept � that allows us to take into account a possible shift in the
measured values for different platforms and/or organisms. Eventually,
the model will contain an error term to account for measurement and

modeling errors. Note that Cj �
i.i.d.� ��, 1� provides the prior value for

each protein abundance. The posterior distributions, used for statis-
tical inference, are different for each protein. In other words, all
proteins Cj are, a priori, treated equally with the same prior distribu-
tion � (�, 1). The posterior distribution is obtained by updating this
prior assumption using the data about peptides. Prior distributions
with an i.i.d. structure (as here) are widely used in Bayesian statistics
(and frequentist statistics in connection with random effects models).
We further note that the whole dataset is used for the training of the
parameters, even if abundance predictions are required for only a
small subset of the proteins.

Working on a bipartite graph naturally leads to some Markovian-
type assumptions (37):

Peptides belonging to the same connected component are

assumed to be independent given their matching proteins. (Eq. 2)

Hence, dependences among peptides are exclusively due to their
common proteins. In addition, the model assumes that only neigh-
boring proteins matter in the (conditional) distribution for the peptides
(see also Ref. 16).

For better readability, we introduce the following notations.

• U(r) is the vector of all Ui for peptides belonging to the rth
connected component (nr � 1).

• 1(r) � (1, . . ., 1)T (for the connected component r, this is an nr �
1 vector).

• The nr � nr matrix D(r) gives information about the connectivity in
the connected component r:

Dii
�r� � number of proteins sharing an edge with peptide i.

Dik
�r� � number of proteins sharing an edge with peptide i and

peptide k.

Given the peptide scores, an estimate of the abundance of a protein

j in connected component r is Ĉj � E �Cj�U(r)]. With multivariate analysis
theory (see pp. 33–34 in Ref. 38) and using the Markovian assumption
(Equation 2), this can be rewritten as

Ĉj � E �Cj�U�r�� � � � �U�r� 	 �1�r� 	 � � diag�D�r���T �	U�r�

1 �CjU�r�

(Eq. 3)

The variance of the protein abundance estimates given the peptide
scores Ui can be computed as

Var �Cj�U�r�� � 1 	 �CjU�r�
T �	U�r�

	 1 �CjU�r� (Eq. 4)

FIG. 1. Bipartite graph with experimentally identified peptide
(left-hand side) and matching protein sequences. There is an edge
between a peptide and a protein if and only if the peptide sequence
occurs exactly in the protein sequence. Each peptide i (i � 1, . . ., n)
has a score Ui that is assumed to be proportional to its abundance.
The aim of the model is to infer the concentration Cj for each protein
in the graph (j � 1, . . ., m). The graph is composed of many sub-
graphs, or connected components, which are referred to as ccr (r �
1, . . ., R). Each connected component holds nr peptides and mr

proteins.
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Thereby, the covariances between the peptide scores ( �	) and be-
tween the peptide and protein scores (�) are defined as follows (see
“Covariances” in the supplemental material for details):

�	
U�r��

ik

� Cov �Ui
�r�, Uk

�r�� � � �2 Dik
�r� for i 
 k

�2Dii
�r� ��2 for i � k

(Eq. 5)

��
CjU�r��

i

� Cov �Cj, Ui
�r��

� �0 if there is no edge between i and j
� if there is an edge between i and j (Eq. 6)

The covariances between different connected components are all
zero.

Note the choice of a variance of 1 for the distribution for the
protein scores in Equation 1. Using an additional parameter—say,

Cj �
i.i.d.� ��, �2�, would lead to a nonidentifiable model. In fact, any

value set for � can be compensated by reparametrizing � and �.
Hence, the model as presented in Equation 1 with the four parameters
�, �, �, and � is retained. Two approaches for estimating the param-
eters from data are discussed in the section “Parameter Estimation.”

An important advantage of a model-based approach such as
SCAMPI is the possibility of estimating the accuracy of the predicted
scores.

Ĉj � z	Var �Ĉj�U�r�� (Eq. 7)

where z � 1.96 for a 95% prediction interval. In the presence of
anchor proteins, one is interested in using this additional information
to transform the computed scores Ĉj into estimates of the absolute
protein concentration C̃. We do this with a linear transformation
C̃j � â � b̂ Ĉj for all proteins in the sample. The parameters â and b̂
are estimated for the subset of anchor proteins via a linear regression
model, Canchor � log10�concentrationanchor� � a � b Ĉanchor � ,
where  is a mean zero error term. The 95% prediction intervals for C̃j

are then given by C̃j � 1.96b̂	Var �Ĉj�U�r��. Note that the uncertainty
of the parameter estimates is ignored when computing these inter-
vals. Furthermore, note that the anchor proteins should be chosen so
as to cover a broad dynamic range, and one should only trust pre-
dictions lying in this interval. There is no reason to assume that the
fitted linear model is suitable for predicting much less or more abun-
dant proteins.

Peptide Reassessment—Consider the peptide quantities that are
explicitly modeled in Equation 1. Fig. 2 describes a hypothetical
example of a situation in which some peptide abundances appear to
have, at first glance, surprisingly high values. If a protein quantifica-
tion model can handle shared peptides, it should be able to identify
which of these high peptide abundances correspond to real outliers
and which ones are due to the aggregation of several proteins.

If the protein abundances were known, one could compute the
peptide quantities with the model and check whether the predicted
and measured values matched. In most cases the true protein abun-
dances are not known, but the predicted values Ĉ can be used to
compute estimates of the peptide quantities (see Equation 8). Com-
paring these estimates to the original values allows us to identify
outliers in the peptide measurements.

Of course, one should not use a peptide quantity to estimate a
protein abundance and then reuse this estimate to predict this same
peptide’s abundance; this would lead to overfitting and potentially
overly optimistic results. Instead, the expected value for the abun-
dance of peptide i given all other peptide measurements (Uk�i�) is

computed (see “Reassessing Peptide Abundances” in the supple-
mental material for details).

Ûi � E �Ui�Uk�i�� � � � � �
j�Ne�i�

E �Cj�Uk�i�� (Eq. 8)

Hence, to predict the quantity of peptide i, estimates of the protein
abundances (see Equation 3, but adapted to Uk�i�) computed by using
all peptide intensities except the ith one are used. The estimated Ûi

values can then be compared with the measured Ui values. For
connected components holding a single peptide, the formula simpli-
fies to Ûi � � � ��Dii. Note that although there are no further
peptides in the connected component, Ui can still be approximated
thanks to the parameters trained on the whole dataset and the num-
ber of neighboring proteins to peptide i. “Selecting Outliers in the
Measured Peptides” in the supplemental material provides details
about the selection of the outliers.

Outliers may be observed in the peptide data for several reasons,
including measurement errors, incomplete database searches,
missed cleavages, and modified sequences. Being able to automat-
ically compile a list of peptide outliers might help one to gain a better
understanding of the data. The selected outlying peptides can then be
validated individually, for example, by finding reasons for their pecu-
liar abundance scores.

Parameter Estimation—A classical approach for estimating the un-
known parameters (�, �, �, and �) in our model is the use of maximum
likelihood estimation (MLE). From the model in Equation 1, it follows that

U�r� � �nr �m�r�, �	U�r�� with m�r� � �1�r� � �� diag�D�r��

(Eq. 9)

and the density function of U�r� is given by

f�U�r�; �, �, �, �� �

�2� �	U�r��

1⁄2 exp� 	

1
2
�U�r� 	 m�r��T	U�r�


1 �U�r� 	 m�r��� (Eq. 10)

Maximizing the likelihood is equivalent to minimizing the negative
log-likelihood, which is given by

	 ���, �, �, ��U� � 	�
r�1

R

log �f�U�r�; �, �, �, ���

(Eq. 11)

FIG. 2. Hypothetical example to illustrate the idea behind
SCAMPI’s peptide reassessment step. The given peptide scores
could be any abundance measure (e.g. logarithmized peak intensi-
ties). At first glance, there seem to be discrepancies in the measure-
ments for the circled peptides. However, considering the graph struc-
ture, only the peptide with a value of 5.1 cannot be explained and is
thus a “real” outlier. Indeed, the value of 3.2 can be explained by a
contribution from both proteins. An example of a real connected
component is discussed in the supplemental material (“Directed MS
Human Data”).
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where the independence among different connected components
(see Equation 2) has been invoked. Minimizing the function in Equa-
tion 11 with respect to the four parameters yields estimates for �, �,
�, and �. Positivity constraints are used for �, �, and �.

Although MLE is typically optimal from an asymptotic point of view
(e.g. 39), the computations are rather expensive because of the
involved numerical optimization over a four-dimensional space.

The sample size (i.e. the number of peptides in the dataset) is
typically large (relative to the number of parameters in the model), and
thus efficiency issues regarding the estimator are negligible in com-
parison to modeling errors. Thus, as an alternative to the MLE, a
method of moments approach that needs much less computation
time and leads to results similar to those of the MLE for the tested
datasets (see “Results”) is suggested. This second method relies on
least squares estimations on the elements of the covariance matrix �	.
Henceforth, we refer to this parameter estimation approach as indi-
rect least squares estimation (ILSE). In detail, several steps are
needed.

1. From Equation 1, it is known that E [Ui] � � � ��Dii. Fitting a
linear regression model with the peptide intensity U as a response
variable and the number of neighboring proteins diag(D) as a pre-
dictor variable (U � diag(D)) provides the estimates �̂ (intercept)

and ��̂ (slope).
2. Compute the sample covariance matrix estimated for each con-

nected component ccr.

�̂	U�r� � �U�r� 	 m�r��T �U�r� 	 m�r�� with m�r� defined in Equation 9

(Eq. 12)

3. Compare the off-diagonal elements of the sample covariance ma-
trix with the parametric version given in Equation 5. Minimize the sum
of squared errors.

�
r�1

R �
i�k

i,k�ccr

�� 	̂U�r��
ik

	 Dik
�r��2�2

(Eq. 13)

with respect to �2. This allows us to compute the estimated �̂, as well

as �̂ (from the previously computed ��̂ (step 1)).
4. Similarly, working on the diagonal elements of �	 and plugging in

�̂ (step 3) yields the estimate �̂ by minimizing the sum of squared
errors

�
r�1

R �
i�1

nr �� 	̂U�r��
ii

	 �̂2Dii
�r� 	 �2�2

(Eq. 14)

with respect to �2.
The solutions to the minimization problems in Equations 13 and 14

can be written in closed form (see “ILSE Parameter Estimates” in the
supplemental material). Thus, no numerical optimization is required,
and the estimates can be computed quickly even for large datasets.

The two approaches can also be combined by using the estimates
computed via ILSE as starting values for the numerical optimization
performed in the MLE approach.

Note that if a dataset does not hold any shared peptides, the

parameters are nonidentifiable. The estimates Ĉj in Equation 3 and Ûi

in Equation 8 are still well defined, though. Whereas no adjustment is
required for the MLE approach, ILSE is not applicable directly as
described above. As a workaround, �̂ is set to zero in such situations;
�̂ is then the average of all input peptide abundance scores, and �̂

and �̂ are computed as described in Equations 13 and 14.
Relative Quantification—It is often of interest to compare the abun-

dance of a protein under two conditions. For such a comparison,

SCAMPI can be used to compute the protein abundance scores on
each sample separately. A quantile-quantile plot of the protein
abundance scores can be used to assess whether the two score
distributions are comparable (e.g. comparable median and quartiles
of the two conditions). The score differences can then be assessed
to find proteins undergoing particularly high changes in abundance:
Dj � Ĉj

condition 2
Ĉj
condition 1. Ideally, one would have several biolog-

ical replicates in each condition to make sure one could distinguish
the effect due to the condition from the variability within the
condition.

Typical Workflow—The model has been implemented in R (40) (see
“Implementation”) and is available in the R package protiq (41) on the
Comprehensive R Archive Network (CRAN).

The following steps are required in order to run SCAMPI.
1. Prepare the input data (three input tables; see “Workflow and

Input Data” in the supplemental material for details):

a. Data frame of quantified peptides: each row corresponds to
one peptide and includes the sequence, as well as a score
related to the peptide’s abundance (U). Note that each pep-
tide should occur only once in this table. It is up to the user to
decide how to aggregate the scores in the case of multiple
features matching the same peptide or, for example, whether
sequences with different charge states should be combined in
a single peptide or treated as separate instances. The user
also has to decide how to handle modifications and semitryp-
tic peptides at this stage.

b. Data frame of matching proteins: each row corresponds to
one protein and includes the identifier or sequence of the
protein. Note that this table should not contain the same
protein sequence several times. This requires particular atten-
tion when a sequence is described by several accession
numbers.

c. Data frame providing information as to which peptide matches
which protein. Each row of this table defines one edge of the
bipartite graph.

2. Estimate the model parameters (with either the MLE or the ILSE
approach).

3. Compute the protein abundance scores Ĉ (Equation 3 with
estimated parameters from step 2).

4. Optionally, compute peptide intensities given the estimates Ĉ
(Equation 8 with estimated parameters from step 2) and compare Û to
the input values U. Identify outliers.

5. Optionally, reevaluate steps 3 and 4 after having removed the
outliers and updated the bipartite graph.

The workflow is depicted in the supplemental material (“Workflow
and Input Data”).

Note that the model does not provide methods for combining
measurements from, for example, different technical replicates or
charge states. The user is expected to perform these adjustments
prior to applying the protein quantification model, for example, by
running one of the peptide quantification tools mentioned in the
Introduction. As examples, descriptions of how the datasets pre-
sented in the “Results” section have been prepared are provided in
the supplemental material (“Input Data Preparation for SCAMPI”).

Overview of the Assumptions—It is important to keep the modeling
assumptions in mind.

1. Peptide abundances are modeled as random quantities, allowing
one to account for measurement uncertainty and modeling errors.

2. There is a Markovian-type assumption in Equation 2 (see also
Ref. 16):

a. Connected components are independent.
b. Peptides are independent given the matching proteins. In
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other words, dependences among peptides are exclusively
due to their common proteins.

c. Only neighboring proteins influence the conditional distribu-
tion of the peptides.

3. The error terms �i are i.i.d. and follow a normal distribution.
4. Statistical prior distribution for the protein abundances Cj: they

are i.i.d. and follow a normal distribution.
5. �1, . . . , �n are independent of C1, . . . , Cm.
In practice, only assumption 3 is easily verifiable, for example, by

using a normal plot for residuals. However, Markovian-type assump-
tions for graphs are often used in similar problems and allow one to
account for some dependence (among and between peptides and
proteins) while rendering the problem computable. Regarding the
normality assumption for the protein abundances, E �Cj�U� is linear for
Ui’s in the Gaussian case. In the non-Gaussian case, E �Cj�U� might be
nonlinear, but the formula from the Gaussian case still leads to the
best linear approximation for the estimates of Ĉj.

RESULTS

The proposed model has been tested on several datasets
and compared with the previously used protein quantification
approaches TOPn (2) and MaxQuant (10). The presented da-
tasets include (i) mixtures with added AQUA peptides (1) used
to experimentally quantify a subset of the proteins (see “SRM
Experiment on Leptospira interrogans” (36) and “Directed MS
Human Data” (42)) and (ii) a human SILAC-labeled proteomics
experiment without a known ground truth (see “SILAC-labeled
Human Shotgun Proteomics Data”). The authors of each da-
taset provided the input data required for running SCAMPI.
The data, prepared to be used for analysis with SCAMPI, are
provided in the supplemental material.

The protein concentration scores computed by SCAMPI
were compared with the ground truth (if available) and to the
results obtained with quantification tools used by the authors
of the data. As performance measures for the models, the
Pearson correlation coefficient R and Spearman’s rank cor-
relation coefficient � are reported. A table summarizing the

size of each dataset and the computation times is provided in
the supplemental material (“Computation Times”).

The provided examples show that SCAMPI performed sim-
ilarly to other, previously proposed quantification tools. In
addition, they highlight some advantages of SCAMPI relative
to other tools.

SRM Experiment on Leptospira interrogans—In a recent
paper about label-free absolute protein abundance estimation
using SRM, Ludwig et al. published experimental data from
cellular protein lysates of Leptospira interrogans proteins. The
measurements were based on SRM and the best flyer meth-
odology. Experimental details are provided in Ref. 36, and the
data are published in the supplemental material for that arti-
cle. The sample contained 39 proteins, of which 16 were used
as anchor proteins, and their concentration was accurately
determined with AQUA peptides (1). The performance of
SCAMPI is compared with TOP3 on the 16 anchor proteins for
the control mixture. The complete dataset held 151 peptides
uniquely matching one of the 39 proteins, and the bipartite
graph held 39 connected components. Thus, the dataset did
not contain any shared peptides. Although the new model is
primarily designed to solve more complicated problems with
(many) shared peptides, this first test dataset allowed us to
give proof of principle that the presented model also works in
simpler situations. Details about the preparation of the input
data for SCAMPI are provided in the supplemental material
(“Input Data Preparation for SCAMPI”). The estimated param-
eter values are also provided (“Parameter Estimates”).

SCAMPI’s results were compared with the output from the
TOP3 (2) approach. A TOP3 abundance score was computed
for each protein with at least one matching unique peptide.
The estimates of the protein concentrations are shown in Fig.
3. Panel A shows the results obtained with SCAMPI when
using the ILSE parameter estimates. The error bars corre-

FIG. 3. L. interrogans dataset—protein abundance estimates for the 16 anchor proteins. A, results for SCAMPI (using ILSE parameter
estimates). The error bars correspond to the 95% prediction intervals. B, outcome for the TOP3 approach. The correlation coefficients in the two
panels are very similar. Performance measures: R and � indicate the Pearson and Spearman’s rank correlation coefficients, respectively. Note that
the scale on the x-axis is different in the two panels. The range of the computed scores depends on the underlying model. We cannot compare
the scores from SCAMPI and from TOP3 directly, but we can look at correlations with a reference score, as presented in this figure.
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spond to the 95% prediction intervals for the computed
protein scores. Panel B shows the outcome for the TOP3
approach. The correlation coefficients obtained with the dif-
ferent approaches are very similar.

The results obtained with SCAMPI when using the MLE
parameter estimates were very similar to the ones presented
above. For the sake of completeness, the resulting plots are
provided in the supplemental material, together with some
Bland–Altman (43) and diagnostic plots.

Directed MS Human Data—Beck et al. have provided a
quantitative analysis for the human tissue culture cell line
U2OS based on directed MS experiments. Some AQUA pep-
tides (1) were spiked into the mixture to allow the absolute
quantification of 53 proteins over a wide range of concentra-
tions. See Ref. 42 for experimental details.

Beck et al. provided the Progenesis (21) peptide quantifi-
cation scores for the control mixture. Details about the prep-
aration of the input data for SCAMPI are provided in the
supplemental material (“Input Data Preparation for SCAMPI”).
The dataset held quantification information for 49,190 pep-
tides, about 6% of which were shared by at least two different
protein sequences. The graph included data for 6257 proteins
and 54,720 edges and could be split into 4984 connected
components. The estimated parameter values for SCAMPI are
reported in the supplemental material (“Parameter Esti-
mates”). The performance was assessed on the 42 anchor
proteins for which experimental data were available at the
peptide level (see “Input Data Preparation for SCAMPI” in the
supplemental material for details).

The performance of SCAMPI is compared with that of the
TOP3 approach (2) in Fig. 4. A TOP3 abundance score was
computed for each protein with at least one matching unique
peptide. The error bars in panel A correspond to the 95%
prediction intervals for the computed protein scores. The
reported correlation scores were similar for the different ap-

proaches. TOP3 slightly outperformed SCAMPI in terms of
both � and R. However, note that although the dataset held
about 7 peptides per protein on average, a strict TOP3 ap-
proach (quantifying only proteins with at least three quantified
matching unique peptides) would not have been able to pre-
dict the abundance of each protein in the dataset. Thus, some
of the reported protein abundances computed by TOP3 relied
on the values of one or two measured peptides only. In
contrast, SCAMPI uses additional knowledge from shared
peptides (if available) and from the whole dataset (through the
estimated parameters) to provide an abundance score for
each protein. Moreover, SCAMPI, unlike TOP3, also provides
the prediction error for each protein.

The results obtained with SCAMPI when using the MLE
parameter estimates were very similar to the ones presented
above. For the sake of completeness, the resulting plots are
provided in the supplemental material, together with some
Bland–Altman (43) and diagnostic plots.

Finally, the predicted concentrations for all proteins in the
dataset were compared with the results published in Ref. 42.
The latter predictions were computed with SSID/MW, a
method based on spectral counting (see the supplemental
material for Ref. 42 for more information). Comparing the
SSID/MW results to the protein concentrations predicted by
SCAMPI yielded a Pearson correlation coefficient of 0.81 and
a Spearman’s rank correlation coefficient of 0.74. The com-
parison was based on 1741 proteins that were quantified by
both models and which had values in the range covered by
the anchor proteins.

SILAC-labeled Human Shotgun Proteomics Data—This da-
taset came from a human acute myeloid leukemia cell line
(KG1a cells). Cells were grown in SILAC media containing
either light or heavy isotope. The cells labeled with heavy
isotope were treated with proteasome inhibitor. The untreated
cells (control) were grown in the presence of the light isotope.

FIG. 4. Directed MS human dataset—protein abundance estimates for the 42 anchor proteins. SCAMPI (ILSE parameter estimate) in
A is compared with the TOP3 approach in B. The performance scores are similar in the two subfigures. The error bars in A correspond to the
95% prediction intervals. Performance measures: R and � indicate the Pearson and Spearman’s rank correlation coefficients, respectively.
Note that the scale on the x-axis is different in the two panels. The range of the computed scores depends on the underlying model. We cannot
compare the scores from SCAMPI and from TOP3 directly, but we can look at correlations with a reference score, as presented in this figure.
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Details about the experimental procedure are provided in the
supplemental material (“Materials and Methods for the SILAC
Dataset”).

The MaxQuant (10) peptide quantification results for the
cytoplasmic fraction were used as input for SCAMPI. The
measurements for the control and treated conditions were
analyzed separately. Details about the preparation of the input
data for SCAMPI are provided in the supplemental material
(“Input Data Preparation for SCAMPI”).

The underlying graph used for both samples was slightly
different, because there were a few peptides (fewer than 20) that
could be quantified in only one of the two samples. For the
control mixture, the graph held 30,323 peptides, 3892 proteins,
and 38,019 edges organized in 2659 connected components. In
the treated case, the graph held 30,326 peptides, 3890 proteins,
and 38,025 edges organized in 2658 connected components. In
both conditions, about 17% of the peptides were shared (i.e.
matched to more than one protein sequence). The estimated
parameter values for SCAMPI are reported in the supplemental
material (“Parameter Estimates”).

Although there was no known ground truth for this dataset, it
is an interesting example (given the high percentage of shared
peptides) of how SCAMPI can be used to analyze relative pro-
tein abundance. Furthermore, it emphasizes SCAMPI’s flexibil-
ity regarding the type of peptide-level input it can handle (in this
case, peak intensities computed by MaxQuant). This dataset
was used primarily to show how SCAMPI can be used to
identify differentially abundant proteins and to explore a dataset
by reassessing peptide scores. In addition, it illustrates how
running SCAMPI recursively can improve the predictions. The
resulting parameter estimates from ILSE and MLE were again
very similar. The ILSE results are discussed here. The plots for
the MLE estimations are provided in the supplemental material.

Fig. 5 shows the obtained protein abundance score distri-
butions for both conditions. The quantile-quantile plot in Fig.
5C confirms that direct comparisons between computed
scores from the two conditions are reasonable. Hence, in
order to investigate whether the abundance of some proteins
changed between the two conditions, the score difference

Dj � Ĉj
treated 	 Ĉj

control was analyzed. For this comparison,
only proteins that could be quantified in both conditions were
used (i.e. not being measured was not treated as being absent
from the sample). The empirical distribution of the abundance
changes Dj is shown in Fig. 6. Proteins with particularly high
score differences are highlighted. An interquartile-based dis-
crimination rule was used for this selection: proteins are high-
lighted if Dj� �Q1 	 k � iqr, Q3 � k � iqr�, where Q1 and Q3

correspond to the first and third quartile in the distribution of
abundance differences, respectively, and iqr � Q3 	 Q1. A
conservative choice of k � 4 was used. This led to the selec-
tion of 59 differentially expressed proteins. These findings
included, for example, some proteins in the heat shock pro-
tein family that were up-regulated upon proteasome inhibition
in KG1a cells. This has been previously described in other
cellular models (44–47). These changes likely reflect a stress
response in agreement with the recognized role of the chap-
erone proteins in the protection of cells against therapeutic
agents. The fact that these proteins were detected with
SCAMPI serves as proof of principle that the output of the
presented model can be used to address biologically relevant
questions.

Note that one would typically require several biological
replicates of each condition to test for significantly differen-
tially abundant proteins. The scheme used above is a simplis-
tic approach to illustrate what kinds of problems can be
tackled using SCAMPI. If one has several biological repli-
cates, SCAMPI can be run on each of them. More general
testing approaches (e.g. a standard two-sample test or ver-
sions such as the moderated t test (e.g. 48)) should then be
used to assess differential expression.

A direct comparison of SCAMPI’s outcome with the results
from MaxQuant (10) (normalized heavy-to-light ratios) is not
straightforward. MaxQuant groups proteins and gives abun-
dance scores to these groups. It is not clear how such a group
abundance should be compared with the abundance scores
for single proteins obtained in SCAMPI. However, there was
some overlap between the outcomes of SCAMPI and
MaxQuant: 15 of the 59 differentially expressed proteins (ac-

FIG. 5. Human SILAC dataset—pro-
tein abundance score distributions
obtained with SCAMPI (ILSE parame-
ter estimates) are shown for control
(A) and treatment (B). The quantile-
quantile plot in C compares the two dis-
tributions. The line is passing through
the origin and has a 45° angle (x � y).
The abundance score distributions for
control and treatment are directly com-
parable, as they are very similar (e.g.
comparable median and quartiles).
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cording to SCAMPI) also figured in one of the top-scoring
groups identified by MaxQuant (see “SCAMPI Results Com-
pared with MaxQuant Output” in the supplemental material).

Another aspect of SCAMPI, namely, the possibility of reas-
sessing peptide abundance scores, was also demonstrated
with the control condition of this last dataset. Based on the
estimated parameter values and the graph structure, SCAMPI
can be used to estimate peptide abundance scores (Ûi). These
values can then be compared with the input data (Ui). The
diagnostic plots (e.g. 49, 50) are shown in Fig. 7. Panels A
(residual plot) and B (normal quantile-quantile plot) show no
major violation of the assumptions regarding the noise
term � for the bulk of the data and can be used to select
outliers (see “Selecting Outliers in the Measured Peptides” in
the supplemental material for details). The 234 selected out-
liers are highlighted in panel B. This assessment allows us to
gain further insight into the data on the peptide level by
allowing us to check which peptides tend to have particularly
large negative or positive residuals. In the present data, it can
be observed that a large percentage of the peptides with a
large negative residual (overestimated abundance) contained
at least one missed cleavage. The assessment can also be
used to prune the graph and rerun SCAMPI on this modified
dataset to try to improve the protein abundance estimates.
The output of such an iterative approach is provided in the
supplemental material.

Finally, a major aim of SCAMPI is to accurately model highly
abundant shared peptides. Fig. 8 shows that this aim was
achieved: SCAMPI was indeed able to explain highly abun-
dant shared peptides extremely well and thus affirm that these
measurements were correct and should not have been dis-
carded as outliers.

DISCUSSION

SCAMPI is a rigorous statistical approach for protein quan-
tification on the basis of LC-MS/MS-based experiments. Our
model explicitly accounts for dependences among and be-
tween peptides and proteins using a Markovian-type as-
sumption for graphs. In contrast to most other protein quan-
tification approaches, SCAMPI’s modeling framework offers
the following:

(i) propagation of the uncertainty from the peptide identifi-
cation to the protein level, leading to prediction intervals
for proteins,

(ii) ability to reassess the peptide measurements based on
the predicted protein concentration scores,

(iii) ability to handle different types of peptide abundance
input scores, and

(iv) making use of all peptides in the input data, including
the shared peptides.

Model Assumptions—Regarding the assumption of inde-
pendent and identically distributed error terms, the residual
plots for the analyzed datasets did not show any major vio-
lations. The other model assumptions cannot easily be
checked. However, Markovian-type assumptions for graphs
are often used in similar problems and allow one to account
for at least some dependence (among and between peptides
and proteins) while rendering the problem computationally
tractable. Regarding the normality assumption for the protein
abundances, if this is not fulfilled, the result provided by
Equation 3 is still the best linear approximation for the esti-
mate of Ĉj.

Using Log-transformed Input Data—For all examples pre-
sented here, the input peptide intensities were (base-10) log
transformed. Applying a log transformation makes the data
more symmetric and Gaussian. When working with peptide
abundance scores, it typically makes sense to apply a log
transformation before using them to infer protein abundances.
After the transformation, the features are spread more evenly
across the intensity range and the variability becomes con-
stant at all intensity levels.

Uncertainty of Computed Scores—An important advantage
of a model-based approach such as SCAMPI is the possibility
of estimating the accuracy of the predicted scores. SCAMPI
readily provides the variance of the abundance scores, which
allows a prediction interval to be computed for each protein.

Parameter Estimation—The four model parameters (�, �, �,
and �) are estimated based on the whole dataset. Thus, even
though protein scores (and their variances) are computed
“locally” on the corresponding connected component, knowl-
edge gained about the whole dataset contributes to these
parameter estimates. In particular, study of a protein match-

FIG. 6. Human SILAC dataset—dis-
tribution of the difference between the
protein abundance estimates in the
treated and in the control case
(Dj � Ĉj

treated � Ĉj
control). A, distribution of

the estimated abundance changes. B,
scatter plot of the protein identification
number versus the estimated abundance
difference. The two panels show essen-
tially the same information. Particularly
high score differences are highlighted
(gray ticks in A and gray asterisks in B).
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ing a single quantified peptide will still benefit from the total
knowledge about the dataset thanks to the global model
parameters.

MLE versus ILSE Parameter Estimates—The results show
that the parameter estimates obtained with the MLE and the
ILSE approach (see “Parameter Estimation”) are often similar.
Generally, when one compares the estimated protein scores
with the ILSE and MLE estimated parameter sets, the differ-
ences become almost imperceptible. However, the computa-
tional bottleneck that occurs when analyzing a dataset is not
a result of the choice of the parameter estimation method. The
computationally expensive part is the preprocessing of the
connected components, peptide and protein data frames,
which is necessary for both parameter estimation ap-
proaches. Nevertheless, the ILSE approach seems to be more
robust. MLE uses the R function dmvnorm, which works with
the inverse of the covariance matrices. Depending on the
choice of starting parameters, the optimization procedure can

reach a state in which some of the connected components’
covariance matrices become singular. A workaround is to
restart the optimization procedure several times with different
(random) starting values until success is achieved. This
proved to be a feasible solution for all datasets presented in
this manuscript; however, it can increase the computation
time substantially.

Performance Comparison to the TOP3 Approach—When
comparing a TOP3 approach to SCAMPI, one should keep in
mind that the two models actually operate on different input
data. The question arises as to what would happen if SCAMPI
were run on the exact same input data as TOP3. This issue is
discussed in the supplemental material (“SCAMPI on TOP3
Input”). Briefly, if one is willing to discard all data except those
required for a strict TOP3, and if no model is required in order
for one to be able to reassess peptide scores, then running
TOP3 is the easier and faster way to get protein abundance
estimates. If not, SCAMPI is the better approach, because it
makes use of all information in the dataset (including the
shared peptides).

Absolute Quantification—For datasets with anchor proteins
(e.g. “SRM Experiment on Leptospira interrogans” (36) and
“Directed MS Human Data” (42)), the linear fit between the
computed abundance scores and the experimentally deter-
mined concentrations for these sequences can be used to
predict the absolute concentrations of other proteins in the
sample. The provided prediction intervals can be adapted
accordingly.

Relative Quantification—Samples under different condi-
tions (e.g. control and treatment) can also be compared
with SCAMPI. As a general procedure, we suggest running
SCAMPI on each replicate/condition separately. Typically,
several (biological) replicates of each condition are required in
order to test for differentially abundant proteins.

Running SCAMPI Iteratively—SCAMPI allows us to identify
outliers in the input peptide abundance scores. Removing
these outliers from the dataset and rerunning SCAMPI can
lead to improved protein abundance estimates. An automatic

FIG. 7. Human SILAC dataset—pep-
tide abundance score reassessment
for the control case in the SILAC-la-
beled human shotgun proteomics
data. Triangles indicate information from
shared peptides, and squares that from
unique sequences. The residual plot in A
(estimated scores (Ûi) versus residuals (
Ri � Ui 	 Ûi)) does not show any major
violations of the modeling assumptions.
The normal quantile-quantile plot in B
shows that the normality assumption on
the errors is correct for the bulk of the
data. Points marked by gray asterisks
show the peptides that were selected as
outliers.

FIG. 8. Human SILAC dataset—SCAMPI accurately modeled
highly abundant shared peptides. In this example from the SILAC-
labeled human shotgun proteomics data, the larger circle represents
the 304 (1% of all peptides) sequences with the greatest input abun-
dance scores for the control condition. 60% of these peptides were
unique, and 40% were shared. The smaller circle represents the
subpopulation of these peptides that also belonged to the 1% of
peptides with the highest residuals. Among this subpopulation (73
sequences), 82% were unique peptides, and only 18% were shared.
This shows that SCAMPI can explain highly abundant shared pep-
tides extremely well and thus affirm that these measurements are
correct and should not be regarded as outliers.
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iterative outlier removal, as is available in the protiq R pack-
age, is suitable for a first analysis. It is, however, important to
go back to the list of rejected peptides and try to understand
why outliers occurred. This can lead to further insight about
the dataset, for example, by hinting at incomplete databases
or by indicating potentially modified peptides that can be
further investigated in order to possibly gain new biological
information.

General Conclusion—In summary, SCAMPI is well suited to
address the protein quantification problem on the basis of
various types of LC-MS/MS-based experiments to compute
absolute abundances, as well as for relative quantification. In
contrast to many other approaches, it provides an estimate of
the abundance for each single protein having some experi-
mental peptide evidence. Proteins are neither discarded nor
grouped, but the user could perform such selection/grouping
operations prior to running SCAMPI. Prediction intervals for
the scores allow one to get an idea about the confidence of
the computed abundances. Finally, a method that allows for a
feedback loop to reassess the quantification on the peptide
level has the potential to provide new insight in LC-MS/MS
datasets.

SCAMPI is implemented in the R package protiq (41), which
is available on the Comprehensive R Archive Network (CRAN).
It can be used to predict protein abundances and detect true
outliers in peptide measurements and can potentially be used
for designing future experiments.

Implementation—The model has been implemented in R
(40), and the results were computed on the following system:

• R version 2.15.3 (2013-03-01), x86_64-unknown-linux-gnu
• Base packages: base, datasets, graphics, grDevices,

methods, stats, utils
• Other packages: fortunes 1.5-0, plotrix 3.4-6, protiq 1.1,

sfsmisc 1.0-23
• Loaded via a namespace (and not attached): BiocGener-

ics 0.2.0, graph 1.34.0, mvtnorm 0.9-9994, RBGL 1.32.1,
tools 2.15.3

The implemented functions are available in the protiq pack-
age on the CRAN.
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