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1 PROTEIN AND MRNA EXPRESSION DATA 
1.1 Characteristics of mRNA expression data 

 
Figure S1A. Accuracy (validity) of intensity based estimates of mRNA concentrations 

mRNA concentrations based on signal intensity measured in single-channel microarrays (as we 
use in our analysis) correlate well with measurements from other methods that are assumed to be 
highly accurate: RNA-seq (A) and single-molecule sequencing (B)(Helicos)(Lipson et al, 2009; 
Nagalakshmi et al, 2008). Shown here is, for yeast, the RNA-seq (A) and Helicos (B) data 
measured for yeast (Lipson et al, 2009; Nagalakshmi et al, 2008) compared to affymetrix data 
(Holstege et al, 1998).  

 
Figure S1B. Reproducibility (reliability) of mRNA concentration measurements 

mRNA concentrations were measured in seven replicates from one biological sample 
(GSE20492, GEO database). The correlation between (log) intensities of replicate measurements 
lies between 0.96 and 0.99. An example is shown in the figure (GSM514930 vs GSM514931), with 
R2=0.98 and R=0.99 (N=24,000). 
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Figure S2. Frequency distribution of mRNA concentrations 
To determine the gene expression profile of Daoy medulloblastoma cells, we used Nimblegen 

arrays. These arrays employ three probes per gene. Averaging over probe intensity accounts for 
probe-specific biases and improves accuracy of concentration estimates per gene. Moreover, 
Nimblegen uses TM (temperature of melting) balance to minimize differences between experiments 
and probes and to equalize hybridization conditions for each mRNA species in the sample. Thanks 
to these characteristics, we expect a reliable concentration estimates and consistent frequency 
distributions. 

The mRNA data for 1025 proteins (‘all’, blue) showed an additional, smaller peak on the left 
attributed to technical artifacts. Thus for the high-confidence dataset (red, N=512), we removed 
genes with log(mRNA)<2 and proteins predicted to have a transmembrane helix (red). All data are 
supplied in the Supplementary data file (worksheet Data).  au – arbitrary units 
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1.2 Characteristics of protein identification and spectral counting 
Figure S3. Reproducibility 

Spectral counting based methods of protein concentration measurements are highly 
reproducible: only 12 to 16% of the variation was accountable to noise in technical or biological 
replicates. Spectral counts are measured on a per-protein basis and vary by only 1-16% between 
injections (not shown). Shown here an example of two injections a, b correlating with two other 
injections c, d, with R2=0.99 (linear) and R2=0.84 (logarithmic), respectively (n>900).   

 
Figure S4. Single-peptide identifications 

About one third of the 1,025 proteins in the Daoy dataset are identified by a single type of 
peptide (unique peptides = 1). However, in most of these cases, the peptide is observed multiple 
times (spectral count > 1), providing robust identification and quantitation of the corresponding 
protein. In <7% (80) of the cases, the spectral count equals 1, and the protein’s identification relies 
on only a single hit. The large majority of proteins are identified and quantified by many peptides 
(72%, spectral count ≥ 5), demonstrating that the measurements of protein concentrations are 
based on robust data with multiple identifications per protein. 
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Protein quantitation 
We developed a mass spectrometry based method, called APEX, to measure absolute protein 

concentrations in complex protein samples as well as to assess the statistical significance of 
differential protein expression (Lu et al, 2007; Vogel and Marcotte, 2008). While originally 
established in yeast, the following figures demonstrate APEX’s accuracy in human cell systems. 
Two independent comparisons of the performance of different proteomics methods also supported 
the utility of APEX-based quantitation (Kuntumalla et al, 2009; von der Haar, 2008).  

 
Figure S5. APEX can explain 84% of the variation in concentrations of a standardized 
mixture of 48 human proteins (UPS2, Sigma) 

We tested a standard mixture of 48 human proteins in six different concentrations, spanning five 
orders of magnitude in concentration (Sigma, UPS2). The data was analyzed with our standard 
pipeline, using APEX and a decoy database of 6x48 shuffled protein sequences. We identified 43 of 
the 48 human proteins, detecting protein concentrations as low as 0.01 nM. Observed and 
expected concentrations correlated well (R2=0.84, log scale). The log-average error, measured as 
fold-change between observed and expected concentration, is centered around 1.1 (10% error) with 
a standard deviation of 5.9-fold. APEX tends to slightly over-estimate protein concentrations in low 
concentrations.  
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Table S1. APEX can explain 65% of the concentration variation of proteins spiked into 
human cell lysate background 

To establish that concentration measurements are independent of the presence of a multitude 
of other molecules, we tested APEX for proteins spiked into a complex human cell lysate. We 
spiked nine non-human proteins into human K562 cellular lysate in three different mixtures, and 
retrieved concentration estimates for 26 of the 27 data points. The two measurements for GFP 
(Green Fluorescent Protein) may represent outliers, with >ten-fold error. Overall, we observe decent 
correlation of observed vs. expected concentrations (R2=0.65 on log-scale; R2=0.72 without GFP). 
The log-average fold-change error is 1.1±3.9 fold (1.1±2.8 fold without GFP), i.e., on average, the 
fold-error of logarithmic estimates is ~10%. Exp – expected, known concentration; Obs – observed 
concentration 
 

  Mix 1  Mix 2  Mix 3  

Protein name Organism Exp Obs Exp Obs Exp Obs 

Ovalbumin Chicken 0.4 2.0 43.0 29.5 4.3 20.6 

Green fluorescent 

protein 

Aequorea 

victoria 0.3 0.02 0.3 n/a 0.3 0.01 

Streptavidin 

Streptomyces 

avidinii 3.6 4.6 3.6 3.9 3.6 4.8 

Ovotransferrin Chicken 99.6 55.5 99.6 34.0 99.6 68.0 

Lactalbumin Cow 4.4 15.1 174.8 91.2 8.7 21.5 

Lysozyme Chicken 12.2 9.7 0.6 0.9 60.8 47.9 

Lactoperoxidase Cow 4.2 3.6 4.2 2.7 4.2 3.3 

β-casein Cow 45.4 19.1 4.5 5.3 181.6 36.8 

β-lactoglobulin Cow 183.0 105.8 9.1 23.9 0.5 12.4 

 
 
Accounting for mass spectrometry biases 

Electrospray ionization during mass spectrometry experiments is biased in terms of the amino 
acid composition of the observed peptides. During the APEX calculations we correct for these 
biases (Lu et al, 2007). To confirm that the amino acid biases observed in our analysis (see below, 
Table 1 main text) are not due to the underlying mass spectrometry method, we conducted several 
tests.  

A protein with long sequence produces more peptides than a short protein, increasing the 
probability of observing the spectra mapping to this protein. Thus, a pure spectral counting based 
protein quantitation overestimates the abundance of long proteins. Our quantitation method, APEX 
(Lu et al, 2007; Vogel et al, 2008), uses spectral counting, but adjusts for the number of peptides 
expected per protein using a correction factor called Oi. Further, hydrophobic peptides may have 
different propensities to ionize than peptides with charged amino acids, changing the spectral 
counts for proteins with hydrophobic peptides. APEX also corrects for the ability of peptides to 
ionize. The correction factor, Oi, consists of an estimate of the number of spectral counts based on 
protein length and based on peptide sequence properties.  
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Figure S6. The Oi value is independent of the protein-per-mRNA ratio given sequence length 

The proteomics based correlation factor Oi accounts for both length and amino acid biases of 
the contributing peptides.  If incorrect estimates of peptide ionization propensities were responsible 
for the amino acid biases observed in the main text (Table 1) one would suspect Oi to correlate with 
the protein-per-mRNA ratio (when correcting for the influence of sequence length).  This is not the 
case (this figure). Thus, biases in the protein sampling introduced by mass spectrometry are 
accounted for in our quantitation method and do not cause the trends reported in Table 1. 

Dataset: high-confidence data set (HCD) extracted measurements of protein concentrations in 
the Daoy medulloblastoma cell line (see methods, main text).  
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Figure S7. Differences in observed spectral counts are not only due to differences in 
sequence length 

Long protein sequences produce more tryptic peptides (higher peptide count) than short 
sequences. Thus for proteins of equal concentrations we would expect a positive correlation 
between spectral or peptide counts and sequence length. APEX corrects for sequence length, and 
we observe a negative correlation between APEX-based protein concentrations and sequence 
length (see below).  To test whether this negative correlation may be due to an over-compensation 
for length biases during the APEX process, we plot spectral counts vs. sequence length.  Instead of 
a positive correlation, we observe no (if not a slightly negative) correlation between spectral counts 
and sequence length, implying that the positive correlation is counteracted by another opposing 
process, similar to what we observe for APEX-based concentrations and length. In other words, the 
mechanisms that result in short proteins being more highly abundant than long proteins are 
stronger than those that produce fewer peptide counts for short than for long proteins.  

Dataset: high-confidence data set (HCD) extracted measurements of protein concentrations in 
the Daoy medulloblastoma cell line (see methods, main text).  

 

 
 

Figure S8. Frequency distribution of protein concentrations 
Frequency distribution of protein concentrations measured for 1025 (‘All’) and 511 (‘High-
confidence dataset’, HCD) proteins in the Daoy medulloblastoma cell line.  Extraction of the HCD 
dataset is described in the methods, main text. All data are supplied in the Supplementary data file 
(worksheet Data).  
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2 SEQUENCE CHARACTERISTICS AND CORRELATION ANALYSIS 
 

Table S2. Data and sources 
The table lists all feature groups, their sources and a description of data preparation. All 

sequences stem from Ensembl v. 44.36f. The Supplementary data file reports correlations of all 
measures with protein and mRNA concentrations; Table 1 (main text) reports significant 
correlations. To reduce redundancy between variables, we calculated the Spearman’s rank 
correlation for each pair of variables (Supplementary data file). We eliminated one variable from 
pairs if |Rs|≥0.9 (high inter-correlation). We kept variables whose correlation with (log2) Protein 
abundance was higher than the correlation with another variable. The Supplementary data file 
reports the inter-correlations that occurred between some of the measures.  
 
Feature group / subgroup Comment 
Sequence lengths R(seqinR) (Charif et al, 2005): we measure 3’, 5’, coding strand length, and 

the total length which is the sum of the former three lengths. We also report 
relative lengths (normalized by total length).  

Nucleotide, dinucleotide, 
amino acid composition 

R(seqinR) (Charif et al, 2005): residue frequencies are given as normalized 
by the total number of residues in the respective sequence part.  As 
presented in (Karlin and Cardon, 1994), we searched for over/under-
represented dinuclotides. We also searched for over-represented n-mers in 
the UTRs (Yoon et al, 2008), but the dataset was too small for meaningful 
statistical tests. 

Amino acid properties Relative frequencies of groups of amino acids and their physico-chemical 
properties calculated based on information from AAindex 
(http://www.genome.jp/aaindex/). Other calculations were done with 
R(seqinR) (Charif et al, 2005).  

Codon Bias Index Parsed using CodonW (CodonW): the higher the Codon Bias Index, the 
more biased is the codon usage in the sequence. Highly expressed proteins 
were taken from the protein expression data.  

Codon usage Perl scripts were used to assess codon usage. Number of tRNA genes per 
codon was obtained from (Lander et al, 2001).  

G+C content  R(seqinR) (Charif et al, 2005): the higher the value, the higher the combined 
frequency of Guanine and Cytosine.  Global G+C content = GC; G+C in the 
first codon position = GC1; G+C in the second codon position = GC2; and 
G+C in the third codon position = GC3. All normalized by length.  

Upstream AUG; upstream 
Open Reading Frames in 
the 5’ UTR 

We used Perl scripts to parse the 5’UTR nucleotide sequence for a) AUG; b) 
AUG together with surrounding translation initiation site and in-frame STOP 
codon (uORF). The five to ten nucleotides surrounding the translation 
initiation site are thought to influence initiation efficiency (Kozak, 1987).  

Degree of intrinsic 
unstructuredness of the 
protein 

DisoPred (Ward et al, 2004): the larger the value for a given protein, the 
more intrinsically unstructured regions in its sequence (and the less stable it 
may be).  

Secondary structures in 5’ 
or 3’ UTR 

Using the Vienna RNA package (Gruber et al, 2008), we predicted the 
folding energy of the sequences. The smaller the energy, the more stable 
the secondary structures.  
Using the SEGFOLD/SIGSTB software (Le et al, 1990a; Le et al, 1990b), we 
predicted several measures of secondary structures in the 5’ and 3’ UTRs of 
the sequences locally (best score) and across the entire sequence part 
(mean), with respect to unusual folding regions (UFRs), significance score 
(Sigscr), thermodynamic stability, and the average folding energy. 
Local: we computed Sigscr for the first 100 (5’end) and last 150 nucleotides 
(3’end) in the sequence. The computation was completed by scanning the 
three fixed-length windows (20, 40, 60). For each sequence, we computed 
the local folding energy, its corresponding stability score (Stbscr) in the 
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natural sequence and the corresponding Sigscr related to the randomly 
shuffled sample.  Local unusual folding regions (UFRs) in RNA sequences 
closely correlate with RNA regulatory elements in gene expression. These 
UFRs often function as a binding target of cellular factors (Malim et al, 
1989a, 1989b; Tiley et al., 1990; Wang et al., 1995; Bernstein et al., 1997; 
Akiri et al., 1998; Sella et al., 1999; Pozner et al., 2000; Chen et al., 2000; 
Yang et al., 2000; Kilav et al., 2004; Cencig et al., 2004; Yeh et al., 2008). 
The UFRs were assessed to have both highly statistical significance and 
thermodynamic stability in RNA sequence.  
Mean: the thermodynamic stability and statistical significance of RNA folding 
are assessed by Stbscr and Sigscr, respectively. The Stbscr is computed as 
the difference between the lowest free energy calculated for the segment 
sequence and the mean of the lowest free energies from all possible 
segments of the same size over the entire RNA sequence, divided by the 
standard deviation of the sample. The Sigscr is defined as the difference 
between the lowest free energy calculated for a segment of the real RNA 
sequence and the average of the lowest free energies of a large number of 
randomized segments with the same base composition and the same size 
divided by the standard deviation of the free energies from the random 
sample. 

Poly-adenylation sites Predicted using polyadq (Tabaska and Zhang, 1999) at 
http://rulai.cshl.org/tools/polyadq/polyadq_form.html.  

miRNAs First, we collected data on expression of miRNAs in the Daoy 
medulloblastoma cell line from www.microRNA.org. From the rank-ordered 
expression values, we selected the top 20 (50, 74, 90) most highly 
expressed miRNAs.  Second, we used the miRBase (Griffiths-Jones et al, 
2008) and TargetScan (Grimson et al, 2007) databases to obtain predicted 
targets for these miRNAs. All targets for the miRNAs of interest were 
selected if P-value<0.05. Target sequences were parsed for the frequency of 
all miRNAs predicted per 3’UTR, of miRNA families, and the frequencies of 
unique miRNAs and miRNA families, respectively. The higher any of the 
given numbers, the more miRNAs are predicted for this gene. Results 
presented here are for the 90 miRNAs of highest expression.  

Protein stability index (PSI) Extracted from reference (Yen et al, 2008). The higher the PSI, the more 
stable the protein.  

mRNA decay rate Extracted from reference (Yang et al, 2003) as molecules/hour. The larger 
the decay rate, the less stable the mRNA.  

Phosphorylation sites Extracted from PhosphoPep (Bodenmiller et al, 2008), a database of 
experimentally determined phosphorylated peptides. The higher the number 
of phosphorylated peptides per protein, the more likely is its multiple 
phosphorylation.  

Ribosome attachment (as 
a measure of translation 
efficiency) 

Extracted from reference (Mazan-Mamczarz et al, 2005), an analysis of 
nascent translation in human carcinoma cells exposed to short-wavelength 
UV light using cDNA microarrays. We used data for the untreated cells to 
analyze ribosome attachment in the following manner: the experiment was 
conducted in triplicate, with a collection and cDNA analysis of 10 to 12 
fractions per replicate along the sucrose gradient. The more ribosomes 
attach to an mRNA, the later it elutes in the sucrose gradient; hence, later 
fractions contain translationally more active mRNAs than early fractions. For 
each mRNA within each replicate, we identified the fraction of its maximum 
elution using i) the raw microarray signal; ii) the array-normalized expression 
values or iii) rank-ordered expression values. Thus, the final data reports, for 
each mRNA, the (average) fraction in which it has its peak elution.  While all 
three measures provided similar results, Table 1 (main text) the correlation 
for rank-ordered expression (iii).  

Protein function Analyzed using the DAVID server (Huang da et al, 2007).  
Kozak sequence Using Perl scripts, we determined the nucleotide composition of the ten 

positions before and after the translation initiation codon AUG.  
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Number of alternative 
splice variants 

Information on the number of different alternative splice variants were taken 
from two sources: the ASTD database at websites of the European 
Bioinformatics Institute (http://www.ebi.ac.uk/asd/), and the predicted splice 
information from the ENSEMBL gene prediction (which includes 
experimental data), using the human genome Homo sapiens v47.36. 

 
 

Note on the use of protein-per-mRNA ratios 
The ratio of protein-per-mRNA is an intuitive and often-used measure of translation efficiency 

and protein stability, e.g. (Nie et al, 2006; Wu et al, 2006). However, it is only correct to use (with 
linear regression methods) if protein and mRNA concentrations are linearly proportional: in this 
case, protein = a*mRNA, and protein/mRNA = a = constant.  

Such linear relationship is not necessarily observed, as is shown in Figure 2 (main text): the 
relationship between log(protein) and log(mRNA) can be described by a piece-wise linear function. 
Therefore, we conducted all individual correlation tests between features and protein expression 
(fixing mRNA) using a non-parametric correlation coefficient (Spearman rank). The combined 
analysis using a MARS model (see below) is piece-wise linear, thus approximating the non-linear 
case. We selected two populations (red, green in Figure 2, main text, and see Additional Results 
below) based on extreme protein-per-mRNA ratios. However, the selection procedure was also not 
based on the assumption of a linear relationship between protein and mRNA concentrations. Our 
analysis is thus independent of the exact mathematical relationship between protein and mRNA 
concentration.  

 
Note on the use of partial correlation analysis 

The use of partial correlation analysis has been criticized for its tendency to detect spurious 
correlations in noisy biological data, and principal component regression has been suggested as an 
alternative method, such as Principal Component Regression Analysis (PCRA)(Drummond et al, 
2006). Though this suggestion is valid for investigation of linear relationships, we found that it is not 
useful for the non-linear relationships we observed in our data. A better way is to remove redundant 
features (highly correlated variables) using rank correlation and perform non-linear regression 
analysis such as MARS using selected variables. Since the principal components are linear 
combination of variables, PCRA models essentially the linear relationship between response and 
explanatory variables. Furthermore when the number of possible explanatory variables exceeds 
130 (as in our case), the principal component itself may not be an easily interpretable quantity.      
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3 ADDITIONAL RESULTS 
To obtain some of the results presented here, we compared characteristics (features) between the 
two extreme populations shown in Figure 2 (main text).  

P1: extremely low protein-per-mRNA ratio (red) 
P3: extremely high protein-per-mRNA ratio (green) 
Pt: all genes from the high-confidence dataset.  
 

Table S3. Function enrichments 
Functional analysis was performed using the DAVID’s tool on functional annotation clustering 
(Huang da et al, 2007). Shown are over-represented functional clusters (Gene Ontology 
annotations only) in the two sets P1 (A) and P3 (B) compared to the high-confidence dataset. We 
applied a significance cutoff of 5% FDR, corresponding to approximately P-value<0.005.  

 
A. Low number of proteins per mRNA (P1) 
The genes include translation initiation factors EIF3C, D, F, M and EIF4B. The functional 

enrichment could not be reproduced when comparing P1 to the total set of genes (N=1025).  

Term Count % 
P-
Value 

List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment Bonferroni 

Benja
mini FDR 

GO:0003743~translation 
initiation factor activity 5 11 0.003 36 9 435 6.7 0.364 0.36 3.84 

 
B. High number of proteins per mRNA (P3) 
The set of enzymes in the first GO cluster includes: MDH1, PKM2, DLD, PGK1, TPI1, LDHB, 

LDHA, TXN, ETFA, MDH2, PDHB.  
 

Term Count % P-
Value 

List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfe
rroni 

Benja
mini 

FDR 

GO:0006096~glycolysis 8 9 0.001 84 10 437 4.2 0.25 0.25 0.76 
GO:0006006~glucose 
metabolic process 

8 9 0.002 84 12 437 3.5 0.74 0.49 3.54 

GO:0006007~glucose catabolic 
process 

8 9 0.002 84 12 437 3.5 0.74 0.49 3.54 

GO:0019318~hexose metabolic 
process 

8 9 0.002 84 12 437 3.5 0.74 0.49 3.54 

GO:0019320~hexose catabolic 
process 

8 9 0.002 84 12 437 3.5 0.74 0.49 3.54 

GO:0046365~monosaccharide 
catabolic process 

8 9 0.002 84 12 437 3.5 0.74 0.49 3.54 

GO:0046164~alcohol catabolic 
process 

8 9 0.002 84 12 437 3.5 0.74 0.49 3.54 

GO:0044275~cellular 
carbohydrate catabolic 
process 

8 9 0.002 84 12 437 3.5 0.74 0.49 3.54 

GO:0006091~generation of 
precursor metabolites and 
energy 

11 12 0.003 84 22 437 2.6 0.83 0.45 4.66 

           
Term Count % P-

Value 
List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfe
rroni 

Benja
mini 

FDR 

GO:0030530~heterogeneous 
nuclear ribonucleoprotein 
complex 

7 8 0.004 75 10 400 3.7 0.40 0.40 4.30 
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Figure S9. Biases in translation initiation sites 

We tested the two extreme sets of protein-per-mRNA ratios (Figure 2, main text, red and green) 
from the high-confidence dataset for biases in positional nucleotide composition around the 
translation initiation site.  For each position, biases were assessed use the  χ2 test. For the high-
confidence dataset (shown here), the composition in position -5 is significantly different between P1 
and P3 (P-value<0.01). In ‘all’ data, the composition at position +4 is significantly different (P-
value<0.01). The set of genes with low protein-per-mRNA ratios (P1) is enriched for Adenine at 
position +4, suggesting a sub-optimal translation initiation site. 
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Figure S10. Codon usage: distributions 
We assessed biases in several ways. We tested codon adaptation (CAI), codon bias (CBI), and 

the frequency of optimal codons (FOP) for their correlation with protein expression (Table 1). 
Second, we compared for all degenerate amino acids the distributions of codon usage in 
populations P1 and P3 using the  χ2 test (using absolute counts). Codon usage for Arginine, Serine, 
Proline, Leucine, and Glycine were significantly different between P1 and P3 (P-value<0.01). These 
biases were not explained by the number of tRNA genes for the respective codons (not shown).  
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Figure S11. Codon usage: links to tRNA genes and GC content 

The number of tRNA genes is a proxy of codon adaptation, and was taken from the human 
genome publication (Lander et al, 2001) and the tRNA database (http://gtrnadb.ucsc.edu/)(A). We 
mapped the log-base2 ratio of codon use in P1 vs. P2 to the number of tRNA genes for each codon 
(of significantly different amino acids, see Figure S10), but there was no obvious trend with respect 
to the preferred use of codons that have many tRNA genes in genes of large protein-per-mRNA 
ratios (P3)(B). We also could detect no bias in codon usage depending on GC content of the 
codons (C, D).   
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4 MARS ANALYSIS 
4.1 Data preparation 

The data for the MARS analysis comprised an original set of 192 features which represent the 
explanatory variables (including “mRNA concentration” and sequence features), and “Protein 
abundance” as the response variable. To avoid extensive over-fitting, we applied stringent filters to 
the dataset before using it for the modeling.  We removed all features that were redundant to other 
features with Rs>0.9 (see above). We log-transformed all features with extreme distributions ("Total 
mRNA length", "Coding strand length", "5’UTR length", "3’UTR length"). The MARS model with 
transformed variables resulted in a better fit than the model with untransformed variables and was 
henceforth used in the analysis (not shown).  We removed features with >40 missing values, and all 
genes with >1 missing value. This procedure resulted in the dataset of 476 genes described by 133 
features and no missing values (see Supplementary data file). Using different filters that resulted 
in more features (but fewer genes) resulted in strong over-fitting (not shown).  

4.2 Model fitting 
Multivariate Adaptive Regression Splines (MARS) is a method introduced by Friedman 

(Friedman, 1991) for solving regression-type problems, with the main purpose of predicting the 
values of a continuous response or outcome variable from a set of explanatory or predictor 
variables. Unlike linear regression models, MARS makes no assumption about the underlying 
functional relationship between the response and predictor variables and uncovers the functional 
relationships as well as the best predictor variables entirely from the data. MARS is particularly 
suited for our problem as the number of input dimensions is very high (133 features) and the 
functional relationships between the outcome and predictors are suspected to be non-linear.  The 
non-linearity is exemplified in Figure S12, and consistent with the discrepancy between high 
Spearman’s rank correlation and low Pearson’s correlation coefficients.  

 
Figure S12. Example of non-linear relationship between protein expression and mRNA. 
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In MARS, non-linear responses between protein expression and biological factors (variables, 

features) are described by a series of linear segments of differing slope, each of which is fitted 
using a basis function (Friedman, 1991; Hastie et al, 2001). In other words, in MARS the 
relationship between protein abundance y and selected feature variables x1, x2, …, xk is modeled as  

y= f1(x1) + f2 (x2) + … +fk (xk) +error   [1] 
where f1,f2,…, and fk are piecewise continuous linear functions. Each function fj  of the variable xj is 
constructed by fitting basis functions to distinct intervals of the explanatory  variables. In each 
function, piecewise linear segments, called splines, are smoothly connected together.  

Fitting a spline basis function Bi(x) both finds joining points of piecewise linear segments called 
knots and performs the ‘smoothly’ joining process. The fitting spline basis function is described by 
the following equations:   

€ 

f j (x j ) = ciBi(x j )
i=1

J

∑ .    [2] 

The basis function Bi(x) has the form  

(x)=   [3A] 

or 

(x)=   [3B] 

where ti is  the knot placement.   
The function f(X)= f1(x1) + f2 (x2) + … +fk (xk) can therefore be written as the weighted sum of 

basis functions  

€ 

fM (X) = ciBi(x j )
i=1

I j

∑
j=1

k

∑  [4] 

where M=I1+…+Ik is the total number of basis functions selected in the model. The MARS 
model selects the best set of basis functions (or equivalently knots ti) from all possible candidate 
basis functions. The corresponding regression coefficients ci will be estimated via regression. If a 
variable does not contribute to explanation of the variability in the response variable, the basis 
functions corresponding to the variable would be dropped from the model during the model building 
procedure. 
 

4.3 Implementing MARS (model building) 
Implementing MARS, i.e. the selection of knot positions and variables, involves a two-step 

procedure that is applied successively until a desired model is found.  In the first step, we increase 
complexity by adding basis functions (variable and knot positions) until a maximum level of 
complexity has been reached. In the second step, we perform a backwards procedure to remove 
the least significant basis functions from the model with respect to the goodness of fit measure, the 
mean residuals of Generalized Cross-Validation (GCV, see below).  

This algorithm is implemented as follows: 
1. Start with the simplest model involving only the constant basis function. 
2. Search the space of basis functions, for each variable and for all possible knots, and add those 

variables/knots which minimize prediction error. 
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3. Recursively apply step 2 until a model of pre-determined maximum complexity is achieved. 
4. Finally, apply a pruning procedure where those basis functions are removed one by one that 

contribute least to the GCV mean residuals until the GCV error reaches its minimum.  
Given a data set X containing n objects and p explanatory variables, note that if all of the input 
values are distinct, there would be N=n×p possible pairs of spline basis functions, including knot 
locations tij (i=1, 2, …, n; j=1, 2,…, p).  In such a model, steps 1- 3 lead to a very complex and over-
fitted model. Although the model would fit the data well, it has poor predictive abilities for new 
objects (low generality).  

To improve the prediction (generality), the redundant basis functions are removed one at a time 
using a backward stepwise procedure in step 4. To determine which basis functions should be 
included in the model, MARS uses GCV (Craven and Wahba, 1979) as the overall goodness of fit. 
The Generalized Cross Validation criterion is a measure of the goodness of fit that takes into 
account not only the residual error but also model complexity. It is defined as the mean squared 
residual error divided by a penalty dependent on the model complexity. The GCV criterion for the 
model fM is defined in the following way: 

GCV(M) = 

€ 

1
n

(yi − f
∧

M (Xi))
2

i=1

n

∑

(1− C(M)
n

)2
,                     [5] 

where C(M) =(M+1)+d*M is a complexity penalty that increases with the number of basis functions 
in the model. (M is the total number of basis functions selected in the model, as above.) The 
parameter d is a penalty for each basis function included into the model. Large values of d lead to 
fewer basis functions and therefore smoother function estimates. We adapted Hastie et al.’s (Hastie 
et al, 2001) recommendation that uss d=2 for the additive MARS model. The Generalized Cross 
Validation uses a formula to approximate the error that would be determined by leave-one-out 
validation. GCVs were introduced by Craven and Wahba (Craven et al, 1979) and extended by 
Friedman (Friedman, 1991) for MARS.  

 
Figure S13. MARS model – simplified graphic representation 

The graph illustrates how, by adding more and more variables, we explain variance in protein 
concentrations. The arrows represent ‘dimensions’ of the model, not linear relationships. Note that 
the R2=0.27 reported in this diagram differs slightly from the R2=0.29 reported in the main text, as 
the underlying datasets are different, using N=511 and N=476 (see Section 4.1.), respectively.  
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The importance of the variables in the MARS model 

In the MARS model, the importance of each selected predictor variable is evaluated as its 

contribution to the goodness of fit of the model defined as 

€ 

(yi − f
∧

M (Xi ))
2

i=1

n

∑ , the residual sum of 

squares (RSS). The scoring of the importance of variables in the MARS model is similar to the 
leave-one-out cross-validation concept. To calculate scores of variable importance, MARS refits the 
model after deleting all terms involving the variable at issue and calculating the reduction in 
goodness of fit. The importance of the variables is a relative measure and scaled between 0 and 1. 
The most important variable is the one that, when dropped, decreases the model fit the most and it 
receives the highest score, i.e. 1. The less important variables receive the lower scores, which is 
the ratio of the reduction in goodness of fit of these variables to that of the most important variable.  

Once the importances of variables are ranked we can evaluate the percentage of variance 
explained by each variable as follows.  We define the “Cumulative variance explained (%) by the 
model” as  

(Deviance of the null model – deviance of the model) / Deviance of the null model * 100, 

where  the deviance of the null model (model with no variable) is defined as 

€ 

(yi − y
_
)2

i=1

n

∑   and the 

deviance of the model is defined as 

€ 

(yi − f
∧

M (Xi))
2

i=1

n

∑ , i.e.,  

Cumulative variance explained (%) = 

€ 

(yi − y
_
)2

i=1

n

∑ − (yi − f
∧

M (Xi ))
2

i=1

n

∑

(yi − y
_
)2

i=1

n

∑
   *100 (%)     [6] 

Comparing the null model and the model with the most important variable (mRNA level), the 
cumulative variance explained (%) is the contribution of mRNA. The difference of the cumulative 
variance explained by the model with mRNA alone and the cumulative variance explained by the 
model with two variables, mRNA and the second most important predictor (Total length) is the 
variance explained by the total length, etc. We can add up each variable one-at-a-time to evaluate 
the additive variance explained by the added variable to the model.  

 
The Generalized R-Square as a proxy of cross-validation 

The term  

€ 

(yi − y
_
)2

i=1

n

∑ − (yi − f
∧

M (Xi ))
2

i=1

n

∑

(yi − y
_
)2

i=1

n

∑

 in equation [6] is also called R-Square (R2) of the model. It 

measures how well the model fits the training data. The predictive power of the model is estimated 
by Generalized R-Square (GRSQ) of the model defined as 

GRSQ = 

€ 

1− GCV (M)
GCV (0)

   [7] 

where GCV(M) is defined in equation [5].   
When testing a model, we generally want to test its performance with independent test data, not 

with the training data. However, such an independent test data is often unavailable, and so we 
resort to cross validation or leave-one-out methods which can be painfully slow. As an alternative, 
for models such as MARS or the Generalized Linear Model we can use a formula to approximate 
the error that would be determined by leave-one-out validation — and that approximation is the 
GCV. The formula adjusts the training residual sum of squares (RSS) to account for the flexibility of 
the model.  
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In sum, the GCV approximates the RSS that would be measured in independent data. Even 
when the approximation is not that good, it is usually good enough for comparing models during 
pruning. GCVs were introduced by Craven and Wahba (Craven et al, 1979), and extended by 
Friedman for MARS (Friedman and Roosen, 1995; Hastie et al, 2001). The GRSQ*100% measures 
the cumulative percentage of variance explained by the model to the test data in the same way that 
R-Squared*100% measures the cumulative percentage variance explained by the model to the 
training data.   

All MARS models were fitted in R (Team, 2004) using functions contained in the ‘earth’ library 
(Milborrow, 2009).  

 
Higher-order models 

The MARS analysis offers a similar level of performance compared with other non-linear 
modeling techniques such as Generalized Additive Model (GAM, not shown). We chose MARS 
because the cross-validated selection procedure in MARS models selects a best set of variables 
and their functional forms while the GAM estimates unknown functional forms for a given, fixed set 
of variables. A more complex second order MARS model includes all the significant second order 
interaction terms. A second order MARS model was compared to our additive MARS model without 
any interaction term. The second order MARS model improved the first order model by about 5% in 
R2 value (not shown), but the model was much harder to interpret so was not included in this study. 
 

4.4 MARS model results 
MARS selected 25 sequence variables (36 basis functions) including the variable log2(mRNA) 

abundance with importance in explaining the variation of log2(Protein abundance). The RSq (R2) = 
0.67 and Generalized Cross Validated RSq (GRSq) = 0.55 (Supplementary data file).  
 
Table S4A. MARS model – detailed results  

Cumulative variance explained (%) by the MARS model includes, for each variable, the listed 
variable and all variables listed above the variable. For example for feature AA Small the model 
includes log2mRNA, log2CSLength, and Phosphorylated. It explains 48% of variability of the protein 
expression. The variance explained by a variable Xk is defined as the Cumulative variance 
explained (%) by the model with variables X1, X2, …,Xk minus the Cumulative variance explained 
(%) by the model with variables X1, X2, …,Xk-1.  In our analysis, mRNA is X1 and the effects of other 
variables are estimated after adjusting the effect of mRNA first.  

For the evaluation of the combined contributions of different groups of features (Figure 3B, 
main text; Figure S14), we predicted the cumulative variance explained using all features of the 
respective grouping. More detailed results are provided in the Supplementary data file. 
Abbreviations: AA – amino acid frequency/property. Di-nucleotides listed denote the sequential 
order of the nucleotides, i.e. CA does not equal AC. For further source and explanation of variables, 
see Table S2. 

Feature 

Cumulative 
variance 
explained Grouping 1 Grouping 2 

log2mRNA 26.9 mRNA  
log2 CSLength (length of coding region) 46.0 Coding sequence Length 
Phosphorylated (yes, no) 48.2 Coding sequence Amino acids 
AA Charge 50.5 Coding sequence Amino acids 
GC content in 3’UTR 52.9 3'UTR Nucleotides 
Local secondary structures 
3’UTR_3end_window40_FoldingEnergy_best 54.4 3'UTR Nucleotides 
AA Small 55.5 Coding sequence Amino acids 
CA content in coding region 55.6 Coding sequence Nucleotides 
Targetscan90 miR families (3’UTR) 56.5 3'UTR Nucleotides 
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Targetscan20 miR families (3’UTR) 58.0 3'UTR Nucleotides 
C concent in 3’UTR 58.8 3'UTR Nucleotides 
CAI (codon adaptation index) 59.6 Coding sequence Nucleotides 
GC content in coding region 60.0 Coding sequence Nucleotides 
GC content at codon position 1  60.7 Coding sequence Nucleotides 
AA relative R content 61.3 Coding sequence Amino acids 
AC content in 5’UTR 61.9 5'UTR Nucleotides 
AA Basic 62.7 Coding sequence Amino acids 
AG content in 3’UTR 63.4 3'UTR Nucleotides 
AA relative E content 63.7 Coding sequence Amino acids 
AA Isoelectric Point 64.7 Coding sequence Amino acids 
AA relative I content 65.3 Coding sequence Amino acids 
GC content in 5’UTR 65.7 5'UTR Nucleotides 
TC content in 5' 66.2 5'UTR Nucleotides 
GA content in coding region 66.8 Coding sequence Nucleotides 
AA content in 3’UTR 67.5 3'UTR Nucleotides 

 
 
 
Table S4B. MARS model – P-values 

It is not possible to formally obtain P-values on the MARS R2, but informal P-values can be 
obtained and should be interpreted differently from the traditional P-values of parameters of linear 
model. The P-value is the significance of the selected variable with respect to the estimated 
functional form. It is interpreted as ‘informal’ since we assume that the functional form is known 
rather than estimated. However, the functional forms of the features are the estimated forms from 
the MARS model.  

Given the functional form of the feature, an F-statistic is calculated as FSTAT=(difference of 
deviance/df1)/(deviance of the full model/df2). The numerator degree of freedom df1 is the number 
of basis functions used in estimating the functional form of the feature in the MARS model.  The 
denominator degree of freedom df2=439 is the residual degree of freedom of the full model. The 
null distribution of FSTAT is the F-distribution with the degrees of freedom df11 and df2, and the 
calculated P-value shows how individual features contribute to the MARS model. Thus the P-values 
of selected features in the MARS model are calculated as the difference of deviances between the 
model with all the features and the model with one feature eliminated.  

For explanation of the feature name and source, please refer to Table S1, Table S4A, and the 
Supplementary data file.  

 

Feature 
Deviance 
Difference df1 FSTAT 

P-
Value 

log2mRNA 469.28 1 142.1 1E-28 
log2CSLength 592.73 2 89.74 2E-33 
Phosphorylatedyes1 88.66 1 26.85 3E-07 
AA_Charged 41.02 1 12.42 5E-04 
gc_3UTR 68.15 3 6.88 2E-04 
Local_3UTR_3end_window40_FoldingEnergy 67.79 2 10.26 4E-05 
AA_Small 119.03 2 18.02 3E-08 
CS_ca 77.41 1 23.44 2E-06 
Targets90_TOTAL.MIRFAMS.3UTR 71.08 2 10.76 3E-05 
Targets20_TOTAL.MIRFAMS.3UTR 65.81 1 19.93 1E-05 
UTR3_C_nt 76.64 1 23.21 2E-06 
CAI 164.05 2 24.84 6E-11 
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CS_GC 115.97 2 17.56 5E-08 
CS_GC1 73.12 1 22.14 3E-06 
AA_R_rel 58.86 2 8.91 2E-04 
ac_5UTR 35.87 1 10.86 1E-03 
AA_Basic 76.58 2 11.6 1E-05 
ag_3UTR 64.63 1 19.57 1E-05 
AA_E_rel 40.82 1 12.36 5E-04 
AA_IsoelectricPoint 70.3 1 21.29 5E-06 
AA_I_rel 23.26 1 7.04 8E-03 
gc_5UTR 30.3 1 9.17 3E-03 
tc_5UTR 20.89 1 6.33 1E-02 
CS_ga 30.53 1 9.24 3E-03 
aa_3UTR 29.53 2 4.47 1E-02 

 
 

 
Summary of MARS model predictions and discussion of generality  

Our MARS model results in an R2=0.67 between observed and predicted protein concentrations 
(also see: Figure 3A, main text).  Below we discuss the generality of this fit, i.e. the applicability to 
other datasets.  

First, the modeling procedure also reports the Generalized R2 estimating the correlation 
between observed and predicted protein concentrations penalizing for the number of variables 
(features) needed to get an optimal fit (see above).  A large discrepancy between the R2 (0.67) and 
the generalized R2 implies over-fitting, as the high R2 may only be due to selection of many 
variables. Our model reports a generalized R2=0.55 which suggests a moderate generality of the 
model.  

Second, we tested the model performance when reducing the number of selected features from 
25 to a smaller number (setting the ‘prune’ option), assuming that the top-performing features are 
the most important ones and will also have predictive power in other datasets (see Supplementary 
data file).  Restricting the model to 11 features, the resulting R2=0.57 (and generalized R2=0.52) 
suggest an even lower degree of over-fitting than for the whole model.  

Third, we conducted ten-fold cross-validation, partitioning the dataset randomly into ten sets of 
equal sizes, analyzing model performance in each dataset independently, and then combining the 
results. We several types of cross-validated R2 values in addition to the generalized (R2=0.55). (i) A 
ten-fold cross-validated R2 value based on the 25 variables selected in the model of the complete 
dataset and their estimated functional forms (61%). (iii) An R2 based on the optimally selected terms 
fixing the number of terms to be selected in each of the ten model building steps to ~10 to 15 (using 
the nterm function), i.e. using the optimally pruned model. The R2 obtained was 45% confirming that 
pruning reduces dataset-specific over-fitting. (iv) A complete cross-validation in which the MARS 
model newly selects variables and functional forms during each validation step (R2=30%).  

In sum, we can predict 67% of the protein abundance variation in our dataset, and achieve 
decent generality of the model, suggesting an ability to predict ~30-60% of the protein abundance 
variation in the generalized case, i.e. with other test data.  
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Figure S14. Explanation of variation in protein abundance by different feature groups 

Using the complete MARS model, we assess the variance in protein abundance explained by 
different subsets of the features listed in Table S4. (Note that we do not simply add up percentages 
of the contribution, but used the glm() function to calculate combined results.) The percentages vary 
slightly depending on the groupings due to the nature of the calculations. Feature groupings are 
listed in Table S4A. A. Features grouped into length, amino acid or nucleotide characteristics, 
calculated in cumulative manner, we start with the strongest individual feature group and then 
successively add other feature groups, examining the difference in explained protein abundance 
variation. On their own, each individual feature group may explain an even higher proportion of 
variation, e.g. Sequence Lengths explain, on their own, ~30% of protein variance (see B). B. 
Individual contributions of different feature groups to explanation of protein abundance variation, 
calculated for each group separately.  

 
 
Figure S15. Prediction of protein concentrations  

The graphs show the predicted protein concentrations using the MARS model and as only 
variables mRNA concentration (A, R2=0.27) and Coding sequence length (B, R2=0.27), 
respectively.  
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4.5 Alternative methods 
In addition to the MARS analysis, we tested the performance of linear regression, including the 

least absolute shrinkage and selection operator (LASSO), and principal component analysis 
combined with regression analysis. They are used to identify features that best explain variation in 
protein concentration. All analyses were conducted with the same dataset as used for the MARS 
model above, comprising 476 genes and 133 features. 

4.5.1 Linear regression 
Linear regression models linear relationships between the response variable (log2 protein 

concentration) and the p predictive variables in the form y=β0+β1*x1+β2*x2+…+βp*xp+ error. When p 
is large (i.e. >40), the model usually overfits the data and gives poor performance in prediction on 
other independent data. In such cases, we often would like to determine a smaller subset that 
exhibit the stronger relationship to the response variables. We use two methods, the subset 
selection (A) and the LASSO (B) (see below).   

 
Figure S16. Linear regression (no variable selection) 

The figure shows the result of linear regression without variable selection, i.e. this model is likely 
subject to over-fitting. The cross-validated prediction gives R2=0.29. We conducted the analyses 
using the WEKA software version 3.4.13 (Hall et al, 2009)(http://www.cs.waikato.ac.nz/ml/weka/).  
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 (A) AIC based subset selection method (linear regression) 

The Akaike's information criterion (AIC) is a measure of the goodness of fit of the estimated 
linear model (Akaike, 1974). In the linear model defined above, it is defined as AIC = 2k+n[ln(RSS)] 
where RSS = ∑i (yi-β0+β1*x1i+β2*x2i+…+βk*xki)2 , the residual sum of squares. 

The AIC based best subset selection method selects a subset {x1,…,xk} of size k from the p 
predictor variables that minimizes the AIC criterium in a stepwise manner. Increasing the number of 
predictors improves the goodness of fit, regardless of the number of free parameters in the data 
generating process. It also increases a penalty which is an increasing function of the number of 
estimated parameters. This penalty discourages over-fitting, and the preferred model is the one with 
the lowest AIC value. The AIC method attempts to find the model that best explains the data with a 
minimum number of predictors.  

When the number p of predictors is large, i.e. >40, the number of subsets to be tested (2p -1) is 
computationally infeasible. The difficulty may be overcome by starting with the intercept, and then 
sequentially adding to the model features that most improves the fit (forward stepwise selection). 
Alternatively, once can start with the full model, and sequentially delete the predictor that has the 
least impact on the fit (backward). We use the stepAIC function in R library MASS that implements 
hybrid stepwise selection strategies that consider both backward and forward moves at each step, 
and select the best out of the two methods. This stepwise procedure selected 42 features out of 
133 as the best subset.  

The observed R2 =0.60 (R2=0.51 in ten-fold cross-validation) for the 42 selected variables (linear 
model). For comparison, the MARS procedure selected 25 features with a Generalized R2 = 0.67, 
and thus performed much better than the linear model which also used more variables.  
Table S5. Linear regression with subset selection 

Feature Estimate 
Std. 

Error P-value 
log2CSLength * -1.1938 0.1086 5.64E-25 
log2mRNA * 0.3657 0.0584 9.37E-10 
AA_G_rel 37.3118 8.0349 4.54E-06 
CS_ta -5.0533 1.1779 2.21E-05 
CS_GC2 -18.6108 4.3637 2.46E-05 
AA_L_rel -27.7821 6.7241 4.32E-05 
Phosphorylatedyes1 * 0.9172 0.2307 8.23E-05 
ac_5UTR * 1.2774 0.3326 0.0001 
CS_tc -3.7125 0.9865 0.0002 
Local_3UTR_3end_window40_Stability_best_Table10 -0.4098 0.1105 0.0002 
CS_cc -2.8951 0.8235 0.0005 
CS_G_nt -25.7544 7.4195 0.0006 
CS_at 3.2288 0.9833 0.0011 
Mean_3UTR_3end_window40_Energy_stdev_Table22 -0.5252 0.1634 0.0014 
Targets90_TOTAL.MIRFAMS.3UTR * 61.9111 19.2621 0.0014 
AA_solventwater_NOZY710101 13.6642 4.3067 0.0016 
CS_tt -2.2154 0.7609 0.0038 
Targets20_TOTAL.MIRFAMS.3UTR * -64.6502 22.7219 0.0046 
AA_M_rel -35.7507 12.8379 0.0056 
AA_betasheet_CHOP780202 -19.4044 7.0039 0.0058 
UTR3_C_nt * -5.7528 2.2020 0.0093 
CS_ag 2.7352 1.0632 0.0104 
ag_5UTR 0.5885 0.2303 0.0110 
AA_partitionenergies_GUYH850105 10.6742 4.5055 0.0183 
AA_D_rel -20.1999 8.6256 0.0196 
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gc_5UTR * 0.8745 0.3750 0.0201 
AA_Small * 16.2866 7.1401 0.0230 
Mean_3UTR_5end_window40_Stability_stdev_Table21 -1.2150 0.5444 0.0261 
logAS_EBI 0.6721 0.3165 0.0343 
Mean_3UTR_5end_window40_Energy_stdev_Table21 0.3717 0.1837 0.0436 
ag_3UTR * 0.8215 0.4110 0.0463 
CAI * 3.1794 1.7904 0.0765 
log2UTR3Length -0.1132 0.0642 0.0786 
AA_Aromatic -12.5713 7.3370 0.0874 
logAS_SF -0.6356 0.3932 0.1067 
AA_betaturn_CHOP780203 -14.6160 9.0882 0.1085 
AA_IsoelectricPoint * 0.1398 0.0892 0.1179 
at_5UTR 0.2471 0.1636 0.1317 
Potential_PEST 0.0818 0.0547 0.1352 
ga_3UTR -0.5338 0.3670 0.1465 
Mean_3UTR_3end_window40_Significance_avg_Table22 -0.3161 0.2259 0.1624 
tc_5UTR * 0.3519 0.2597 0.1762 
 
(B) LASSO method (linear regression) 

The least absolute shrinkage and selection operator (LASSO) is a shrinkage and selection 
method for linear regression. It minimizes the usual sum of squared errors, with a bound on the sum 
of the absolute values of the coefficients. Given a set of explanatory variables x1, x2 ...xp and a 
response variable y, the LASSO method fits a linear regression model y=β0+β1*x1+β2*x2+…+βp*xp. 
The criterion it uses is:  

minimize RSS = ∑i (yi-β0+β1*x1i+β2*x2i+…+βk*xki)2 subject to ∑k |βk| ≤ t. 
The first sum is taken over observations (cases) in the dataset. The bound t is a tuning 

parameter. When t is large, the constraint has no effect and the solution is just the usual multiple 
linear least squares regression of y on x1, x2, ..., xp. However for sufficiently small t, some 
coefficients become exactly zero, resulting in LASSO performing a kind of continuous subset 
selection. Selecting t is similar to choosing the number of predictors to use in a regression model, 
and cross-validation is a good tool for estimating the best value for t. 

In this study, we use s = t / ∑k |βk| as a ‘relative’ tuning parameter. We use ten-fold cross-
validation to estimate the best tuning parameter of s=0.05 which produces the R2 value of 0.45 with 
19 selected features. The LASSO fit for the whole data produces R2=0.50 (no cross-validation). To 
evaluate the relative importance of selected variables, we standardized each feature variable by 
subtracting its mean and dividing it by its standard deviation first and fit the LASSO.   

 
Table S6. LASSO  

The table shows the 19 selected features including the intercept in the LASSO model and 
coefficients for the standardized feature variable. The MARS model selected 25 features out of 133. 
There were 6 common features between LASSO model fit and MARS fit, indicated with *.  

Feature Coefficient 
(Intercept) 10.2120 
log2CSLength * -1.0639 
log2mRNA * 0.8508 
Phosphorylated * 0.2461 
log2TotalLength -0.2058 
AA_G_rel 0.1639 
AA_L_rel -0.1425 
AA_I_rel * 0.1321 
AA_V_rel 0.1264 
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CS_ca * 0.1112 
Local_3UTR_3end_window40_Stability_best_Table10 -0.0811 
UTR5_G_nt -0.0747 
CS_at 0.0681 
cc_5UTR -0.0556 
CS_tg 0.0490 
tg_5UTR -0.0303 
CS_ga * -0.0198 
CS_gc 0.0137 
ga_3UTR -0.0122 
logAS_EBI 0.0030 

 
 
Comparisons between Linear models and MARS 

Both Subset selection and LASSO adapt linear regression models. Despite many merits of 
these procedures, the non-linear relationship between feature variable and protein are not captured 
and show generally a worse fit than the MARS model. We chose to present the MARS model as it 
performs best with respect to feature selection, model fit (R2), and incorporation of non-linearity.  

 
Table S7. Comparison of model performance 

GCV R2 = Generalized Cross-Validated R2; CV = ten-fold cross-validation 
Model Number of 

selected 
features 

R2 Features 
overlapping 
with MARS 

MARS 25  0.61 (CV)  
0.55 (GCV R2) 

- 

Linear regression with AIC based 
subset selection 

42 0.51 (CV) 13 

LASSO 19 0.45 (CV) 6 
 

4.5.2 Principal component regression 
We employed singular value decomposition (SVD) to perform principal component analysis 

(PCA). The svd function in R (Team, 2009) deconvolutes the data (excluding log2 protein 
concentration) into a matrix of eigenvectors (V), their projections onto the genes (U) and the 
contributions of the eigenvectors to the variation in the matrix (D). Each eigenvector is a composite 
of the contributions of each of the features. By definition, the eigenvectors are orthogonal to each 
other, i.e. they each capture different parts of the variation in the data matrix. There is no theoretical 
reason for any of the eigenvectors to correlate better with log2 protein concentration than the 
individual features. However, we test for this correlation as it offers a means to reduce the 
complexity of the data matrix while isolating features that explain variation in protein concentration.  

 
Table S8. Principal component regression (singular value decomposition) 

We correlated the projections of each eigenvector (U) with the gene’s corresponding log2 
protein concentration, and vectors V4, V5, V6, and V11 display significant correlations. Vector V4 
has the highest correlation, with R=-0.48 (R2=0.23).  

The four vectors including the top 20 contributing features are listed in the table. Vectors V4, V5, 
V6, and V11 explain a total of ~15% of the variation in the matrix, implying that only a small 
proportion of the information in the data can be used to explain variation in protein concentration 
(with this method). Feature names are explained in the Supplementary data file. The top 
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contributing features to vectors V4, V5, V6, and V11 (largest eigen values) are similar to those 
identified in the MARS model: mRNA concentration, sequence lengths, PEST motifs, and structural 
features of the 3’UTR.  

In sum, while the type of features identified via principal component regression is similar to 
those found in the MARS model, a much smaller proportion of variation in the data is explained in 
the former compared to the latter approach.  In addition, the biological interpretation of eigenvectors 
is inherently difficult, which let us prefer the MARS model.  

Eigenvector        
V4  V5  V6  V11  

Correlation of projections of eigenvector with log2 protein concentration   
Pearson (P-value)       

-0.48  -0.27  -0.21  0.20  
e-28  e-9  e-6  e-6  

Spearman (P-value       
-0.51  -0.26  -0.24  0.21  
e-33  e-8  e-7  e-6  

        
Fraction variation in data matrix explained    

0.05  0.04  0.04  0.02  
        
Contribution of features to eigenvector (sorted)     
Potential_PEST 0.64 log2mRNA -0.67 Potential_PEST -0.60 log2UTR3Length 0.61 
log2UTR3Length 0.38 AA_IsoelectricPoint -0.35 log2mRNA -0.55 log2CSLength -0.52 

log2TotalLength 0.35 Nc 0.32 log2UTR3Length 0.44 

Local_3UTR_3end_win
dow40_Significance_be
st 0.21 

log2CSLength 0.34 log2TotalLength -0.23 AA_IsoelectricPoint 0.29 log2TotalLength -0.21 

log2mRNA -0.26 log2CSLength -0.22 log2TotalLength 0.17 

Local_3UTR_5end_win
dow40_Significance_be
st 0.20 

log2UTR5_TotalLength -0.22 Potential_PEST 0.20 log2UTR5Length 0.09 log2mRNA 0.19 
Nc -0.18 log2UTR5Length -0.18 log2UTR5_TotalLength -0.08 Potential_PEST 0.17 

log2UTR5Length 0.13 

Local_3UTR_5end_wind
ow40_FoldingEnergy_b
est -0.17 

Mean_3UTR_5end_wi
ndow40_Energy_avg 0.07 

Mean_3UTR_5end_win
dow40_Energy_stdev -0.13 

AA_IsoelectricPoint -0.12 

Local_3UTR_3end_wind
ow40_FoldingEnergy_b
est -0.16 

Mean_3UTR_3end_wi
ndow40_Energy_stdev -0.05 tt_5UTR 0.12 

Local_3UTR_5end_wind
ow40_FoldingEnergy_be
st 0.10 log2UTR3Length -0.15 

Local_3UTR_5end_win
dow40_FoldingEnergy
_best 0.04 

Mean_3UTR_5end_win
dow40_Energy_avg -0.12 

Local_3UTR_5end_wind
ow40_Stability_best 0.07 

Mean_3UTR_5end_win
dow40_Energy_avg -0.11 Nc -0.04 aa_5UTR 0.11 

Local_3UTR_3end_wind
ow40_Stability_best 0.05 aa_5UTR -0.07 log2CSLength 0.03 log2UTR5_TotalLength 0.11 
Local_3UTR_3end_wind
ow40_FoldingEnergy_be
st 0.05 

Local_3UTR_5end_wind
ow40_Significance_best -0.06 Phosphorylatedyes1 -0.03 log2UTR5Length -0.10 

tg_5UTR 0.03 ag_5UTR -0.06 

Local_3UTR_3end_win
dow40_Significance_b
est 0.02 

Local_3UTR_3end_win
dow40_FoldingEnergy_
best -0.08 

Mean_3UTR_5end_wind
ow40_Energy_stdev_Tab
le21 -0.03 

Mean_3UTR_5end_win
dow40_Significance_av
g -0.06 gg_3UTR -0.02 

Mean_3UTR_5end_win
dow40_Significance_std
ev -0.07 

Mean_3UTR_3end_wind
ow40_Energy_stdev -0.03 tt_5UTR -0.05 tt_5UTR 0.02 

Mean_3UTR_3end_win
dow40_Energy_stdev -0.07 

ag_3UTR 0.03 
AA_hydrophobicmoment
_EISD860102 -0.05 

Local_3UTR_5end_win
dow40_Significance_b
est -0.02 

Local_3UTR_5end_win
dow40_Stability_best 0.07 
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tc_5UTR 0.03 tc_5UTR -0.05 tc_5UTR -0.02 
Mean_3UTR_5end_win
dow40_Stability_stdev -0.07 

CS_ag 0.02 log2UTR5_TotalLength 0.05 gc_5UTR 0.02 

Mean_3UTR_3end_win
dow40_Significance_av
g 0.06 

Local_3UTR_5end_wind
ow40_Significance_best 0.02 aa_3UTR -0.05 

Local_3UTR_3end_win
dow40_Stability_best -0.02 ca_5UTR -0.06 
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