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Integration of over 9,000 mass spectrometry
experiments builds a global map of human
protein complexes
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Abstract

Macromolecular protein complexes carry out many of the essential
functions of cells, and many genetic diseases arise from disrupting
the functions of such complexes. Currently, there is great interest in
defining the complete set of human protein complexes, but recent
published maps lack comprehensive coverage. Here, through the
synthesis of over 9,000 published mass spectrometry experiments,
we present hu.MAP, the most comprehensive and accurate human
protein complex map to date, containing > 4,600 total complexes,
> 7,700 proteins, and > 56,000 unique interactions, including thou-
sands of confident protein interactions not identified by the original
publications. hu.MAP accurately recapitulates known complexes
withheld from the learning procedure, which was optimized with
the aid of a new quantitative metric (k-cliques) for comparing sets of
sets. The vast majority of complexes in our map are significantly
enriched with literature annotations, and the map overall shows
improved coverage of many disease-associated proteins, as we
describe in detail for ciliopathies. Using hu.MAP, we predicted and
experimentally validated candidate ciliopathy disease genes in vivo
in a model vertebrate, discovering CCDC138, WDR90, and KIAA1328
to be new cilia basal body/centriolar satellite proteins, and identify-
ing ANKRD55 as a novel member of the intraflagellar transport
machinery. By offering significant improvements to the accuracy and
coverage of human protein complexes, hu.MAP (http://proteincom
plexes.org) serves as a valuable resource for better understanding
the core cellular functions of human proteins and helping to
determine mechanistic foundations of human disease.
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Introduction

A fundamental aim of molecular biology is to understand the rela-

tionship between genotype and phenotype of cellular organisms.

One major strategy to understand this relationship is to study the

physical interactions of the proteins responsible for carrying out

the core functions of cells, since interacting proteins tend to be

linked to similar phenotypes and genetic diseases. Accurate maps

of protein complexes are thus critical to understanding many

human diseases (Goh et al, 2007; Lage et al, 2007; Wang &

Marcotte, 2010). Technical advances in the field of proteomics,

including large-scale human yeast two-hybrid assays (Rual et al,

2005; Rolland et al, 2014), affinity purification/mass spectrometry

(AP-MS) (Hein et al, 2015; Huttlin et al, 2015), and co-fractionation/

mass spectrometry (CF-MS) (Havugimana et al, 2012; Kristensen

et al, 2012; Kirkwood et al, 2013; Wan et al, 2015), have enabled

the partial reconstruction of protein interaction networks in

humans and other animals, markedly increasing the coverage of

protein–protein interactions across the human proteome. Such

efforts are largely ongoing, as we still lack a comprehensive map

of human complexes, and we have only partial understanding of

the composition, formation, and function for the majority of

known complexes. Prior high-throughput protein interaction

assays in yeast and humans have generally tended to show

limited overlap (von Mering et al, 2002; Gandhi et al, 2006; Hart

et al, 2006; Yu et al, 2008), suggesting that interactions from

different studies tend to be incomplete, possibly error-prone, but

also orthogonal.

Over the past year, three large-scale mass spectrometry-based

protein interaction mapping efforts in particular have greatly

expanded the set of known human protein interactions, namely

BioPlex (Huttlin et al, 2015), Hein et al (Hein et al, 2015), and

Wan et al (Wan et al, 2015), collectively comprising 9,063 mass

spectrometry shotgun proteomics experiments. The three resulting

datasets are notable for representing independent surveys of

human protein complexes by distinct methods (AP-MS vs. CF-MS),
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in distinct samples (different cells and tissues), and in the case of

the two AP-MS datasets, using distinct choices of affinity-tagged

bait proteins. The datasets are complementary in other aspects as

well: The two AP-MS interaction sets are each sampled from a

single choice of immortalized cancer cell line grown in rich cell

culture medium and thus represent deep, but condition- and cell

type-specific, views of the interactome network. The AP-MS

networks sample only a fraction of human proteins as “baits” and

are limited to interactions which contain a bait protein, which is

expressed recombinantly as a fusion to an affinity purification

moiety (green fluorescent proteins (GFP) for Hein et al or FLAG-

HA for BioPlex). These strategies resulted in 23,744 and 26,642

protein interactions for BioPlex and Hein et al, respectively. In

contrast, the CF-MS experiments sampled endogenous proteins in

their native state without genetic manipulation, but with only

partial purification, relying instead on repeat observation of co-

eluting proteins across samples and separations to increase confi-

dence in the interactions. The resulting 16,655 protein interactions

reflect the biases expected for well-observed proteins, tending

toward more abundant, soluble proteins. Additionally, the Wan

et al interactome required all interactions to have evidence in at

least two sampled metazoan species; thus, only evolutionarily

conserved human proteins are represented. As a consequence,

none of these three datasets is individually comprehensive;

nonetheless, we expect them to present highly complementary,

potentially overlapping views of the network of core human

protein complexes. There is thus an opportunity to integrate these

over 9,000 published mass spectrometry experiments in order to

create a single, more comprehensive map of human protein

complexes.

Here, we describe our construction of a more accurate and

comprehensive global map of human protein complexes by

re-analyzing these three large-scale human protein complex mass

spectrometry experimental datasets. We built a protein complex

discovery pipeline based on supervised and unsupervised machine

learning techniques that first generates an integrated protein inter-

action network using features from all three input datasets and

then employs a sophisticated clustering procedure which optimizes

clustering parameters relative to a training set of literature-curated

protein complexes. While generating the complex map, we re-

analyzed AP-MS datasets to identify > 15,000 high-confidence

protein interactions not reported in the original networks. This re-

analysis substantially increased the overlap of protein interactions

across the datasets and revealed entire complexes not identified by

the original analyses. Importantly, the integrated protein interac-

tion network and resulting complexes outperform published

networks and complex maps on multiple measures of performance

and coverage, and represent the most comprehensive human

protein complex map currently available. Moreover, the frame-

work we employ can readily incorporate future protein interaction

datasets.

We expect that a comprehensive definition of protein complexes

will ultimately aid our understanding of disease relations among

proteins. In line with expectation, our map shows markedly

increased coverage of disease-linked proteins, especially for

proteins linked to ciliopathies, a broad spectrum of human diseases

characterized by cystic kidneys, obesity, blindness, intellectual

disability, and structural birth defects (Hildebrandt et al, 2011).

We highlight both known and novel complexes relevant to ciliopa-

thies and, moreover, experimentally validate multiple new protein

subunits of ciliary complexes, using in vivo assays of cilia structure

and function in vertebrate embryos. Additionally, we distribute

our results to the community in a simple and easy to navigate

website: http://proteincomplexes.org/. The scale and accuracy of

this human protein complex map thus provides avenues for

greater understanding of protein function and better disease

characterization.

Results

Overlap between three recent high-throughput animal protein
interaction datasets is modest, but can be greatly increased by a
re-analysis of the data

Protein interaction networks from various sources often show mini-

mal overlap (von Mering et al, 2002; Gandhi et al, 2006; Hart et al,

2006). We therefore first sought to measure the overlap of proteins

and interactions between three recently published protein interac-

tion datasets from BioPlex (Huttlin et al, 2015), Hein and colleagues

(Hein et al, 2015), and Wan and colleagues (Wan et al, 2015). The

BioPlex network is the result of 2,594 AP-MS experiments from

HEK293T cells. Similarly, the Hein et al network is the result of

1,125 AP-MS experiments from HeLa cells. In both screens, the

authors considered only interactions between the affinity-tagged bait

protein and the co-precipitated “prey” proteins, corresponding to a

“spoke” model of interactions (Fig 1A). The Wan et al network is

derived from a CF-MS analysis of nine organisms, comprising 6,387

MS experiments.

We observe reasonable overlap in terms of the proteins identi-

fied within each published network, ranging between 30 and 68%

of the proteins between individual networks (Table EV1). However,

the overlap among protein interactions was more limited, ranging

between ~3 and ~6% overlap (Fig 1B and Table EV1). There

are generally three accepted reasons for the limited overlap

commonly observed between large-scale protein interaction maps

(von Mering et al, 2002): (i) the interaction networks sample

different portions of the interactome (e.g., differences in cell types

and baits), (ii) the experimental methods used are biased toward

discovery of certain classes of interactions (e.g., soluble vs.

membrane protein interactions) and therefore are complementary

to the other methods, and (iii) the experimental methods produce

false-positive interactions.

To further probe the reason for the limited observed overlap,

we next considered whether the spoke model interpretation of the

AP-MS experiments was partly responsible. By only considering

interactions between bait proteins and their preys, spoke models

are heavily reliant on the baits selected for experimentation, and

also ignore evidence for repeated precipitation of intact complexes

across baits. Traditionally, spoke models have shown higher

accuracy when compared to the alternative full “matrix” model

interpretation (Fig 1C) (Bader & Hogue, 2002). However, the

discrimination between true and false protein interactions can be

dramatically improved by computing confidence scores for

prey–prey interactions when applying a matrix model (Hart et al,

2007; Wang et al, 2009) or a hybrid spoke–matrix model
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(e.g., socio-affinity index) (Gavin et al, 2006) to AP-MS data. In

order to reinterpret the AP-MS datasets using a matrix model

while effectively discriminating true- and false-positive inter-

actions, as well as suppressing “frequent flyer” co-purifying

proteins, we applied a hypergeometric distribution-based error

model to the AP-MS datasets, calculating P-values for pairs of

proteins that were significantly co-precipitated more often than

random across AP-MS experiments, herein referred to as weighted

matrix model. Figure EV1 illustrates a hypothetical example of

protein interactions scored using the weighted matrix model and

effectively discriminating true from false positives. We then

ranked each protein pair according to its calculated P-value and

selected the top N pairs for each AP-MS dataset, where N is the

number of interactions reported in the original published inter-

action networks (23,744 BioPlex interactions and 26,642 Hein

et al interactions). This reinterpretation of AP-MS experiments

using a weighted matrix model substantially increased the amount

of overlap among the three interaction networks, which rose to

between 10 and 15%, as plotted in Fig 1D (see also Table EV1).

This result indicates that there are thousands of interactions

captured by the AP-MS experiments that were not previously

identified and confirms a far greater consistency among the

underlying mass spectrometry datasets, arguing that a combined

analysis of the datasets could considerably improve coverage of

the complete human protein interactome.

Integrating the large-scale proteomics datasets into a human
protein–protein interaction network

Based on the notion that considering this large and diverse set of

experiments jointly should increase the ability to discriminate

between true and false protein interactions, we next asked

whether integrating all three large-scale datasets would outperform

the individual networks in terms of identifying true human protein

interactions. We employed a formal machine learning framework

to combine evidence from the thousands of individual mass spec-

trometry experiments in the three large-scale datasets. Our

approach was specifically designed to address the limited network
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Figure 1. Re-analysis of published AP-MS experiments improves overlap among protein interaction networks.

A Graphical schematic of spoke model applied to AP-MS datasets. In the spoke model, all interactions must include a bait protein.
B Venn diagram of overlap between published large-scale protein interaction networks BioPlex (AP-MS), Hein et al (AP-MS), and Wan et al (CF-MS). Protein interactions

in BioPlex and Hein et al were generated from a spoke model.
C Graphical schematic of matrix model applied to AP-MS datasets. In the matrix model, interactions are allowed between prey proteins.
D Venn diagram of overlap between protein interaction networks where a weighted matrix model was applied to BioPlex and Hein et al. Sizes of weighted matrix

model protein interaction networks were kept constant with published networks (for this analysis only while the full networks were used for integration). Note an
increase in the overall number of overlapping interactions when compared to (B).

E Diagram of protein complex discovery workflow. Three protein interaction networks, BioPlex, Hein et al, and Wan et al, were combined into an integrated protein
complex network and clustered to identify protein complexes. Parameters for the SVM and clustering algorithms were optimized on a training set of literature-
curated complexes and validated on a test set of complexes.
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overlap described above, using the weighted matrix model to

increase interaction coverage while preserving accuracy. We

expected the orthogonal techniques employed, CF-MS and AP-MS,

to complement each other, where CF-MS captures stable interac-

tions among endogenous proteins in diverse cells and tissues,

while AP-MS captures a large collection of interactions with dif-

fering biophysical characteristics. The three datasets also sample

very different portions of the human interactome in terms of cell

type and bait selection, which we similarly expected to contribute

to a more comprehensive map.

Figure 1E outlines the pipeline used for protein complex discov-

ery. We first generated a feature matrix using the raw untrained

published features from BioPlex, Hein et al, and Wan et al as well

as the new weighted matrix model features, in the form of a nega-

tive log hypergeometric P-value capturing the specificity and extent

to which pairs of proteins co-precipitated across many AP-MS baits.

Rows in the feature matrix represented pairs of proteins and

columns represented measured numerical estimates of protein pairs’

interaction potentials based on the different experiments. All protein

interaction features were calculated from raw experimental data,

and to avoid any circularity, no features trained on our gold stan-

dard were used (see Materials and Methods). We also labeled

protein pairs according to their support by a gold standard, litera-

ture-curated set of human protein complexes [the CORUM protein

complex database (Ruepp et al, 2010)]. We assigned a positive label

if both proteins were seen in the same complex, a negative label if

both proteins were observed in the literature-curated set but not in

the same complex, and an “unknown” label for all other pairs. A

support vector machine (SVM) classifier was trained using the

labeled feature matrix, then applied to all protein pairs, assigning

each pair an SVM confidence score, indicating the level of support

for that pair of proteins to participate in the same complex. This

classification step thus resulted in an integrated human protein–

protein interaction network, in which the nodes are proteins identi-

fied in any of the three experimental datasets, and the edges

between nodes represent co-complex interactions weighted propor-

tionally to the SVM score.

As an initial estimate of the quality of the integrated human

protein interactions, we calculated their precision and recall by

reconstructing a set of 15,687 gold standard, literature-curated co-

complex interactions omitted from the training procedure. While

networks generated using features from only one of the three data-

sets showed high precision for high-confidence interactions, they

quickly dropped in precision in the higher recall range (Fig 2A). In

contrast, the integrated network demonstrated substantial improve-

ments to performance, with a precision of 80% over just under half

of the benchmark interactions. Additionally, adding the weighted

matrix model features to the published interactions greatly

improved the performance, indicating that the weighted matrix

model features capture new information beyond spoke features and

serve as a rich source of evidence supporting true protein interac-

tions (Figs 2A, and EV2A and B).

Previous studies using proteomics data for interaction identifi-

cation saw gains in performance when non-physical data (co-

expression, co-citation, etc.) were included in training. Specifi-

cally, Wan et al (2015) included HumanNet (Lee et al, 2011)

features (only for protein pairs when there was also evidence in

the co-fractionation data), which showed a boost in performance.

Since we used features from Wan et al, we wanted to test the

value of the non-physical data in our pipeline. Figure EV2C shows

precision–recall curves for interaction networks trained without

literature-based evidence from HumanNet as well as a network

trained without all of HumanNet. Negligible performance loss is

observed when HumanNet is removed, suggesting large-scale

human protein interaction datasets have reached a sufficient

point where adding in supporting non-physical interaction infor-

mation is no longer necessary to support protein interaction

discovery.

Clustering pairwise interactions reveals human
protein complexes

A hallmark of protein complexes is that their component proteins

should frequently be co-purified in independent separations and

affinity purifications. This trend manifests as densely connected

regions of the interaction network, which we sought to identify by

applying a two-stage clustering procedure. In the first stage of clus-

tering, we applied the ClusterOne algorithm (Nepusz et al, 2012),

which identifies large, dense sub-networks of the full protein inter-

action network. Importantly, ClusterOne allows proteins to partici-

pate in more than one sub-network as dictated by the data, as

proteins frequently participate in more than one complex (Wan

et al, 2015). In the second stage, we separately applied MCL

(Enright et al, 2002) and Newman’s hierarchical clustering method

(Newman, 2004) to further refine the sub-networks produced by

ClusterOne. As with many unsupervised machine learning tech-

niques, clustering algorithms have adjustable parameters for opti-

mizing their performance. We therefore used a parameter sweep

strategy to identify choices of parameters that best recapitulated

known complexes. We evaluated each parameter combination by

comparing the resulting protein clusters to our literature-curated

training set of protein complexes and selected the top-ranking

parameter combination. As the comparison of protein complexes

to a gold standard set is not a fully solved problem, we first devel-

oped an objective scoring framework for complex-level precision

and accuracy, called k-cliques as we describe in the Materials and

Methods. This method allows us to compare predicted sets of

complexes to a gold standard to evaluate their similarity on a

global level.

We computed the performance in terms of reconstructing known

complexes for each of > 1,000 different clustering algorithm parame-

ter combinations, varying the SVM confidence threshold for the

input pairwise protein interactions, the ClusterOne density and over-

lap options, and the inflation option for MCL. The top-scoring sets

of clusters for the two second-stage clustering methods, MCL and

Newman’s hierarchical method, were of similarly high quality when

evaluated relative to the training set of complexes (Fig 2B). These

two top-scoring cluster sets also showed the top-ranking scores

when compared to the literature-curated leave-out test set for their

respective clustering methods, serving to validate the parameter

optimization method. As the two top-scoring cluster sets identified

many distinct specific complexes and sub-complexes, we combined

these two top-scoring definitions of complexes in order to provide a

more comprehensive view of the myriad of physical protein assem-

blies in human cells. The resulting fully integrated human protein

complex map, called hu.MAP, consists of 4,659 complexes, 56,735
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Figure 2. Integration of the three large-scale protein complex datasets substantially improves both precision and recall of known human protein
interactions.

A Precision–recall curves calculated on a leave-out set of protein interactions from literature-curated complexes for different combinations of predictive protein
interaction features. The integration of all three datasets outperforms all other networks. Also, note a substantial improvement in performance when the weighted
matrix model features are used (no MatrixModel, blue vs. integrated, orange).
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E Protein interactions from our complex map substantially overlap with other protein interaction datasets across a variety of experimental types.
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unique co-complex interactions and 7,777 unique proteins (Tables

EV2 and EV3).

The integrated map improves pairwise interaction performance,
identifies new interactions, and is strongly supported by
independent protein interaction datasets

We wished to assess the quality of the integrated map of human

protein complexes by multiple, independent approaches. First,

because the process of network clustering entails removing interac-

tions between proteins that are inconsistent with the defined

complexes, we might expect the resulting clustered network to be

more accurate than the pre-clustered network. Indeed, the final

interaction network shows improved precision and recall (Fig 2C),

indicating that the clustering step is preferentially removing false

positives from the original network.

Next, during the course of identifying protein interactions and

complexes, we withheld a leave-out set of literature-curated

complexes to serve as a final, fully independent test set. We

compared these data to the derived map and to previously published

complex maps, using two different comparison measures (Fig EV2D

and E). For both the k-clique metric and the precision–recall product

measure (Song & Singh, 2009), we observed a dramatic improve-

ment in performance over the Wan et al and BioPlex maps (note:

Hein reported only interactions, not complexes). We also observe in

Fig EV2F a broad distribution of complexes with various numbers of

subunits in our map, with 2,991 (64% of the total) having greater

than two subunits, suggesting that our clustering procedure is

capable of identifying the full range of complex sizes. A survey of

evidence supporting each interaction in the map showed multiple

lines of evidence supported many pairwise interactions (Fig 2D).

This further supports the notion that the underlying datasets are

orthogonal and that integrating them provides substantial improve-

ment on discriminating true and false protein interactions. Remark-

ably, however, we observed tens of thousands of interactions in the

map supported only by weighted matrix model features, 15,454 of

them having very high confidence (SVM score > ~0.27, see Materials

and Methods). Thus, considering prey–prey interactions in the AP-

MS datasets dramatically enhanced the identification of human

protein interactions.

Finally, in order to assess the quality of the final map indepen-

dently of both the test and training set complexes, we further eval-

uated our complex map with several of the largest remaining

available human protein interaction datasets. We observed highly

significant overlap with protein interactions from different experi-

mental methods, including yeast two-hybrid assays (Rolland et al,

2014), additional unpublished BioPlex AP-MS experiments

(BioPlex), and cross-linking mass spectrometry performed on

human cell lysate (Liu et al, 2015) (Fig 2E). Thus, comparisons

with independent datasets strongly support the high quality of the

derived protein complexes, as measured by multiple metrics of

performance, considering interactions both pairwise and setwise,

and even considering interactions measured independently by

multiple different technologies. The significant overlap of our

complex map with these other datasets also points toward the

potential value of integrating these datasets using the pipeline

described here to further improve coverage of the human protein

interactome.

Prey–prey interactions reveal a large, synaptic bouton complex,
isolated from HEK cells

The thousands of additional high-confidence interactions contrib-

uted by prey–prey co-purification patterns led us next to consider

their value in our protein complex discovery pipeline. In particular,

we asked whether weighted matrix model edges could indepen-

dently identify complexes, or whether they only served to support

observed bait–prey associations. We thus searched for complexes

in the map that were supported predominantly with weighted

matrix model interactions. Figure 3A summarizes AP-MS experi-

ments for four example complexes. Three of these complexes—the

exosome complex, eukaryotic initiation factor 3 (eIF3) complex,

and the 19S proteasome—were supported by both spoke edges and

weighted matrix model edges, showing high complementarity

between the two sets of interactions. This support was evident in

the strong interaction density both between bait proteins and

between bait and prey proteins within each complex. In contrast,

the fourth complex shown in Fig 3A is a newly identified complex

by our pipeline that surprisingly has limited density between bait

proteins, but substantial, high-specificity density in the prey region

of the matrix. Notably, the four bait proteins that each precipitates

nearly all 60 subunits of this complex largely do not co-precipitate

each other.

We performed annotation enrichment analysis to establish func-

tional connections between member proteins of this novel complex.

Strikingly, the proteins identified in this complex are highly specific

for cerebral cortex tissue, as measured by Human Protein Atlas

tissue expression data (Uhlén et al, 2015) (Fig 3B). We additionally

observed high brain-region-specific co-expression among members

of the complex, unlike as for random protein pairs, in the Allen

Brain Map microarray dataset (Hawrylycz et al, 2012) (Fig 3C). The

complex includes subunits of the SNARE complex, a known physi-

cally associated set of proteins involved in synaptic vesicles

(Südhof, 1995). Consistent with this trend, we found a strong

enrichment of Gene Ontology terms (GO) (Ashburner et al, 2000)

among members of the complex specific to neurotransmission and

neuron migration (Fig 3D). Thus, there is good correspondence

between this complex and known interacting protein complexes at

the synaptic bouton, the presynaptic axon terminal region contain-

ing synaptic vesicles, and the location of neuronal connections.

We next wanted to consider the possibility that the set of synap-

tic bouton complex proteins were co-precipitating due to their enclo-

sure in a membrane-bound organelle rather than making physical

co-complex interactions. We therefore looked at the expected

number of proteins we would find given the purification of a synap-

tic vesicle. Out of the 131 proteins annotated with the GO term

Synaptic Vesicle (GO:0008021), 66 are found in complexes in

hu.MAP, but only 12 are found in the synaptic bouton complex.

This low recovery of synaptic vesicle proteins suggests that

the synaptic bouton complex is not exclusively vesicle-bound

components.

Rather surprisingly, the AP-MS experiments that support this

complex were all performed with HEK293T cells. HEK293T cells

were first reported to be derived from human embryonic kidney

tissue (Graham et al, 1977), and therefore, it is puzzling as to why a

complex comprised of cerebral cortex-specific proteins showed

such a strong signal in kidney-derived cells. However, re-analyses
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of HEK293T cell origins suggest that they were originally mis-

annotated and actually derive from adjacent human embryonic

adrenal tissue, rather than embryonic kidney cells (Shaw et al,

2002; Lin et al, 2014), and thus exhibit many neuronal properties

(Shaw et al, 2002). The possibility remains open that the protein

complex identified here could also have additional roles in the body.

Nevertheless, this complex exemplifies the value of prey–prey

interactions for discovering protein complexes.

The integrated map markedly improves coverage of
disease-linked protein complexes

A key application of more accurate human protein complex maps

will be to highlight and characterize biologically important protein

modules, especially those relevant to human disease. We thus next

evaluated the map in reference to a variety of localization, func-

tional, and disease annotation datasets. First, we annotated proteins

in hu.MAP with information about their human tissue expression

patterns from the Human Protein Atlas (Uhlén et al, 2015). We

observed a substantial portion of proteins in our map expressed

across all assayed tissues, suggesting our map captures many core

processes in human cells (Fig 4A), although many tissue-specific

complexes appear to be identified as well, as for the example of the

synaptic bouton complex in Fig 3.

We next evaluated the fraction of complexes with significantly

enriched annotations [FDR-corrected hypergeometric test; g:Profiler

(Reimand et al, 2016)] from the Gene Ontology, Reactome, CORUM,

OMIM, KEGG, and HPA annotation databases (Ashburner et al,

2000; Ruepp et al, 2010; Kanehisa et al, 2014; Amberger et al, 2015;

Uhlén et al, 2015; Fabregat et al, 2016). While nearly all of the

complexes in hu.MAP (4646/4659) have at least one significantly

enriched annotation when searched individually (see Table EV4 for

full list of each complexes’ significantly enriched annotation terms),

in order to better estimate annotation enrichments considering the

> 4,000 distinct complexes being tested and the non-uniform

complex size distribution (Fig EV2F), we additionally estimated the

occurrence of significant enrichment by chance after permuting

protein memberships in complexes while maintaining the observed

distribution of complex sizes. Figure EV3 shows the distribution of

the largest -log(P-values) (i.e., most significant annotation) for each

complex for both hu.MAP and the shuffled complexes. Figure 4B

reports the set of hu.MAP complexes with a significantly enriched

annotation at a false discovery rate of 5% with respect to the shuf-

fled set of complexes. Greater than 40% (1,880 out of 4,659) of the

complexes had at least one significantly enriched annotation term,

demonstrating the biological pertinence of complexes in the map,

well in excess of shuffled complexes of the same sizes. While many

complexes of size 2 and size 3 were included in the set of 1,880

annotation-enriched complexes, larger complexes were increasingly

more likely to show functional enrichment, with 1,514 enriched

complexes containing three or more subunits.

Knowledge that a protein interacts with a disease-associated

protein greatly increases the probability that the first protein is

linked to the same disease (Dudley et al, 2005; Fraser & Plotkin,

2007; Lage et al, 2007; McGary et al, 2007; Ideker & Sharan, 2008).

Thus, we expect an important application of this map will be to

enable the discovery of candidate disease genes. In order to estimate

this strategy’s potential, we compared the map’s coverage of known

disease-associated proteins with other published networks.

Figure 4C shows the fraction of proteins annotated in the Online

Mendelian Inheritance in Man (OMIM) disease gene database,

mapped according to eight high-level Disease Ontology (DO) terms

(Schriml et al, 2012) for four complex maps [i.e., hu.MAP, Wan

et al, BioPlex, and a targeted cilia map from Boldt et al (2016)]. We

also evaluated three interaction networks (which serve to increase

its proteome coverage) specifically the full Hein et al interaction

network and the two targeted interaction networks of Gupta et al

(2015) (centrosomal) and Boldt et al (cilia). hu.MAP shows

substantially higher coverage than the other networks for nearly all

high-level DO terms, covering ~46% of the annotated human

disease-associated proteins.

New components of ciliary protein complexes

One specific class of diseases in particular stood out, namely

diseases related to defective cilia, known as ciliopathies. Cilia are

microtubule-based cellular protrusions that are critical for cell-to-

cell signaling (Eggenschwiler & Anderson, 2007; Oh & Katsanis,

2012) and proper embryonic development (Goetz & Anderson,

2010; Oh & Katsanis, 2012). Cilia assembly and maintenance

are highly regulated processes whose disruption can lead to

debilitating birth and early childhood disorders, including Joubert

syndrome, Meckel syndrome, Bardet–Biedl syndrome, orofaciodigital

syndrome, and polycystic kidney disease. Although many ciliopa-

thies share clinical presentations such as kidney and liver dysfunc-

tion, other clinical features and their severity can vary considerably

across individuals (Gerdes et al, 2009; Tobin & Beales, 2009; Hilde-

brandt et al, 2011). The resulting confounding array of clinical

features, an absence of cures, and limited but expensive treatments

all lead ciliopathies to collectively represent a major health burden

(Tobin & Beales, 2009). Protein complexes are integral to many

ciliary and centrosomal processes and have major roles in ciliopa-

thies (Gupta et al, 2015; Boldt et al, 2016). To more directly assess

hu.MAP’s relevance to ciliopathies, we measured its coverage of

ciliopathy-associated proteins (OMIM-annotated proteins mapped

onto the mid-level Disease Ontology term “ciliopathy”) and known

ciliary proteins [literature-curated as the SysCilia “Gold Standard”

(van Dam et al, 2013)] (Fig 4C). For both ciliopathy-associated and

ciliary proteins, we observed a substantial increase in coverage over

other general networks and complex maps, with hu.MAP covering

> 50% of ciliary proteins. Additionally, when compared directly to

the more targeted networks and complex map of Gupta et al and

Boldt et al, our map is comparable with regard to “ciliopathy”

proteins and exceeds coverage with regard to SysCilia proteins

(Fig 4C). Due to our map being proteome-wide, we anticipate simi-

lar levels of performance across many other specific disease types.

An examination of individual complexes enriched with ciliary

proteins highlighted both known and novel ciliary components.

hu.MAP reconstructed multiple known ciliary protein complexes

including the Intraflagellar Transport particles A and B (IFT-A and

IFT-B) (Piperno & Mead, 1997; Cole et al, 1998), the Bardet–Biedl-

linked BBSome (Nachury et al, 2007), the CPLANE ciliogenesis and

planar polarity effector complex (Toriyama et al, 2016), and the

CEP290-CP110 complex (Tsang et al, 2008) (Fig 5). In all, the map

contains 234 complexes and sub-complexes involving 158 ciliary

proteins (Table EV5), many associated with ciliopathies (den
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Hollander et al, 2006; Beales et al, 2007; Chetty-John et al, 2010;

Walczak-Sztulpa et al, 2010; Schaefer et al, 2014; Toriyama et al,

2016). Moreover, we observed many of these complexes to also

contain additional uncharacterized proteins. These novel proteins

represent excellent candidates for ciliary roles including potential

links to ciliopathies and points to the broad use of hu.MAP for

associating uncharacterized genes to disease phenotypes based on

co-complex interactions. We therefore next focused on detailed

experiments to characterize novel proteins’ in vivo functions and

subcellular localization in developing vertebrate embryos.

Observation of an 18-subunit ciliopathy-linked complex enriched
in centrosomal proteins

Among the ciliary complexes, we identified a large, 18-subunit

complex in which eight subunits were already linked to ciliopathies

and 14 members were known to localize to the centrosome centrio-

lar satellites (Figs 5 and 6A). A second 8-member complex was

observed interacting with subunits of the first complex, also

containing centrosome-localized and ciliopathy-linked proteins

(Fig 6A). Figure 6B plots the AP-MS observations that supported the

discovery of these complexes. We observed strong evidence for

physical associations among members in each complex, with many

edges supported by our weighted matrix model as well as affinity

purification of substantial portions of each complex by bait proteins

from multiple datasets. Centrosomes are the microtubule organizing

centers of cells, with dual roles in chromosomal movement and

organization of the ciliary microtubule axonemes. Thus, the marked

enrichment of centrosomal/centriolar satellite and ciliopathy

proteins in these two complexes strongly implicates a relationship

between centriolar satellites and ciliary-related disease.

Three of the 18 proteins in the larger complex were completely

uncharacterized (WDR90, CCDC138 and KIAA1328), so we deter-

mined the subcellular localization of tagged versions of these

proteins as a direct experimental test of the map’s prediction. We

expressed proteins in this complex as GFP fusions in multi-ciliated

cells (MCCs) of embryos of the frog Xenopus laevis, as these cells

provide an exceptional platform for studying vertebrate ciliary cell

biology in vivo (Brooks & Wallingford, 2012; Werner & Mitchell,

2012; Toriyama et al, 2016). Serving as positive controls, known

centrosomal components, including PIBF1, localized strongly and

specifically to basal bodies and co-localized with the basal body

marker Centrin4 (Fig 6C). WDR90, CCDC138, and KIAA1328 each

localized strongly and specifically to basal bodies, strongly support-

ing their participation in centrosomal and ciliary biology, and vali-

dating the map’s predictions.

ANKRD55 is a novel intraflagellar transport complex protein

We next focused on the IFT complexes, which link cargos to

microtubule motors for transport along ciliary axonemes (Taschner

& Lorentzen, 2016). The IFT system is comprised of two multi-

protein complexes, IFT-A and IFT-B (Piperno & Mead, 1997; Cole

et al, 1998). Our map effectively recapitulated known protein–

protein interactions in the IFT-B complex, assembling not only the

entire complex (Figs 5 and EV4A), but also recovering elements of

known sub-complexes. For example, the map assembled much of

the known IFT-B “core” (also called the IFT-B1 complex) contain-

ing IFT22, IFT46, IFT74, and IFT81. The map also identified a

complex containing IFT38, IFT54, IFT57, and IFT172, which

closely matches the recently described IFT-B2 complex (Katoh

et al, 2016; Taschner et al, 2016). The map further recapitulated

the smaller IFT-A complex (Figs 5 and EV4A), the anterograde IFT

motor complex of KIF3A, KIF3B, and KAP (Taschner & Lorentzen,

2016), and also more ancillary but relevant interactions, such as

that between IFT46 and the small GTPase ARL13B (Cevik et al,

2013).

Importantly, the map also predicted novel components of the IFT

complexes. For example, the map predicted an interaction between

IFT-B and RABEP2 (Fig 5), which is interesting because while

RABEP2 is implicated in ciliogenesis (Airik et al, 2016), its mecha-

nism of action remains obscure. Even more interesting is the link

between IFT-B and the poorly defined protein ANKRD55 (Figs 5 and

7A). A re-examination of the raw data from the AP-MS experiments

reinforced the notion that ANKRD55 is an IFT-B component

(Fig 7B), with the evidence coming entirely from BioPlex. Interest-

ingly, ANKRD55 is not present in complexes in the BioPlex map but

is identified in hu.MAP, suggesting our clustering procedure is

highly sensitive to previously overlooked complexes. We then tested

the hypothesis that ANKRD55 is an IFT-B component in vivo using

high-speed confocal imaging in Xenopus MCCs (Brooks & Walling-

ford, 2012). We find that an ANKRD55-GFP fusion protein localizes

to cilia, and moreover, time-lapse video analysis indicates that

ANKRD55 traffics up and down cilia (Fig 7C and Movie EV1). In

kymographs made from the time-lapse data, we observed

ANKRD55-GFP to move coordinately in axonemes with known IFT

protein CLUAP1-RFP (Fig EV5A, and Movies EV2 and EV3). Finally,

disruption of the ciliopathy protein JBTS17 was recently shown to

elicit accumulation of IFT-B proteins (but not IFT-A proteins) in

ciliary axonemes (Toriyama et al, 2016). Consistent with the

predicted association of ANKRD55 with IFT-B, we observed robust

aberrant accumulation of ANKRD55 in axonemes after JBTS17

knockdown (Fig EV5C).

▸Figure 3. Weighted matrix model edges identify large synaptic bouton complex.

A Presence/absence matrix of BioPlex AP-MS experiments as rows and pulled down proteins as columns for four complexes identified in our complex map. The
Exosome, eIF3 Complex, and 19S Proteasome all have multiple bait–bait interactions whereas the novel synaptic bouton complex does not have bait–bait interactions
but does have substantial density in the non-bait region of the matrix. This density is identified by the weighted matrix model and highlights the model’s ability to
discover protein complexes.

B RNA expression profiles of proteins in the synaptic bouton complex across different tissues sampled by the Human Protein Atlas. This shows the complex is highly
specific for cerebral cortex tissue. No less than six replicates were used for each tissue type. Boxes indicate median (inner band), first quartile (bottom) and third (top)
quartile. Whiskers indicate 1.5 interquartile range. Dots indicate outliers.

C Correlation coefficient distributions of Allen Brain Map tissue expression profiles between synaptic bouton complex proteins and random set of proteins. This shows
coherence of expression among proteins in the complex suggesting a functional module.

D Significantly enriched Gene Ontology annotations for proteins in the synaptic bouton complex shows enrichment for neuron development and synaptic transmission.
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Because IFT subunits have been linked to vertebrate birth

defects, as a new subunit of the IFT-B particle, we would expect

disruption of ANKRD55 to in turn disrupt ciliary function and

proper embryonic development. We performed in vivo experiments

in order to test ANKRD55 function, first by asking whether knock-

down elicited a similar cilia phenotype to IFT knockdown. Fig 7D
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shows images of morpholino antisense oligonucleotide (MO) knock-

downs of both ANKRD55 and its co-complex member IFT52; the

morphant embryos exhibit similar ciliary disruption phenotypes,

further supporting the connection between IFT and ANKRD55.

Finally, disruption of IFT in vertebrate animals, including Xenopus

and mice, results in defects in neural tube closure (Huangfu et al,

2003; Toriyama et al, 2016), and we therefore asked whether loss of

ANKRD55 would exhibit similar defects. Indeed, knockdown of

ANKRD55 in Xenopus embryos resulted in defective neural tube

closure; this defect could be rescued by expression of a version of

the ANKRD55 mRNA that could not be targeted by the MO, arguing

for the specificity of the knockdown phenotype (Fig 7E). Taken

together, the interaction, localization, and genetic perturbation data

all indicate that ANKRD55 interacts physically and functionally with

the IFT-B complex and strongly suggests that ANKRD55 is likely to

play a role in human ciliopathies.
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A Cystic kidney phenotype represented by polycystic kidneys from patient with OFD1 variant, adapted from Chetty-John et al (2010).
B Digit malformations represented by polydactyly of Bardet–Biedl syndrome patient with LZTFL1 (BBS17) variant, adapted from Schaefer et al (2014).
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ª 2017 The Authors Molecular Systems Biology 13: 932 | 2017

Kevin Drew et al A global map of human protein complexes Molecular Systems Biology

11

Published online: June 8, 2017 



A

OFD1
CEP131

FGFR1OP
CEP72

CCDC14
PCM1
MIB1

CCDC77
PPP2R3C

FGFR1OP

CSPP1

TTLL5
WDR90

H
ei

n
B

io
P

le
x

Prey Abundance
(Percentile Rank)

CCDC61

WDR90

BBS4

MIB1 SSX2IP

CEP295

CCDC18

FOPNL

CCDC14

CCDC138

C2CD3

KIAA1328

TTLL5

TBC1D31

PIBF1

CSPP1

PCM1

CEP72

CEP350CCDC77

PPP2R3C

CEP19FGFR1OP

CEP131

OFD1

KIAA0753

A
P

-M
S

 B
ai

ts

FO
PN

L
TT

LL
5

PI
BF

1
SS

X2
IP

C
C

D
C

14
C

C
D

C
61

W
D

R
90

C
C

D
C

13
8

KI
AA

13
28

Basal Body Marker 
(Centrin)GFP Fusion Overlay

K
IA

A
13

28
C

S
P

P
1

C
E

P
29

5
W

D
R

90
C

C
D

C
18

C
2C

D
3

TT
LL

5
C

C
D

C
14

C
C

D
C

77
TB

C
1D

31
K

IA
A

07
5 3

O
F D

1
FO

P
N

L
C

C
D

C
61

S
S

X
2I

P
C

E
P

72
P

C
M

1
B

B
S

4
M

IB
1

C
C

D
C

13
8

C
E

P
13

1
FG

FR
1O

P
C

E
P

35
0

P
P

P
2R

3C
C

E
P

19

C

N
ew

K
no

w
n

B

0 100

P
IB

F1

Figure 6. Oro-facial-digital syndrome 1 (OFD1) interaction partners are centriole and centriolar satellite proteins, suggesting new components of ciliary basal
bodies.

A Network of ciliopathy complex and closely interacting centrosomal complex. Edge weights represent SVM confidence scores where gray are intracomplex edges and
purple are inter-complex edges. Color of nodes follows Fig 5 conventions.

B Matrix of AP-MS evidence supporting both complexes. The matrix shows strong support for interactions within each complex. Bait proteins that are members of
either complex are labeled on the left.

C Experimental validation of ciliary proteins using multi-ciliated epithelial cells in Xenopus laevis. Localization assays for the three uncharacterized proteins in the OFD1
complex confirm that all three proteins localize to basal bodies at the base of the cilia in a manner similar to known components of the complex. Scale bars: 1 lm.
Each image is representative of nine cells from three different embryos.

Molecular Systems Biology 13: 932 | 2017 ª 2017 The Authors

Molecular Systems Biology A global map of human protein complexes Kevin Drew et al

12

Published online: June 8, 2017 



ANKRD55
TTC30A

TTC30B

IFT52

ANKRD55

IFT52

IFT27

A C D

proximal distal
0

10

Ti
m

e 
(S

)

ANKRD55-GFP

membrane GFP

membrane RFP

RFP-Cetn4

ANKRD55

IFT57

ARL13B

IF
T5

2

TT
C

30
A

TT
C

30
B

IF
T2

7

A
N

K
R

D
55

Prey Abundance
(Percentile Rank)

B
io

P
le

x 
A

P
-M

S
 B

ai
ts

0 100

B

E Control MO Rescue

Control MO Rescue

0

100

200

300

Av
g.

 D
is

ta
nc

e 
(μ

m
)

n=32 n=22 n=24

***
***

C
on

tro
l

A
N

K
R

D
55

-M
O

IF
T5

2-
M

O

Figure 7. ANKRD55 is a new component of the intraflagellar transport (IFT) particle, is important for ciliogenesis, and has a role in neural tube closure.

A Network view of two IFT sub-complexes associated with ANKRD55.
B Matrix of AP-MS experiments shows strong support for ANKRD55 association with known IFT proteins.
C ANKRD55 localizes to cilia as predicted from co-complex interactions, as assayed in vivo in multi-ciliated Xenopus laevis epithelial cells. Scale bar: 10 lm. Each image

is representative of 18 cells from six different embryos. Kymograph of ANKRD55 localized to cilia in vivo reveals rapid trafficking along the length of the cilia
(representative out of 36 multi-ciliated cells).

D Morpholino knockdown of ANKRD55 results in reduced count and length of cilia, in a manner similar to the control IFT52 knockdown, supporting a role in ciliogenesis
for ANKRD55. Scale bar: 10 lm. Each image is representative of 18 cells from six different embryos.

E Dorsal view of stage 19 X. laevis embryos displays that ANKRD55 knockdown causes neural tube closure defects that are rescued by wild-type ANKRD55mRNA. The Tukey
box plot displays average distance between neural folds in control (n = 32), morphant (n = 22), and rescue (n = 24) embryos. ***P < 0.0001, two-sample Kolmogorov–
Smirnov test. Boxes indicate median (inner band), first quartile (bottom) and third (top) quartile. Whiskers indicate 1.5 interquartile range. Dots indicate outliers.
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Discussion

Gaining a more complete understanding of the relationship between

human genotypes and phenotypes will require improved maps of

protein complexes as well as some understanding of their dynamic

nature across cell types and across the spectrum from healthy to

diseased tissue. Recent advances in proteomics now allow for the

comparison of biological networks across different conditions to

identify the dynamics of protein complex function (Ideker & Krogan,

2012; Kristensen et al, 2012). However, our ability to interpret these

experiments is hindered by the lack of a complete picture of protein

complexes. Here, we report a map that captures a significant portion

of the core protein machinery in human cells. This map provides

not only a framework on which to organize future experiments, but

also provides immediate insight into broad classes of human

diseases, including ciliopathies.

To produce this map, we described the re-analysis and integra-

tion of three large-scale protein interaction datasets. Our map

advances the state of the art in three fundamental ways. First, we

uncover additional signal in published AP-MS datasets using our

weighted matrix model approach. We showed that the limited over-

lap of the input published networks is due in part to the computa-

tional analyses of the underlying experiments, which suggests more

sophisticated analysis techniques may further uncover novel protein

interactions. Integration across the datasets greatly enhanced the

precision and recall of the final interaction network, in part by

scoring prey–prey interactions, leading us to identify thousands of

interactions which were previously unreported in the original

publications, as for the synaptic bouton complex. This weighted

matrix model approach should be of increasing importance because

of its ability to elegantly compensate for and capitalize on off-target

identifications in AP-MS datasets. The model’s ability to take into

account the frequency at which proteins are identified across experi-

ments allows for the filtering out of non-specific and contaminating

proteins found across datasets. It is likely the weighted matrix

model approach will only become more powerful as additional data-

sets are available and can be combined to identify subtle trends

across many experiments.

Second, we developed a machine learning framework that can

easily incorporate new data types to build more comprehensive

protein complex maps by integrating evidence across many experi-

ments. In this work, we demonstrate the effectiveness of integrating

multiple lines of evidence to identify protein interactions. Indeed,

there is tremendous effort in the community to generate ever

larger-scale maps of human protein interactions, and extensions to

ongoing high-throughput interactome studies can be naturally incor-

porated into our protein complex discovery framework. We envision

a continual expansion and refinement of this set of human protein

complexes using the described pipeline as new high-throughput

protein interaction experiments are published.

Third, we employed a clustering strategy that optimizes predicted

complexes based on training complexes and allows efficient removal

of false positives. To accomplish this, we developed a novel method

for comparing the reconstructed protein complexes to a gold stan-

dard set of protein complexes, a problem that has proven difficult

for the field. The solution we propose is formulated in a precision–

recall framework based on cliques derived from the predicted clus-

ters and gold standard set. This approach differs from previous

solutions in that it generates a global comparison between clusters

and the gold standard, rather than identifying the best match for

each single cluster at a time. The comparison method is applicable

whenever one wishes to compare two sets of sets, as it is general in

nature and should be useful beyond comparing protein complexes.

The overall clustering strategy allowed us to identify complexes that

were otherwise missed by traditional clustering techniques.

The success of long-standing efforts to understand the genetic

basis of human disease relies heavily on understanding the physical

interactions of proteins. We demonstrate the value of our complex

map for understanding human disease by featuring ciliopathy-

related complexes. Through this analysis, we highlighted uncharac-

terized proteins, which we experimentally validated to be cilia-asso-

ciated, as predicted by the map. We also knocked down one of

these proteins, ANKRD55, and showed a disruption in ciliogenesis,

which strongly suggests a role in ciliopathies. These results establish

the ability of an integrated human protein complex map to identify

new candidate disease genes, with potentially broad applicability to

many human diseases.

Materials and Methods

Gold standard training and test set complexes

For training and evaluating our protein complex discovery pipeline,

we used literature-curated complexes from the CORUM core set

(Ruepp et al, 2010). We first removed redundancy from the CORUM

set by merging complexes that had large overlap (Jaccard coeffi-

cient > 0.6). The set of complexes were then randomly split into

two sets, labeled test and training. Due to proteins participating in

multiple complexes, the randomly split sets were not fully disjoint.

We dealt with the overlap of these two sets differently at the pair-

wise interaction and complex level, as follows:

For the purposes of training and evaluating our SVM classifier,

we generated positive and negative pairwise protein interactions for

both test and training sets. A positive protein interaction is defined

as a pair of proteins that are part of the same complex. A negative

protein interaction is defined as a pair of proteins that are both in

the set of complexes but not part of the same complex. We

addressed overlap here between the test and training (positive/

negative) protein interactions by removing interactions from the

training protein interaction sets that were shared in the test protein

interaction sets, such that the sets were fully disjoint. Additionally,

112 pairs in the positive test set were not co-complex prior to our

merge step and were removed.

For the analyses of protein complexes, in order to ensure that

the test and training sets of complexes were disjoint, we removed

entire complexes from the training set which shared any edge with

a complex in the test set. In comparing the size distributions (the

number of subunits per complex) between the training and test sets,

we noticed a skew of larger complexes in the test set likely a result

of our conservative approach of removing complexes from the

training set. In order to better balance the training and test complex

set size distributions, we first randomly split the test set into two

and combined one half with the training complexes. We again

applied our redundancy removal procedure, removing complexes

from the training set which shared any edge with a complex in the
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test set. Similar to what has been done previously (Havugimana

et al, 2012; Wan et al, 2015), we also removed complexes larger

than 30 subunits from the test set so as not to skew performance

measurements.

The final pairwise protein interaction training/test sets consisted

of 27,665/15,575 and 2,543,855/2,867,914 positive and negative

interactions, respectively. The final protein complex training/test

sets consisted of 406/264 complexes. The complete lists of training/

test interactions and complexes are available at the supporting web

site (http://proteincomplexes.org).

Calculating protein interaction features from the mass
spectrometry datasets

We collected raw published features from three datasets, Wan et al

(Wan et al, 2015), BioPlex (Huttlin et al, 2015), and Hein et al (Hein

et al, 2015). All features from mass spectrometry experiments were

calculated from raw data, and no feature was trained using any gold

standard pairs prior to input into our machine learning framework.

Wan fractionation features included four measures of co-fractiona-

tion from 5,162 MS experiments as well as 19 lines of evidence from

HumanNet (Lee et al, 2011) and two additional AP-MS datasets

(Guruharsha et al, 2011; Malovannaya et al, 2011). Specifically, the

co-fractionation measures, as described previously (Havugimana

et al, 2012; Wan et al, 2015), included a Poisson noise Pearson

correlation coefficient, a weighted cross-correlation, a co-apex score,

and a MS1 ion intensity distance metric. Each co-fractionation

measure was applied to each fractionation experiment, totaling 220

features. As described in Wan et al, pairs of proteins were filtered to

ensure co-fractionation measures were > 0.5 in at least two species.

Additional features were taken from Wan et al (2015).

In summary, HumanNet features were originally downloaded

from http://www.functionalnet.org/humannet/download.html (file:

HumanNet.v1.join.txt). We excluded HS-LC (human literature-

curated) and HS-CC (human co-citation) evidence codes to remove

circularity in the training process. HumanNet features were only

included for pairs of proteins that had substantial co-fractionation

evidence, specifically co-fractionation measure greater than 0.5 in at

least two species. This resulted in 35,028 pairs with HumanNet

evidence (1.3% of the total number of pairs in the feature matrix).

The additional AP-MS fly feature, HGSCore value, was downloaded

from supplemental table S3 in Guruharsha et al (2011). The addi-

tional AP-MS human feature was based on the MEMOs (core

modules) certainty assignments “approved”, “provisional”, and

“temporary” downloaded from supplemental file S1 in Malovannaya

et al (2011), assigning the scores 10, 3, and 1, respectively. As was

done with the HumanNet features, features from Guruharsha et al

and Malovannaya et al were only included for pairs of proteins

which had co-fractionation evidence available.

BioPlex AP-MS features were downloaded from:http://wren.

hms.harvard.edu/bioplex/data/cdf/150408_CDF_STAR_GRAPH_Ve

r2594.cdf

Specifically, we used the following nine features: NWD Score, Z

Score, Plate Z Score, Entropy, Unique Peptide Bins, Ratio, Total

PSMs, Ratio Total PSM’s, and Unique: Total Peptide Ratio. For the

Hein AP-MS data, the features prey.bait.correlation, valid.values,

log10.prey.bait.ratio, and log10.prey.bait.expression.ratio were

taken from supplemental table S2 in Hein et al (2015). In the case of

multiple entries for a given protein pair, the mean value was used

across the experiments.

We generated two additional features for both the BioPlex and

Hein AP-MS datasets based on a weighted matrix model interpreta-

tion, specifically, the number of experiments a pair of proteins is

observed together (pair_count) as well as a �1*log(P-value) of two

proteins being observed together at random across all AP-MS experi-

ments, as calculated using the hypergeometric distribution as previ-

ously described (Hart et al, 2007).

Missing values for any of the features were set to 0.0 in the final

feature matrix.

Accurate learning of pairwise protein interactions

Given this feature matrix, we next proceeded to train a SVM protein

interaction classifier. We scaled the feature values using LIBSVM’s

(Chang & Lin, 2011) svm-scale to avoid features with larger

numeric range from dominating the classifier. We performed a

parameter sweep of the SVM C and gamma parameters using

LIBSVM’s cross-validation grid.py utility. Training and prediction

were calculated using LIBSVM’s svm-train and svm-predict

tools with the “probability estimates” option set to true. Finally, we

applied the SVM classifier to all pairs of proteins for which we had

data, thereby generating a protein interaction network in which

edge weights between protein nodes were set to the SVM’s probabil-

ity estimate for interacting. We repeated this procedure for combina-

tions of features including only features for individual publications,

as well as combinations found in Figs 2A and EV2A–C. To calculate

precision–recall curves, we used the python scikit-learn machine

learning package (Buitinck et al, 2013).

Identifying protein complexes by clustering the
interaction network

We applied a two-stage clustering approach to the protein interac-

tion network to identify clusters of densely interacting proteins,

representing our best estimates of protein complexes. First, we

sorted the edges of the protein interaction network by their interac-

tion probabilities and selected the top f percent of edges, where f is

a parameter in the range of [0.008, 0.01, 0.015, 0.02, 0.025, 0.03,

0.05] determined by a parameter sweep described below. We

applied the ClusterOne algorithm (Nepusz et al, 2012) to the result-

ing interaction network, specifying minimum size parameter = 2,

seed method parameter = “nodes”, density in the range [0.2, 0.25,

0.3, 0.35, 0.4], and overlap in the range [0.6, 0.7, 0.8]. For each

cluster produced by the ClusterOne algorithm, we refined the clus-

tering by performing a second round of clustering using the MCL

algorithm (Enright et al, 2002), specifying the MCL parameter infla-

tion (�I) to be in the range [1.2, 2, 3, 4, 5, 7, 9, 11, 15]. In parallel,

we refined each ClusterOne cluster using an alternate second-stage

clustering algorithm, the Newman method (Newman, 2004).

Finally, we removed any protein from the resulting clusters that did

not have an edge weight to the remaining proteins in the cluster

scoring above the filter parameter, f, which occasionally, although

rarely, arose through the action of the MCL algorithm.

To objectively optimize the choice of clustering parameters, we

performed the two-stage clustering process for each combination of

parameters, varying f, density, overlap, and inflation and selected
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the cluster set that maximized the F-Grand k-clique measure

compared to the training set of literature-curated complexes. The

best-scoring parameters for ClusterOne + MCL were size: 2, density:

0.2, overlap: 0.7, seed_method: nodes, inflation: 7, and f: 0.03. The

final parameters for ClusterOne + Newman were size: 2, density:

0.4, overlap: 0.7, seed_method: nodes, and f: 0.02. Edges that

passed the f filter corresponding to an interaction probability of

0.26509 were considered high confidence. Finally, we combined the

best-scoring two-stage clustering sets (i.e., the union of the best

performing ClusterOne + MCL and ClusterOne + Newman sets) to

form the final estimate of protein complexes.

Measuring accuracy of the protein complex map by the
k-clique method

Guiding and assessing the accuracy of the reconstructed complexes

requires comparison with a gold standard set of known complexes.

However, comparing sets of complexes to known complexes (or

more generally, comparing sets of sets with each other), is ill

defined due to the problem of first deciding which sets should be

compared and second, to the incomparable nature of specific

matches. For instance, given two non-overlapping complexes, one

of size 3 and one of size 20, it is difficult to assess whether an exact

match of the complex of size 3 should be given more weight than a

partial match of the complex of size 20 (e.g., with 17 out of 20

correct). Many complex–complex comparison metrics (Bader &

Hogue, 2003; Brohée & van Helden, 2006; Song & Singh, 2009) have

attempted to address this issue, but they are often difficult to inter-

pret and may lead to false minima in the parameter landscape, in

part because they require a mapping procedure to determine which

specific gold standard complexes match up with specific recon-

structed complexes.

In order to more systematically address these issues, we invented

a new class of similarity metrics, k-cliques, for comparing sets of

complexes in a formal precision–recall framework. Specifically, our

approach is based on the matching of cliques within the set of all

possible cliques between predicted complexes and benchmark

complexes. Cliques range from size 2 (pairwise protein interactions)

through n, where n is the size of the largest predicted complex. The

approach allows for precision and recall values to be calculated

unambiguously (because a clique is either present or absent in a

given set) for each clique size, k, and averaged to determine a single

performance metric (here, the F-Grand metric, corresponding to the

average across all clique sizes of the harmonic mean of precision and

recall). An important feature of the k-clique approach is that it

focuses the evaluation on protein interactions, rather than the

proteins themselves, providing a unique perspective on set compar-

isons. In addition, while other approaches suffer from evaluating

each complex individually and often require a cluster reduction step

in which similar clusters are combined to avoid potential skew, for

example, as caused by prediction of sub-complexes of larger

complexes, the k-clique approach compares complexes on a global

level and naturally deals with potential skew by only evaluating on

the unique set of cliques for all predicted complexes. Finally, there is

no need to determine a unique mapping between each predicted and

benchmark complex, thus avoiding mapping-induced ambiguity.

In detail, let C be a set of predicted complexes {c1, c2,. . ., cn} and

D be a set of gold standard complexes {d1, d2,. . ., dm}, where ci and

dj are an individual predicted complex and gold standard complex,

respectively. Let QD be the set of protein identifiers in D

(equation 1).

QD ¼
[

jDj
dj (1)

P represents the powerset (set of all subsets) and Pk represents the

powerset of a given size (e.g., k = 2, all pairwise combinations;

k = 3, all triplet combinations; etc.). Ak (equation 2) represents

the set of all size k cliques in the predicted clusters, C. An addi-

tional condition on Ak is that the individual cliques overlap with

proteins in the gold standard set (QD, equation 1), so we only eval-

uate on proteins that have known complex memberships. The

rationale for this is so we do not penalize novel predicted

complexes as false positives. Similarly, Bk (equation 3) represents

the set of all size k cliques in the gold standard complexes set D.

Note, there is no condition on Bk in terms of protein membership

as was done with Ak. This results in an absolute recall measure

and evaluates on all complexes in the gold standard regardless of

whether or not there is ample data for those proteins.

Ak ¼
[

ci2C
PkðciÞ \ PðQDÞð Þ (2)

Bk ¼
[

dj2D
PkðdjÞ
� �

(3)

Definitions of Ak and Bk now provide us with a way to compare

size k cliques in predicted clusters to size k cliques in gold standard

complexes in a precision–recall framework. Equations (4–6)

describe the operations of determining true positives (TPk), false

positives (FPk), and false negatives (FNk), respectively, for a given

clique size k.

TPk ¼ jAk \ Bkj (4)

FPk ¼ jAknBkj (5)

FNk ¼ jBknAkj (6)

Equations (7) and (8) define precision (Pk) and recall (Rk), and

equation (9) defines F-measure (Fk) as the harmonic mean of Pk
and Rk.

Pk ¼ TPk
TPk þ FPk

(7)

Rk ¼ TPk
TPk þ FNk

(8)

Fk ¼ 2� Pk � Rk

Pk þ Rk
(9)

Finally, we define a global F-measure (F-Grand, equation 10) as

the mean of Fk’s, iterating over clique sizes of k from 2 to K where K

is the max cluster size of the predicted clustering set C.
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Fgrand ¼
PK

k¼2 Fk
K � 1

(10)

Additionally, we define an alternative global measure that

defines weights for each Pk and Rk by the number of clusters, wk,

with size ≥ k. This allows for the mitigation of potential bias created

by large clique sizes only having a few contributing clusters.

Rweighted ¼
PK

k¼2 wk � RkPK
k¼2 wk

(11)

Pweighted ¼
PK

k¼2 wk � PkPK
k¼2 wk

(12)

Fweighted ¼ 2�
Pweighted � Rweighted

Pweighted þ Rweighted
(13)

In practice, the sizes of the clique sets (equations 2 and 3) are quite

large and computationally intractable to calculate. We therefore

randomly sample 10,000 cliques from Ak and Bk when evaluating

true-positive, false-positive, and false-negative values (equations 4–

6). Additionally, we add a pseudo-count of 0.00001 to true-positive,

false-positive, and false-negative values when calculating precision

and recall (equations 7 and 8). We have implemented a script to

calculate the F-weighted k-clique score that is available in our project

GitHub repository. An example command line is as follows:

python complex_comparison.py --cluster_predic-

tions hu_MAP.txt --gold_standard testComplexes.txt

Measuring overlap with independent protein
interaction datasets

In order to assess agreement between our complex map and other

protein interaction datasets, we compared the observed overlap of

protein interactions to the overlap expected by chance. We chose

three datasets that were not integrated into our protein complex

discovery pipeline, the yeast two-hybrid dataset from Rolland et al

(2014), released but unpublished interactions (06/12/2015) from

the BioPlex project (BioPlex), and an inter-protein cross-linking (1%

FDR) dataset from Liu et al (2015).

For the unpublished BioPlex dataset, we removed all interactions

that overlapped with the original published BioPlex interaction set

to ensure a disjoint set with our training dataset. For the Liu et al

cross-linking dataset, we considered a non-redundant subset by

collapsing all inter-protein cross-link interactions for each pair of

proteins to just a single interaction.

For each interaction dataset, we generated 1,000 random interac-

tion sets by randomly selecting M pairs of proteins where M is

the number of interactions in that dataset. We then compared the

overlap of interactions from our complex map with the random

interaction sets to determine a random distribution and calculated a

z-score for the overlap of our complex map and the original interac-

tion dataset relative to the random distribution.

Synaptic bouton complex expression analysis

We downloaded human normalized microarray datasets

H0351.2001, H0351.2002, H0351.1009, H0351.1012, H0351.1015,

H0351.1016 from the Allen Brain Map (Hawrylycz et al, 2012)

[downloaded from: http://human.brain-map.org/static/download].

For each gene in the synaptic bouton complex, we averaged expres-

sion values across corresponding probes and calculated Pearson

correlation coefficients for each pair of genes. For comparison to a

random background distribution, we randomly selected 60 probes

from the microarray datasets and calculated Pearson correlation

coefficients between the random probes and the genes in the synap-

tic bouton complex.

For tissue expression analysis of synaptic bouton complex genes,

we used RNA-sequencing data for 32 tissues from the Human

Protein Atlas (Uhlén et al, 2015) [downloaded: http://www.prote

inatlas.org/download/rna_tissue.csv.zip].

Calculations of tissue specificity, annotation enrichment,
and coverage

For comparing tissue specificity, we used reported RNA tissue

category assignments from the Human Protein Atlas (Uhlén et al,

2015) [downloaded: http://www.proteinatlas.org/download/prote

inatlas.tab.gz]. We mapped proteins to HPA entries with RNA

tissue category classifications, considering either the entire human

proteome, the union of proteins from protein interaction networks

of Wan et al, BioPlex, and Hein et al, or the proteins in our final

complex map. In order to calculate enriched annotations for each

complex, we applied g:Profiler (Reimand et al, 2016) with a FDR

(Benjamini–Hochberg) P-value correction per each complex and

excluded electronic annotations from consideration. We used the

complete set of proteins in the final protein interaction network as

the statistical background. Additionally, we produced a random

set of complexes by permuting the complex membership of

proteins in hu.MAP and calculating enriched annotations for each

shuffled complex as described above. We then used this set of

significantly enriched annotations on shuffled complexes to calcu-

late a false discovery rate of 5% on hu.MAP complex enrich-

ments. In order to calculate coverage of diseases, we mapped

OMIM annotations (Amberger et al, 2015) onto Disease Ontology

(Schriml et al, 2012) terms and then selected the top eight disease

categories as well as the term “ciliopathies”. We then mapped

proteins from our complex map, the Wan et al complex map

[downloaded: supplementary table S2 from Wan et al (2015)], the

BioPlex complex map [downloaded: supplemental table S3 from

Huttlin et al (2015)], and Hein et al protein interaction network

[downloaded: supplemental table from Hein et al (2015)] onto the

Disease Ontology terms. We also evaluated coverage of proteins in

the SysCilia Gold Standard Version 1 set of cilia-related proteins

(downloaded: http://www.syscilia.org/goldstandard.shtml) (van

Dam et al, 2013).

Calculation of prey abundance and network visualization

To calculate percentile ranks of prey abundance for AP-MS raw

data, we used the prey abundance measures “zscore” and

“prey.bait.correlation” from BioPlex and Hein et al, respectively.

We ordered each set and calculated the rank percentile using SciPy

stats.percentileofscore (Jones et al, 2015) for each pair in the list.

Networks of protein complexes were visualized using Cytoscape

3.2.1 (Shannon et al, 2003).
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Morpholinos and mRNA synthesis

Morpholino antisense oligonucleotides (MOs) were purchased from

Gene Tools. The ANKRD55 MO was designed to block splicing using

the sequence 50-TCTGAATCACCTTGAAGCACAAAGA-30. We used

previously validated MOs for JBTS17, 50-TCTTCTTGATCCACTTA
CTTTTCCC-30 (Toriyama et al, 2016); and IFT52, 50-AAGCAATC
TGTTTGTTGACTCCCAT-30 (Dammermann et al, 2009). Full-length

ANKRD55 cDNA (identified from Xenbase, www.xenbase.org) was

amplified from a Xenopus cDNA library and subcloned into the

vector pCS10R (derived from pCS107 expression vector) fused with

C-terminal GFP. The human CLUAP1 open reading frame was

obtained from the Human ORFeome collection V7.1 and subcloned

into the pCS10R-mCherry vector. Capped mRNAs were synthesized

using mMESSAGE mMACHINE (Ambion). mRNAs and MOs were

injected into two ventral blastomeres or two dorsal blastomeres at

the 4-cell stage to target the epidermis or the neural tissues, respec-

tively. We used each mRNA or MO at the following dosages:

ANKRD55 MO (30 ng for the epidermis and 20 ng for the neural

plate), JBTS17 MO (20 ng), IFT52 MO (40 ng), ANKRD55-GFP

mRNA (75 pg), ANKRD55 mRNA (350 pg for neural tube closure

rescue experiment), membrane RFP mRNA (50 pg), and mCherry-

CLUAP1 (100 pg).

Imaging and analysis

For high-speed live imaging, Xenopus embryos injected with

ANKRD55-GFP and mCherry-CLUAP1 mRNA were anaesthetized

with 0.005% benzocaine at stage 26. High-speed in vivo imaging

was acquired on a Nikon Eclipse Ti confocal microscope with a

63×/1.4 oil immersion objective at 0.267 s per frame. Kymographs

were calculated using Fiji (Schindelin et al, 2012). Confocal images

were collected with an LSM700 inverted confocal microscope (Carl

Zeiss) with a Plan-APOCHROMAT 63×/1.4 oil immersion objective.

Bright field images were collected using a Zeiss Axio Zoom V16

stereo microscope with Carl Zeiss Axiocam HRc color microscope

camera. Neural tube closure quantification was performed using

Fiji. A two-sample Kolmogorov–Smirnov test was used to compare

distributions of control, morphant, and rescue embryos. Sample

sizes were selected sufficient to determine moderate effects.

Embryos were randomly selected from multiple clutches, and cells

were randomly selected from individual embryos. No blinding to

treatment was employed.

Plasmids

CCDC138, CCDC61, TBC1D31, FOPNL, MIB1, PIBF1, and SSX2IP

entry ORF clones were obtained from the DNASU Plasmid Reposi-

tory (Seiler et al, 2014; Grant et al, 2015). Xenopus laevis cDNA was

prepared by reverse transcription (SuperScriptIII First-Strand

Synthesis, Invitrogen), and KIAA1328, WDR90, TTLL5 cDNAs were

PCR-amplified from the library using the following primers:

WDR90F: caccATGGCTGGAGTCTGGCAG

WDR90R: TGAATTCTGAATGTCCCACAC

TTLL5F: caccATGCCCGAAATGTTGCC

TTLL5R: TTTTCTTTGCCCTTTACTGTCGA

KIAA1328F: caccATGGATTTACAGAGGCAGCAAG

KIAA1328R: ACAAATGAAGAAGATCTCCTCTAACATC

PCR products were subcloned into Gateway ENTRY clones

(pENTR/D-TOPO Cloning Kit, Life Technologies). Destination

vectors were modified from destination vector Pcsegfpdest (a gift

from the Lawson laboratory) by inserting the a-tubulin promoter

between the SalI and BamHI sites. Fluorescence protein-tagged

expression plasmids were constructed using the LR reaction on

entry clones and destination vectors with the Gateway LR Clonase II

Enzyme mix (Life Technologies). Expression plasmids (40 pg) with

centrin-BFP mRNA (100 pg) were co-injected into the ventral blas-

tomeres of Xenopus embryos at the 4-cell stage and imaged at stage

27. Sample sizes were chosen to obtain representative images.

Xenopus embryos

Xenopus embryo manipulations and injections were carried out

using standard protocols. All experiments were performed following

animal ethics guidelines of the University of Texas at Austin, proto-

col number AUP-2015-00160.

Data availability

Protein interactions and complexes have been deposited in the

BioGRID database (Stark 2006) (https://thebiogrid.org/dataset/ma

rcotte2017) and can be searched interactively or downloaded at

http://proteincomplexes.org. Supporting computer code for the full

protein interaction mapping and analysis pipeline is available at:

https://github.com/marcottelab/protein_complex_maps_public.

Expanded View for this article is available online.
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