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hu.MAP 2.0: integration of over 15,000 proteomic
experiments builds a global compendium of human
multiprotein assemblies
Kevin Drew*,† , John B Wallingford & Edward M Marcotte**

Abstract

A general principle of biology is the self-assembly of proteins into
functional complexes. Characterizing their composition is, there-
fore, required for our understanding of cellular functions. Unfortu-
nately, we lack knowledge of the comprehensive set of identities
of protein complexes in human cells. To address this gap, we devel-
oped a machine learning framework to identify protein complexes
in over 15,000 mass spectrometry experiments which resulted in
the identification of nearly 7,000 physical assemblies. We show
our resource, hu.MAP 2.0, is more accurate and comprehensive
than previous state of the art high-throughput protein complex
resources and gives rise to many new hypotheses, including for
274 completely uncharacterized proteins. Further, we identify 253
promiscuous proteins that participate in multiple complexes point-
ing to possible moonlighting roles. We have made hu.MAP 2.0
easily searchable in a web interface (http://humap2.proteincomple
xes.org/), which will be a valuable resource for researchers across
a broad range of interests including systems biology, structural
biology, and molecular explanations of disease.
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Introduction

Macromolecular protein complexes carry out a wide variety of func-

tions in the cell including essential functions such as replication,

transcription, translation, and protein degradation (e.g., MCM-ORC,

RNA polymerase, ribosome, proteasome) (Alberts, 1998; Hartwell

et al, 1999). The disruption of protein complexes is implicated in

many human diseases (Goh et al, 2007; Bruel et al, 2017) and many

therapeutics target protein complexes (Arkin et al, 2014). The

formation of protein complexes to carry out biological function is a

general principle of biology and characterizing their composition is

therefore a basic requirement to our full understanding of cellular

functions. Unfortunately, we still lack knowledge of a comprehen-

sive set of protein complexes for the human cell.

To address this gap in knowledge, there is an ongoing worldwide

effort to identify all protein interactions in human cells. High-

throughput protein interaction screens using affinity purification

(AP-MS) (Malovannaya et al, 2011; Hein et al, 2015; Huttlin et al,

2015, 2017) have greatly increased coverage of protein interactions

across the proteome. Likewise, biochemical separation strategies,

such as co-fractionation mass spectrometry (CF-MS), have provided

orthogonal approaches to identifying protein complexes (Havugimana

et al, 2012; Kristensen et al, 2012; Kirkwood et al, 2013; Wan et al,

2015). Although these methods have identified tens of thousands of

protein interactions, they still have limited coverage of the entire

human interactome.

Fortunately, these high-throughput methods are orthogonal, each

sampling different parts of the human proteome and identifying sets

of interactions which do not completely overlap. We previously re-

analyzed and integrated three of the largest datasets available at the

time (Hein et al, 2015; Huttlin et al, 2015; Wan et al, 2015), over

9,000 mass spectrometry experiments, to build a more complete and

accurate set of protein complexes (Drew et al, 2017). Our resource,

hu.MAP, identified interactions for over a third of all human

proteins.

We envision interactomes as evolving entities, growing, and

improving as new technologies and datasets emerge. Here, we intro-

duce hu.MAP 2.0, which we find to be the most accurate and

comprehensive human protein complex map available to date.

hu.MAP 2.0 is an integration of over 15,000 mass spectrometry

experiments and identifies 6,965 complexes consisting of 57,148

unique interactions among 9,963 human proteins. Multiple perfor-

mance metrics demonstrate that hu.MAP 2.0 outperforms our previ-

ous map and other complex maps available in the literature. We

further show that complexes in hu.MAP 2.0 are not only highly

enriched for specific literature-curated annotations but also have
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greater coverage of completely uncharacterized genes. Finally, we

highlight several new biological findings that illustrate the utility of

hu.MAP 2.0 as a resource for biological discovery.

Results

Our strategy in building a comprehensive map of protein complexes

involves the integration of the many orthogonal experimental

protein interaction datasets available using a custom machine learn-

ing pipeline as shown in Fig 1A. Each individual experimental

dataset identifies different sets of protein interactions and therefore

combining them results in a more accurate and comprehensive set

of interactions. Our pipeline combines quantified features from

these datasets using a support vector machine (SVM) classifier

which calculates a confidence score of two proteins interacting. This

results in a large protein interaction network. The network is subse-

quently searched for dense regions of highly connected proteins

which represent individual complexes. The identified complexes are

ranked by a clustering confidence value. We call the resulting set of

complexes, hu.MAP 2.0. The map of complexes contains many

known complexes such as the EIF2B complex, Spliceosome, RNA

Pol III, and IFT-A complex (Fig 1A Positive Control Examples) as

well as many novel insights into the physical biology of the cell.

Integration of over 15,000 mass spectrometry experiments

To construct hu.MAP 2.0, we integrated over 15,000 previously

published mass spectrometry experiments using our custom

machine learning framework. We built upon the 9,000 mass spec-

trometry experiments used for hu.MAP 1.0 (Hein et al, 2015; Huttlin

et al, 2015; Wan et al, 2015; Drew et al, 2017) by incorporating addi-

tional affinity purification data from Bioplex 2 (Huttlin et al, 2017)

and (Boldt et al, 2016) as well as proximity labeling data from

(Gupta et al, 2015) and (Youn et al, 2018) (Fig 1A). Our rationale

for including these datasets was twofold. First, each dataset samples

a different set of bait proteins which provides increased coverage of

the interactome. Second, the methods are orthogonal and comple-

mentary, where affinity purification targets stable interactions, and

the proximity labeling datasets potentially also capture transient

in vivo interactions. The “Upset” plot (Lex et al, 2014) in Fig 1B

shows that tens of thousands of protein pairs are represented by 2

or more datasets providing orthogonal evidence for those interac-

tions. This greatly enhances our framework’s ability to identify true

interactions from false ones.

Additionally, we applied our Weighted Matrix Model (WMM)

technique which we previously demonstrated identifies many new

high confidence interactions from affinity purification data (Hart

et al, 2007; Drew et al, 2017). Contrary to the traditional spoke and

matrix models used to interpret AP-MS data that only consider one

pull-down experiment at a time, the WMM technique takes all pull-

down experiments from a given dataset into account and determines

protein pairs that are in the same pull-down experiments more often

than random chance. The WMM balances both the false-negative

and false-positive issues that face both the spoke and matrix models

and therefore is capable of identifying novel interactions. More

specifically, since a spoke model only considers interactions

between a bait protein and a prey protein, all true interactions

between prey proteins are missed leading to high false-negative

rates for the spoke model. Alternatively, a naive matrix model does

consider interactions between prey proteins limiting false negatives

but does so by treating all prey pairs equally. Some of these prey

pairs will participate in the same complex but since proteins partici-

pate in multiple complexes, two prey proteins pulled down by the

same bait are not guaranteed to interact. This leads to a high degree

of false positives for the naive matrix model. The WMM considers

all prey pairs as interactors but weights them according to the

frequency they occur together while controlling for “frequent flyer”

or “sticky” proteins. Therefore, by considering all prey pairs the

WMM has better false-negative rates than the spoke model, and by

accurately measuring the specificity of the prey pairs, the WMM has

better false-positive rates than the naive matrix model. The WMM

can be applied to proximity labeling experiments and also, in

contrast to the traditional models, the WMM can be applied to data-

sets that were not exclusively collected for the purpose of identify-

ing protein interactions. Specifically, we applied our WMM to

> 3,000 RNA hairpin pull-down experiments (Treiber et al, 2017)

and incorporated the results into our framework. Figure 1B shows

WMM overlaps substantially with other methods but also provides

additional information for many pairs of proteins not covered in the

other datasets (> 2.2 × 10E6 protein pairs attributed to WMM

alone).

hu.MAP 2.0 network is highly accurate

We next trained an SVM classifier to determine whether two

proteins interact in a macromolecular complex. The classifier uses

292 features computed from the mass spectrometry experiments and

is trained on examples consisting of co-complex protein interactions

from a set of > 1,100 literature-curated CORUM complexes (Giurgiu

▸Figure 1. Machine learning framework to identify protein complexes.

A Graphical description of computational pipeline to integrate > 15,000 mass spectrometry experiments. Number of experiments used is listed next to each technique
(see also Table 1). A Support Vector Machine (SVM) classifier was trained using numerical measures (i.e., features) on pairs of proteins calculated from original mass
spectrometry data and training labels from literature-curated complexes (CORUM). The classifier was then used to construct a protein interaction network by
calculating a confidence score for all pairs of proteins for their propensity to interact. Clustering parameters were then learned from training complexes, and five final
sets of clusters were chosen ranked in order of confidence from “Extremely High” to “Medium”. The union of these selected clusterings represents the final set of
hu.MAP 2.0 complexes. Networks of previously known protein complexes identified by this pipeline which were not in the training set of complexes are shown as
positive control examples.

B “UpSet” plot (Lex et al, 2014) displaying the intersections of protein pairs for all integrated datasets. Each set of connected black dots represents the intersection of
the respective datasets. Vertical bar plot displays protein pair count of intersection. Light gray dots are datasets not included in the intersection. Single unconnected
black dots represent protein pairs that are only present in a single dataset. Horizontal bar plot represents total protein pair count in each dataset. The plot shows the
Weighted Matrix Model (single black WMM dot) provides additional information for many pairs of proteins (> 2.2 × 10E6) that would be limited otherwise.
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et al, 2019). All features, with the exception of WMM features, were

downloaded from the original publications (see Materials and Meth-

ods for a complete list). The set of CORUM complexes were split

into two equal proportion non-overlapping test and train subsets.

We then derived sets of co-complex interactions from these test and

train complex subsets. The classifier was parameterized using 5×
cross-validation on the train co-complex interactions and applied to

17.5 million pairs of proteins scoring each one for their ability to

interact based on the input data (see Materials and Methods). The

full list of scored pairs and the complete feature matrix can be found

in the Data availability section.

To evaluate the performance of our SVM classifier, we examined

the confidence scores of 8,337 co-complex interactions in our

leave-out test set using a Precision-Recall framework (Fig 2A).

Precision-Recall frameworks are the preferred method of evaluating

imbalanced binary classification problems such as protein interac-

tion identification (Davis & Goadrich, 2006; Saito & Rehmsmeier,

2015). We see that hu.MAP 2.0 outperforms our previous complex

map, hu.MAP 1.0, as well as all other datasets including Bioplex 2,

Wan et al and Hein et al, demonstrating the power of data integra-

tion. For example, a direct comparison of hu.MAP 2.0 to hu.MAP

1.0 at a fixed precision of 0.5 results in an increase of 67% recall

relative to hu.MAP 1.0. We also evaluated the increase in total high

confidence (precision = 0.9) protein interactions identified by

hu.MAP 2.0 and saw an increase of > 1,880 high confidence interac-

tions over hu.MAP 1.0. Additionally, we see a drop in performance

when we remove the WMM features from hu.MAP 2.0 further show-

ing how important the WMM features are to performance improve-

ments. Finally, we compare hu.MAP 2.0 to the HuRi dataset which

encompasses a 17,500 × 17,500 all-by-all yeast 2-hybrid screen

(Luck et al, 2020). Yeast 2-hybrid aims to capture only direct

protein-protein interactions and has previously shown good perfor-

mance on benchmarks of binary interactors (Luck et al, 2020). Here

we see HuRi underperforms all other networks when evaluated on

co-complex interactions likely due to its inability to identify indirect

physical interactions.

Recently, a co-regulation map based on protein expression was

shown to capture relationships among proteins that do not necessar-

ily interact or co-localize (Kustatscher et al, 2019). This dataset

therefore provides an independent test of the quality of our protein

interactions. When we compared the hu.MAP 2.0 interactions to the

most co-expressing pairs in Kustatcher et al, we see a highly signifi-

cant overlap (P-value < 10E−10, hypergeometric test) indicating a

high degree of consistency between the orthogonal datasets.

hu.MAP 2.0 complex map

Once we confirmed our protein interaction network was of high

quality, we then clustered this network using a parameterized two-

stage clustering algorithm to identify highly connected proteins

which represent protein complexes. Briefly, the algorithm first filters

the network based on the confidence score from the SVM classifier

and then uses the ClusterOne algorithm (Nepusz et al, 2012) to clus-

ter the thresholded network. ClusterOne often produces large clus-

ters containing proteins from multiple complexes. To remedy this,

each resulting cluster is further clustered using the MCL algorithm

(Enright et al, 2002) (Fig 2B). There are several parameters for each

algorithm that require optimization in addition to an SVM

confidence score threshold of the input network. We therefore take

an agnostic approach and optimize these parameters by generating

clusterings for over 1,700 parameter combinations. Each parameter

combination is evaluated using the k-clique precision-recall perfor-

mance measure (Drew et al, 2017) comparing the resulting clusters

from the specific parameter combination with the CORUM-based set

of training complexes (Fig 2C). The resulting clusterings vary

substantially with regards to their performance but ultimately show

a familiar pattern of a trade-off between precision and recall. We

therefore selected five clusterings that balance the precision-recall

trade-off. For example, clustering 1 (green) is a set of clusters with

“extremely high” precision but low recall while clustering 5 (gray)

is a set of clusters with “medium” precision yet higher recall (Figs

1A and 2C). This allows us to rank our confidence of a protein

complex based on its appearance in one of the five clusterings. We

then combined all five selected clusterings into a union set while

preserving their precision rank (Dataset EV1).

To evaluate the union of clusterings that represent our final

hu.MAP complexes, we again use the k-clique precision-recall

performance measure but now calculated on the leave-out set of

test complexes. As shown in Fig 2D, our hu.MAP 2.0 complexes

balance both precision and recall. Additionally, we see a consistent

trend of k-clique precision and recall values for our individual clus-

terings between both the train (Fig 2C) and test sets (Fig 2D). This

suggests the confidence ranking given to each complex is robust.

We also observe our final set of complexes outperforms our previ-

ous hu.MAP 1.0 complexes and other previous state-of-the-art

complex maps. Taken together, this points to hu.MAP 2.0 complexes

as being highly accurate and spanning a large portion of all human

protein assemblies.

Identification of multifunctional promiscuous proteins

Now that we have established hu.MAP 2.0 as a highly accurate

resource of human protein complexes, we can ask questions about

protein assemblies in a systematic way. Specifically, one systematic

question we can ask is how prevalent are promiscuous proteins in

stable protein assemblies? That is, how often do we see proteins

participating in multiple different complexes and presumably

performing orthogonal functions (sometimes termed “moonlighting”

(Chapple et al, 2015; Jeffery, 2015)). We therefore created a non-

redundant set of complexes (see Materials and Methods) and

surprisingly identified 253 proteins that participate in multiple

complexes (Dataset EV2). This is a 53% increase over the same

analysis if done on hu.MAP 1.0.

The majority of promiscuous proteins appear only in two

complexes and the largest number of complexes a protein partici-

pates in is four, suggesting these are not just “sticky” interactions

but rather proteins participating in multiple specific complexes. The

253 proteins constituted nearly 7.5% of proteins in the non-redundant

set of complexes. This compares to 106 moonlighting human

proteins identified in the MoonProt database (Mani et al, 2015).

Additionally, when we compare expression levels from the Human

Protein Atlas (Uhl�en et al, 2015) across tissues of promiscuous

proteins versus non-promiscuous proteins, we see the bulk of the

distributions substantially overlaps, suggesting the promiscuous

proteins do not appear in a greater number of complexes due to

higher expression levels (Fig EV1).
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Figure 3A and B shows an example of a promiscuous protein,

HSPA9, participating in two unrelated protein complexes. HSPA9 is

a multilocational (mitochondria and nucleus) and multifunctional

protein, playing a role in mitochondrial import and stress response

(Wadhwa et al, 2002). We identify HSPA9 participating in two

complexes that reflect its multifunctional role. First, we identify

HSPA9 in complex HuMAP2_01130, a heat shock response complex

supported by AP-MS experiments (Guruharsha et al, 2011; Huttlin

et al, 2015) and co-fractionation evidence (Wan et al, 2015). And

second, we identify HSPA9 in complex HuMAP2_00358, a mito-

chondrial protein import complex supported by AP-MS experiments

(Malovannaya et al, 2011; Huttlin et al, 2015; Boldt et al, 2016), co-

fractionation evidence (Wan et al, 2015), and WMM based on

(Treiber et al, 2017). To further verify HSPA9’s membership in these
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Figure 2. hu.MAP 2.0 outperforms previous complex maps.

A Precision-Recall (PR) plot evaluated on a test (leave-out) set of literature-curated co-complex pairwise protein interactions. The plot shows hu.MAP 2.0 is more
accurate and comprehensive than previous published datasets. The plot also evaluates the performance of predictions without the Weighted Matrix Model (WMM)
and shows the WMM substantially improves performance.

B Clustering workflow used to identify protein complexes in hu.MAP 2.0 protein interaction network. The network is first filtered based on the confidence score
produced by the Support Vector Machine (SVM). The filtered network is then clustered using a two-stage approach, clustering first using ClusterOne, and then further
clustering with MCL. The resulting clusters are then evaluated using the k-clique method (see Materials and Methods) on training complexes. Approximately 1,700
parameter combinations were evaluated, each producing a unique set of clusters, sweeping SVM score filter thresholds, and clustering parameters (i.e., ClusterOne
Max Overlap, ClusterOne Density, and MCL Inflation).

C k-clique Precision-Recall (kPR) scatter plot of 1,700 clustering parameter sets. Five clusterings (colored hollow circles) were selected representing varying degrees of
confidence balancing the trade-off between precision and recall. The five selected clusterings were combined as a final set of clusters (orange filled circle).

D kPR scatter plot of hu.MAP 2.0 complexes (orange filled circle) and other published complex maps (colored filled circles) evaluated on a test set of literature-curated
complexes. hu.MAP 2.0 complexes increase in both precision and recall relative to other maps. Also plotted are the five sets of complexes at different levels of
confidence (colored hollow circles) demonstrating consistency between the level of confidence determined from training set (B) and test set.
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two complexes, we inspected sparkline traces of two co-fractiona-

tion experiments (Wan et al, 2015) (Fig 3C). We identified two sepa-

rate elution peaks of HSPA9 which correspond to the two

complexes. This example shows the ability of our complex map to

identify multifunctional promiscuous proteins and place them into

their respective non-overlapping functional complexes.

Saeed and Deane (2006) previously showed a strong relationship

between protein age and interaction connectivity. We therefore
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hypothesize that the promiscuous proteins would be on average

older due to younger proteins not having enough evolutionary time

to make multiple connections. Figure 3D shows a clear enrichment

in older proteins in the set of promiscuous proteins and a depletion

for younger proteins (see Materials and Methods). Using gProfiler

(Reimand et al, 2016) to identify functionally annotations for the

older promiscuous proteins, we identify older promiscuous proteins

are enriched for Reactome “Metabolism” (adjusted P-value

~ 5 × 10E−8, g:SCS corrected) among other metabolism-related

annotations (Fig EV2). Consistent with this finding, many “moon-

lighting” proteins are enzymes with multifunctional roles (Jeffery,

2015). Our results suggest a protein’s complex membership may

play a role in its multifunctional activity.

Functional annotation of uncharacterized proteins

High-quality protein complex maps have long been sought after for

the purpose of functionally annotating poorly characterized proteins

in a genome due to the relationship between physical interaction

and biological function (Gavin et al, 2002; Ho et al, 2002; Wang &

Marcotte, 2010). To assess hu.MAP 2.0’s ability to functionally

annotate uncharacterized proteins, we first tested whether our iden-

tified complexes are enriched with literature-curated annotations

including Gene Ontology (Ashburner et al, 2000), Reactome (Fabregat

et al, 2016), CORUM (Giurgiu et al, 2019), Human Phenotype

Ontology (Köhler et al, 2014), and KEGG (Kanehisa et al, 2014). We

see in Fig EV3 that >40% of our complexes are enriched with at

least one annotation which is 20.5-fold higher than expected by

randomly shuffled complexes. This result shows hu.MAP 2.0

complexes are functionally coherent.

As an example of the utility of hu.MAP 2.0 in annotating poorly

characterized proteins, Fig 4A shows two previously unreported

interactions with RNaseH2, CMTR1, and SETD3. The evidence for

these interactions is elucidated from co-fractionation mass spec-

trometry experiments which demonstrate a high degree of correla-

tion over multiple separation column types and multiple organisms,

which we have shown suggests a deep conservation in function

(Wan et al, 2015) (Fig 4B). RNaseH2 is implicated in Aicardi–-
Gouti�eres syndrome, a monogenic autoinflammatory disorder which

mimics in utero viral infection of the brain (Reijns & Jackson, 2014).

Mechanistically, RNaseH2 degrades RNA fragments of RNA-DNA

hybrids including Okazaki fragment RNA primers during DNA repli-

cation (Chapados et al, 2001). Mutations in RNaseH2 are thought to

disrupt the degradation of immuno-stimulating nucleic acids and

cause innate immune activation (Reijns & Jackson, 2014). CMTR1 is

a mRNA methyltransferase and a known regulator of protein expres-

sion of IFN-stimulated genes to restrict viral infection (Williams

et al, 2020). SETD3, also a methyltransferase, is a human host

protein critical for infection of a wide range of viruses and partici-

pates in viral replication yet its mode of action is currently unknown

(Diep et al, 2019). The links we identify between CMTR1, SETD3,

and RNaseH2 point to the hypothesis where CMTR1 and SETD3

interact with RNaseH2 to modulate the innate immune response

and affect viral replication.

It has been observed that biomedical research is biased toward

the study of well-annotated genes and this bias is due less to the

physiological importance or disease relevance of the gene but rather

to the ease of experimentation using traditional methods (Stoeger

et al, 2018). Unbiased systematic approaches such as the integration

of thousands of mass spectrometry experiments described here

provide a powerful tool for closing the gap of uncharacterized

proteins. We therefore cross-referenced genes deemed poorly anno-

tated (UniProt (The UniProt Consortium, 2017) annotation score

≤ 3) with hu.MAP 2.0 complexes that were enriched for functional

◀ Figure 3. hu.MAP 2.0 complexes identify promiscuous proteins.

A, B Multifunctional protein HSPA9 participates in two distinct complexes, HuMAP2_00358 (A) and HuMAP2_01130 (B). HuMAP2_00358 (turquoise, “high” confidence) is
enriched for Reactome annotation “Mitochondrial protein import”, a known function of HSPA9. HuMAP2_01130 (blue, “very high” confidence) is enriched for
Reactome annotation “Regulation of HSF1-mediated heat shock response”, another known function of HSPA9. Weight of network edges represent confidence of
interactions.

C Sparkline elution profiles from two orthogonal biochemical fractionation experiments. HEK 293 cell lysate was separated using a mixed bed ion-exchange column
and Drosophila melanogaster embryo lysate was separated using a heparin column (Wan et al, 2015). HSPA9 elutes in two distinct peaks (shaded) which co-elute
with members of the two complexes. X-axis represents fraction collected along biochemical separation. Y-axis for each row represents observed protein abundance.

D Promiscuous proteins are older on average than single complex proteins. Z-scores for each protein age group were determined by comparing the number of
promiscuous proteins to a randomly sampled background set consisting of non-promiscuous proteins (i.e., participating in only one complex).

▸Figure 4. Transfer of function annotations to uncharacterized proteins.

A SETD3 and CMTR1 are identified as co-complex interactors with the Ribonuclease H2 complex which provides a possible mechanistic explanation for their role in
viral infection.

B Sparkline elution profiles from multiple orthogonal co-fractionation experiments demonstrate a strong degree of co-elution among subunits in the SETD3-CMTR1-
RNAse H2 complex. Weight of network edges represents confidence of interactions. X-axis represents fraction collected along biochemical separation. Y-axis for each
row represents observed protein abundance.

C The uncharacterized protein, C7orf26, is identified as part of the Integrator complex.
D Sparkline elution profiles show a high degree of correlation between C7orf26 and subunits of the Integrator complex from multiple orthogonal co-fractionation

experiments.
E The association of C7orf26 and Integrator complex is additionally supported by affinity purification mass spectrometry (AP-MS) experiment where C7orf26 is pulled

down with Integrator subunit baits.
F The uncharacterized protein, CCDC9, is identified as co-complex with the exon–exon junction complex (EJC), a ribonucleoprotein complex involved in splicing.
G Sparkline elution profiles from the independently collected RNA DIF-FRAC size exclusion chromatography (SEC) experiment show CCDC9 co-elutes with known

subunits of the EJC when RNA is present (black). The elution profiles also show CCDC9 is sensitive to RNAse A treatment (shift of elution peak between black and red
profiles) as are the subunits of the EJC further supporting CCDC9’s participation in this known ribonucleoprotein complex.
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annotations. We identified 274 proteins in which we could transfer

the annotation of the complex to an uncharacterized protein

(Dataset EV3). This is an increase of ~ 40% over the same analysis

done with hu.MAP 1.0.

Within this set of uncharacterized proteins, we identify C7orf26 as a

member of the Integrator complex (Fig 4C). We see strong correlation

of C7orf26 with Integrator subunits in co-fractionation experiments

from both HEK 293 cells and fly embryos (Fig 4D). In addition, C7orf26

was also identified in several separate affinity purification experiments

(Malovannaya et al, 2011) where Integrator subunits were the target

bait protein (Fig 4E). The consistent results from these orthogonal data-

sets suggest a role for C7orf26 in the Integrator complex and provide a

new function for a completely unannotated protein.

We also observe another uncharacterized protein, CCDC9, as

being a member of the exon–exon junction complex (EJC; Fig 4F).

The interaction between CCDC9 and the EJC is supported by

evidence from Hein et al (2015) AP-MS experiments and WMM

evidence. Since the EJC is a ribonucleoprotein complex involved in

RNA splicing, we searched our previously collected RNA DIF-FRAC

mass spectrometry data (Mallam et al, 2019) for evidence of CCDC9

as being both a member of the EJC and also associated with RNA.

The DIF-FRAC experiment identifies ribonucleoprotein complexes

by comparing elution profiles of protein complexes with and with-

out RNAseA treatment. We see in Fig 4G CCDC9 not only co-elutes

with EJC subunits but is also sensitive to RNAseA treatment

suggesting it is interacting with the EJC while associated with RNA.

Importantly, the DIF-FRAC experimental data were not included in

the generation of hu.MAP 2.0 and therefore represent an indepen-

dent assessment of CCDC9’s interaction with the EJC. Additionally,

CCDC9 was identified as an RNA binding protein in high-throughput

screens searching for mRNA-binding proteins (Baltz et al, 2012;

Castello et al, 2012) which is consistent with our observation of

CCDC9 participating in a ribonucleoprotein complex.

Discussion

Herein, we describe the construction of the most accurate and

comprehensive protein complex map to date which fills a large gap

in our knowledge regarding the composition of functional complexes

in the cell. We demonstrate the utility of our map by assigning func-

tions for hundreds of completely uncharacterized proteins, providing

testable hypotheses for their characterization. Additionally, we

determine the prevalence of proteins that participate in multiple

independent protein assemblies including ones with disparate func-

tions suggesting moonlighting functions for the protein. Overall, our

results, searchable with a simple web interface (http://humap2.

proteincomplexes.org/), establish the utility of hu.MAP 2.0 for

furthering our understanding of human protein functions.

Summary of methodological updates to the hu.MAP pipeline
from version 1.0

While the substantial performance gain between hu.MAP 1.0 and

hu.MAP 2.0 is largely due to the addition of newly published inter-

actome datasets, we summarize changes between the pipelines here.

First, the hu.MAP 1.0 pipeline took advantage of LIBSVM’s (Chang

& Lin, 2011) grid.py utility to sweep SVM hyper-parameters C and

gamma. The grid.py utility relies on the accuracy metric for evalua-

tion defined as Accuracy = (TP + TN)/(TP + TN + FP + FN) where

TP is true positives, TN is true negatives, FP is false positives, and

FN is false negatives. Using accuracy as an evaluation metric is

problematic in cases of large class imbalance such as protein inter-

action prediction. Specifically, there are orders of magnitude more

negative interactions than positive interactions, and therefore, accu-

racy can be dominated by the true negatives resulting in a poor

predictor of new interactions. In the hu.MAP 2.0 pipeline, we there-

fore remedied this by developing our own cross-validation utility

(https://github.com/marcottelab/protein_complex_maps/tree/maste

r/protein_complex_maps/model_fitting/cross_validation) which uses

area under the precision-recall curve (PR-AUC) as a metric to identify

optimal C and gamma SVM parameters. PR-AUC does not rely on true

negatives for its calculation and is preferred for evaluation of prob-

lems with large class imbalance (Davis & Goadrich, 2006).

Second, we simplified the clustering section of the hu.MAP 2.0

pipeline to use only ClusterOne followed by MCL. In the hu.MAP

1.0 pipeline, we observed a gain in performance when we combined

results from the Newman clustering method (Newman, 2004) with

the MCL results. In the hu.MAP 2.0 pipeline, we do not see such

gains and opt for only using MCL.

Third, the hu.MAP 1.0 pipeline did not classify protein complexes by

their estimated confidence level. Hu.MAP 2.0 now allows for a quick

way for users to evaluate a complex of interest based on a confidence

measure. As described above, in the hu.MAP 2.0 pipeline, we use the k-

clique precision-recall performance measure for evaluating the gener-

ated clusterings. The k-clique precision-recall measure allows for a finer

grain analysis of performance due to the separation of precision and

recall terms as opposed to the F-Grand k-clique measure used in

hu.MAP 1.0. We were then able to select five clusterings that provided

a trade-off between precision and recall which ultimately serve as a con-

fidence score for the complexes in those clusterings.

hu.MAP 2.0 identifies complexes across a broad distribution of
biochemical classifications

A primary goal of our work is to identify all stable physical complexes

in human cells. While hu.MAP 2.0 substantially increases coverage of

stable human complexes, the results ultimately reflect the integrated

high-throughput methods’ ability to identify these assemblies. For

example, high-throughput biochemical purification techniques such

as AP-MS and CF-MS are commonly thought to be robust at identify-

ing soluble cytoplasmic protein complexes and less robust at purify-

ing, for example, membrane bound complexes. To determine whether

our hu.MAP 2.0 complexes were biased against certain categories of

proteins, we used PantherDB (Mi et al, 2019) GO analysis to identify

enriched and depleted terms. Interestingly, we see GO cellular compo-

nent terms such as “vesicle membrane” and “mitochondrial

membrane” as enriched with 1.27- and 1.41-fold enrichment respec-

tively. Alternatively, we see a depletion in proteins annotated with

“plasma membrane” in hu.MAP 2.0 yet only slightly, with a 0.86-fold

depletion and a total of over 2,300 proteins with the “plasma

membrane” annotation in our complexes. To further investigate the

validity of these proteins in our data, we searched, for examples, of

plasma membrane complexes. We found several high confidence

complexes enriched with “plasma membrane” term including a potas-

sium voltage-gated channel complex (HuMAP2_00584) and a
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fibroblast growth factor receptor complex (HuMAP2_06274). This

suggests that while the high-throughput methods we integrate in our

pipeline may have some biases against membrane associated proteins,

our map still has substantial coverage of these proteins and produces

coherent and biologically meaningful complexes.

To further explore biases in our dataset, we considered the

degree to which our complexes are distributed across all tissues/cell

types or are they cell type specific. To evaluate this potential bias,

we considered transcriptomics data in the Human Protein Atlas

(across 37 tissues, 43 single cell types, 10 main regions of each

mammalian brain, 18 blood cell types, and 69 cell lines) (Uhl�en

et al, 2015) as an indicator for protein expression. We evaluated

these data for the entire human proteome (Fig 5A), proteins identi-

fied in hu.MAP 1.0 (Fig 5B), and those identified in hu.MAP 2.0

(Fig 5C). In the entire human proteome, we see a substantial

number of proteins likely expressed in all samples (~ 50%) but still

many displaying some specificity. In hu.MAP 1.0 and hu.MAP 2.0,

we see the vast majority of proteins likely expressed in all samples,

~ 76 and ~ 70%, respectively. This suggests that the complexes we

identify are likely to be expressed across many different cellular

conditions and cell types. As more and more high-throughput data-

sets are collected on different cell types and tissues, we expect to

identify more cell type-specific complexes upon their integration.

Completeness of human protein complex map

Our goal in this work is to build a complete and accurate set of

protein complexes. We next asked how far have we come in achiev-

ing this goal? The size of the human interactome has previously been

estimated to contain 154k–369k total interactions (Hart et al, 2006).

Here we report 57k distinct interactions equating to roughly 15–37%
complete. Consistent with this, if we consider the CORUM bench-

mark we use for evaluation in Fig 2A as representative of all interac-

tions, we see the majority of the hu.MAP 2.0 precision-recall curve

in Fig 2A roughly falls between 15 and 37% recall. Also, making the

same assumption for the CORUM benchmark, we can get rough esti-

mates of hu.MAP 2.0’s coverage of total protein complexes. The

precision and recall metrics used in Fig 2D are robust to any redun-

dancy and therefore give an accurate representation of total cover-

age. In Fig 2D, we see hu.MAP 2.0 covers > 30% of complexes in

the benchmark at a precision of 60%. As described in the section

above, many cell type and condition-specific interactions likely make

up a large portion of the remaining undiscovered interactions. We

expect these interactions to be a focus of future experimentation in

order to gain greater coverage of the complete human interactome.
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Figure 5. Protein complex map coverage across Human Protein Atlas
tissues and cell specificity.

A Coverage of all human proteins shows a broad distribution of proteins
classified into a range of specificity classes, from detected in all tissues and
cells to detected in only a single tissue or cell type.

B Coverage of hu.MAP 1.0 proteins show a narrower distribution of proteins
classified into specificity classes with the majority of proteins detected in
many or all tissues and cell types. This suggests hu.MAP 1.0 represented the
core cellular machinery.

C Coverage of hu.MAP 2.0 proteins show a distribution representative of the
core cellular machinery shared among all or many tissue and cell types but
also shows an increase in cell type specificity with gains in proteins that
are only detected in some tissues/cell types.
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Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source Identifier or Catalog Number

Software

MCL Version: 14-137 https://micans.org/mcl/ (Enright et al, 2002)

ClusterOne Version: 1.0 https://paccanarolab.org/cluster-one/ (Nepusz et al, 2012)

LibSVM Version: 321 https://www.csie.ntu.edu.tw/~cjlin/libsvm/ (Chang & Lin, 2011)

UpSet Version: 0.4.1 https://upsetplot.readthedocs.io/en/stable/ (Lex et al, 2014)

MSBlender Version: ec3b484 https://github.com/marcottelab/MSblender (Kwon et al, 2011)

ProteinComplexMaps Version: 512b9b5 https://github.com/marcottelab/protein_complex_maps (Drew et al, 2017)

Methods and Protocols

Mass spectrometry dataset collection
Mass spectrometry data and features based on those data used as

input into the machine learning classifier were collected from vari-

ous publications. Specifically, protein interaction features for data-

sets used in hu.MAP 1.0 (Drew et al, 2017), e.g., Wan et al, Hein

et al, Huttlin et al, were downloaded from http://hu1.proteincomple

xes.org/static/downloads/feature_matrix.txt.gz. Four vector compar-

ison measures were used for co-fractionation data from Wan et al

including Poisson noise Pearson correlation coefficient, weighted

cross-correlation, co-apex score, and MS1 ion intensity distance

metric. All four vector comparison measures were applied to each

of the 55 fractionation experiments, totaling 220 features. Pairs of

proteins were filtered to ensure co-fractionation measures were

> 0.5 in at least two species. AP-MS data from (Guruharsha et al,

2011) mapped onto human orthologs using InParanoid (Sonnham-

mer & Östlund, 2015) were represented using the HGSCore value

originally downloaded from supplemental table S3 in Guruharsha

et al AP-MS data from (Malovannaya et al, 2011) were repre-

sented by the MEMOs (core modules) certainty assignments

“approved”, “provisional”, and “temporary” originally downloaded

from supplemental file S1, assigning the scores 10, 3, and 1, respec-

tively. Bioplex 1.0 (Huttlin et al, 2015) features were used as origi-

nally downloaded from http://wren.hms.harvard.edu/bioplex/data/

cdf/150408_CDF_STAR_GRAPH_Ver2594.cdf including NWD Score,

Z Score, Plate Z Score, Entropy, Unique Peptide Bins, Ratio, Total

PSMs, Ratio Total PSMs, and Unique:Total Peptide Ratio. For the

Hein AP-MS data, the features prey.bait.correlation, valid.values,

log10.prey.bait.ratio, and log10.prey.bait.expression.ratio were

taken from supplemental table S2 in (Hein et al, 2015). The mean

value was used across the experiments in the case of multiple

entries for a given protein pair. Note, all HumanNet (Lee et al,

2011) features were excluded from all model training.

New datasets added for hu.MAP 2.0 were downloaded from orig-

inal publications or associated dataset web resources as shown in

Table 1. The same measures used for Bioplex1.0 were also used for

Bioplex2.0 features specifically NWD Score, Z Score, Plate Z Score,

Entropy, Unique Peptide Bins, Ratio, Total PSMs, Ratio Total PSMs,

Unique:Total Peptide Ratio and Average Assembled Peptide Spectral

Matches. We used the measures from the proximity labeling dataset,

Gupta et al, for both the ciliated condition and nonciliated

condition, specifically Average Spectra, Average Saint probability,

Max Saint probability, Fold Change, and Bayesian FDR estimate.

The same measures were used for the proximity labeling Youn et al

data but only for the single condition. Measures used for Boldt et al

data were socioaffinity index (SAij) and individual terms based on

the spoke model for where protein i is the bait (Sij) and where

protein j is the bait (Sji). The matrix model term for the socioaffinity

index was also used (Mij). Mass spectrometry data from (Treiber

et al, 2017) were downloaded from the Pride web resource (Perez-

Riverol et al, 2019) (PXD004193) and reprocessed using the MSBlen-

der pipeline (Kwon et al, 2011). Full details are described in

Table 1. Integrated mass spectrometry datasets.

Dataset
Num of
experiments Link

Wan et al (2015) 5,344 fractions http://hu1.proteincomplexe
s.org/static/downloads/fea
ture_matrix.txt.gz

Hein et al (2015) 1,125 bait pull-
downs

http://hu1.proteincomplexe
s.org/static/downloads/fea
ture_matrix.txt.gz

Bioplex 2.0 (Huttlin
et al, 2017)
(includes Bioplex 1.0)

5,891 bait pull-
downs

https://bioplex.hms.harva
rd.edu/data/BaitPreyPairs_
noFilters_BP2a.tsv

Gupta et al (2015) 2 conditions x 58
proximity labeled
baits = 116

http://prohits-web.lunenfe
ld.ca/

Youn et al (2018) 119 proximity
labeled baits

http://www.cell.com/cms/
attachment/2118963855/
2087347233/mmc2.xlsx

Boldt et al (2016) 217 bait pull-
downs

https://static-content.
springer.com/esm/art%
3A10.1038%2Fnc
omms11491/MediaObjects/
41467_2016_BFnc
omms11491_MOESM835_
ESM.xlsx

Treiber et al (2017)
(reprocessed by
(Mallam et al, 2019))

3,004 RNA hairpin
pull-down MS
runs

https://www.cell.com/cms/
10.1016/j.celrep.2019.09.
060/attachment/45abb95b-
ef3f-4752-8906-dc5eed
118480/mmc4.csv
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(Mallam et al, 2019). Only WMM features, described below, were

calculated for Treiber et al.

HuRI dataset (Luck et al, 2020), which was not included in train-

ing but was included for evaluation, was downloaded from http://

interactome.baderlab.org/data/HuRI.tsv. HuRI protein interactions

were ranked based on the number of assays the interaction was

identified in.

Weighted matrix model
To gain additional information on the probability that two proteins

interact, we generated additional features using a WMM. The

WMM is based on the hypergeometric distribution and is described

in (Hart et al, 2007) and (Drew et al, 2017). Briefly, we used the

hypergeometric test (equation (1)), where k represents the number

of experiments when both proteins A and B are identified. Vari-

ables n and m represent the number of experiments that indepen-

dently identified protein A and protein B respectively. N represents

the total number of experiments. The index i is defined from k to

the minimum of n and m.

p #sharedexperiments≥ kjn,m,Nð Þ¼ ∑
minðn,mÞ

i¼k

n

i

� �
N�n

m� i

� �

N

m

� � : (1)

Our implementation of the WMM is based on presence or

absence of proteins in individual experiments (e.g., one pull-down).

Due to the nature of high-throughput experiments, noise arises in

the form of spurious identifications leading to a protein being erro-

neously called present in the experiment. To deal with this noise,

we set arbitrary but sensible cutoffs of the quality of identification

required for a protein to be considered present in the experiment.

WMM for Bioplex2.0 was calculated only considering experiments

for a given protein where the protein had > 2.0 Bioplex2.0 Z score

and > 4.0 Bioplex2.0 Z score. WMM based on Gupta et al were

calculated considering all experiments, > 2 average spectral counts,

and > 4 average spectral counts. WMM based on Boldt et al were

calculated considering all experiments and > 4 spectral counts.

WMM based on Treiber et al were calculated considering > 2 spec-

tral counts and > 4 spectral counts. WMM based on Youn et al were

calculated considering all experiments, > 2 spectral counts and > 4

spectral counts. For each calculation, we generate a feature in the

form of the negative natural log P-value of Equation (1) and the total

number of experiments the pair of proteins is observed together

(i.e., pair count).

All features, precalculated from original publications and WMM,

were combined into 17,564,755 protein pairs × 292 features matrix.

Since not all features cover all protein pairs, missing values were

filled with 0.0. The final feature matrix can be found in the Data

availability section.

Gold standard test and training set
To create a test and training set of literature-curated protein

complexes, we downloaded the complete set of CORUM complexes

(Giurgiu et al, 2019) version 2017_07_02 (http://mips.helmholtz-

muenchen.de/corum/download/corum_2017_07_02.zip) and fil-

tered out all non-human proteins. Complexes were merged to elimi-

nate redundancy, so no two complexes had > 0.6 Jaccard

coefficient. Complexes were then randomly split into test and train-

ing sets. A complex was removed from the test or training sets if

any pairs of proteins overlapped in the other set. Large complexes

> 30 subunits were removed from the test and training complexes.

Test and training sets were also generated for pairs of proteins for

training the SVM classifier. A pair of proteins was labeled “positive”

if both proteins were in the same complex. A pair was labeled

“negative” if proteins were in separate complexes. All other pairs

were left unlabeled. For test and training pairs, only 10% of pairs

from large complexes were considered. Below is the command line

used to generate the test and training sets:

./protein_complex_maps/preprocessing_util/complexes/split_

complexes.py --input_complexes allComplexes_20170702_geneids_hu

man.txt --random_seed 1234 --size_threshold 30 --subsample_large_

complexes 0.1 --remove_large_complexes --remove_largest --merge_

threshold 0.6

Additionally, the full test and training sets used in this study can

be found in the Data availability section.

Support vector machine model selection and evaluation
We trained a SVM classifier using Libsvm (Chang & Lin, 2011) to

classify pairs of proteins as co-complex protein interactions. We first

generated a feature matrix using the features described above where

rows are pairs of proteins and columns are features. The feature

matrix was further labeled using the gold standard training set

described above. We used fivefold cross-validation using only the

training set when training to select SVM parameters C and gamma.

We evaluated a range of C values (2, 8, 32, 128, 512) and gamma

values (0.00048828125, 0.001953125, 0.0078125, 0.03125). As an

evaluation metric, we used Area Under the Precision-Recall Curve

(AUPRC) averaging across the five cross-validation sets. We identi-

fied C = 512 and gamma = 001953125 with the highest cross-vali-

dated AUPRC. We retrained a full model using all training data

using these parameters. We used this final model to predict on all

pairs in the feature matrix. The final result is a list of pairs with a

corresponding score generated by model.

We evaluated the final model using a precision-recall framework

as shown in Fig 2A. We used the scikit-learn python package

(preprint: Buitinck et al, 2013) to calculate precision and recall for

the leave-out gold standard test protein pairs.

For comparisons between datasets as shown in Fig 2A, we gener-

ated additional models restricting the features to just those gener-

ated from the given dataset keeping the parameters C and gamma

fixed. Note, the HuRI dataset was evaluated using the dataset

directly as described above.

We additionally evaluated the SVM confidence score for its fide-

lity to the test set precision value. We observed that the test set preci-

sion is consistently higher than the confidence score (Fig EV4). For

example, a confidence score as low as 0.02 has ~0.5 precision value.

Two-stage clustering and parameter set selection
We next used a two-stage clustering approach to identify clusters

within the protein interaction network generated by the classifi-

cation step described above (Fig 2B). First, the network was thresh-

olded based on the SVM score. We then applied the ClusterOne

(Nepusz et al, 2012) algorithm to identify dense regions in the

thresholded network. Further, for each dense region produced by

ClusterOne, we applied the MCL (Enright et al, 2002) algorithm to
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identify clusters. To identify optimal parameters for the score

threshold, ClusterOne parameters density and overlap as well as

MCL inflation parameter, we generated clusters for various parame-

ter combinations. Specifically, we evaluated a range of parameters:

SVM score threshold (1.0, 0.99, 0.97, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5,

0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005,

0.00001), ClusterOne max overlap (0.6, 0.7, 0.8), density (0.1, 0.2,

0.3, 0.35, 0.4), and MCL inflation (1.2, 2, 3, 4, 5, 7, 9, 11, 15). We

also compared using an unweighted graph as input into ClusterOne

versus a weighted graph and observed the unweighted graph had

superior performance. A weighted graph was used for the MCL stage

clustering. We additionally applied a post-clustering filter that

removed nodes from a cluster that lacked edges that scored greater

than the SVM score threshold.

To evaluate the clusterings as shown in Fig 2C and D, we used

the k-cliques method, specifically weighted recall (R_weighted),

and weighted precision (P_weighted), which we described previ-

ously (Drew et al, 2017). Briefly, the k-cliques method globally

compares a set of clusters to a set of gold standard complexes by

comparing cliques derived from the clusters to cliques derived

from gold standard complexes. This comparison is done for all

clique sizes from size 2 (i.e., pairs) to size n (i.e., the size of the

largest complex or cluster). A precision and recall value are calcu-

lated for all clique sizes. A weighted average is then calculated for

both precision and recall across all clique sizes, weighted by the

number of clusters with size >= to the clique size. This is to limit

the bias effect that larger clusters will have on the final precision

or recall value.

We evaluated all clusterings using the k-cliques method, compar-

ing to the training set of gold standard complexes. We selected five

clusterings that optimize the trade-off between precision and recall

as shown in Fig 2C. These five clusterings were then combined into

a union set. Table 2 shows the clustering parameters used for the

selected clusterings.

We finally evaluated the individual selected clusterings and

the union of the selected clusterings using the k-clique method by

comparing to the leave-out set of gold standard test complexes

(Fig 2D). In addition, we compare to previously published

complex maps from (Wan et al, 2015), Bioplex 1.0 (Huttlin et al,

2015), Bioplex 2.0 (Huttlin et al, 2017), and our original hu.MAP

1.0 (Drew et al, 2017).

Identification of promiscuous proteins
To identify proteins which participate in multiple complexes, we

first determined a set of complexes with limited overlap. To deter-

mine the degree with which one complex overlaps another, we

developed a ‘subcomplex index’ (equation (2)) defined as:

SC¼ jA∩Bj
jAj (2)

where A and B are complexes (i.e., sets of proteins). The ‘subcom-

plex index’ is related to the Jaccard index but is normalized by the

size of a single complex rather than the size of the union of both

complexes as is done in the Jaccard index. We then calculated the

subcomplex index for every complex compared to all other

complexes. We then generated a set of complexes with limited

overlap by selecting complexes that had SC < 0.5 to all other

complexes. We then identified all proteins that participated in

multiple complexes from this reduced set of complexes.

Calculation of protein age enrichment for promiscuous proteins
Protein ages were mapped using ‘modeAge’ in the main_HUMAN.csv

file from (Liebeskind et al, 2016) Z-scores for each age group were

determined by comparing the number of promiscuous proteins to a

background distribution. The background distribution was calcu-

lated by counting the number of randomly sampled non-promiscuous

proteins (i.e., proteins that participate in only one complex) in each

age group.

Annotation enrichment, tissue specificity, and overall expression
Annotation enrichment was calculated for GO, Reactome, CORUM,

KEGG, and Human Phenotype Ontology (HP) terms using gProfiler

(Reimand et al, 2016) for each individual complex. All proteins observed

in the 15,000 mass spectrometry experiments were used as the back-

ground set. Annotations inferred by electronic transfer were ignored.

To evaluate annotation enrichment for all complexes, we first

generated a set of shuffled complexes where protein ids were reas-

signed to new cluster ids. This has the effect of keeping both the

number of clusters and the size distribution of clusters the same as

the final set of hu.MAP 2.0 complexes. In addition, this also has the

effect of keeping the distribution of complexes per protein constant

with the final hu.MAP 2.0 complexes as well. Annotation enrich-

ment for the shuffled set of clusters was done as described above.

Using this background annotation enrichment from all categories,

we calculated a 0.05 false discovery rate threshold.

We used the Human Protein Atlas (HPA) (Uhl�en et al, 2015) to

compare tissue specificity between the full human proteome,

hu.MAP 1.0, and hu.MAP 2.0. RNA tissue distribution data were

downloaded from: https://www.proteinatlas.org/download/prote

inatlas.tsv.zip and mapped to proteins through genenames.

Comparison of overall expression levels between promiscuous

and non-promiscuous proteins shown in Fig EV1 was done using

HPA using the same proteinatlas.tsv.zip file described above. The

median value was calculated for all “Tissue RNA” columns for each

Table 2. Selected clusterings parameters.

Clustering Confidence Score threshold ClusterOne density ClusterOne overlap MCL inflation

1 Extremely high 1.0 0.4 0.6 9

2 Very high 0.7 0.4 0.6 9

3 High 0.5 0.4 0.7 4

4 Medium high 0.04 0.4 0.7 2

5 Medium 0.02 0.1 0.6 2
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individual promiscuous and non-promiscuous protein, and the

resulting distribution was plotted.

Data availability

hu.MAP 2.0 is available at: http://humap2.proteincomplexes.org/

Protein Complexes List: humap2_complexes http://humap2.

proteincomplexes.org/static/downloads/humap2/humap2_comple

xes_20200809.txt

Protein Interaction Network with probability scores: humap2_

ppis_ACC http://humap2.proteincomplexes.org/static/downloads/

humap2/humap2_ppis_ACC_20200821.pairsWprob.gz

Cytoscape Network: humap2_protein_complex_map http://hum

ap2.proteincomplexes.org/static/downloads/humap2/humap2_protein_

complex_map_20200821.cys

Train Complexes: humap2_train_complexes_ACC

http://humap2.proteincomplexes.org/static/downloads/humap2/

humap2_train_complexes_ACC_20200818.txt

Test Complexes: humap2_test_complexes_ACC

http://humap2.proteincomplexes.org/static/downloads/humap2/

humap2_test_complexes_ACC_20200818.txt

Train Positive PPIs: humap2_train_ppis_ACC

http://humap2.proteincomplexes.org/static/downloads/humap2/

humap2_train_ppis_ACC_20200818.txt

Train Negative PPIs: humap2_neg_train_ppis_ACC

http://humap2.proteincomplexes.org/static/downloads/humap2/

humap2_neg_train_ppis_ACC_20200818.txt

Test Positive PPIs: humap2_test_ppis_ACC

http://humap2.proteincomplexes.org/static/downloads/humap2/

humap2_test_ppis_ACC_20200818.txt

Test Negative PPIs: humap2_neg_test_ppis_ACC

http://humap2.proteincomplexes.org/static/downloads/humap2/

humap2_neg_test_ppis_ACC_20200818.txt

Feature Matrix: humap2_feature_matrix

http://humap2.proteincomplexes.org/static/downloads/humap2/

humap2_feature_matrix_20200820.featmat.gz

Software pipeline: GitHub https://github.com/marcottelab/prote

in_complex_maps

Expanded View for this article is available online.
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