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ABSTRACT

Laboratory mouse, Mus musculus, is one of the most
important animal tools in biomedical research. Func-
tional characterization of the mouse genes, hence,
has been a long-standing goal in mammalian and hu-
man genetics. Although large-scale knockout pheno-
typing is under progress by international collabora-
tive efforts, a large portion of mouse genome is still
poorly characterized for cellular functions and asso-
ciations with disease phenotypes. A genome-scale
functional network of mouse genes, MouseNet, was
previously developed in context of MouseFunc com-
petition, which allowed only limited input data for
network inferences. Here, we present an improved
mouse co-functional network, MouseNet v2 (avail-
able at http://www.inetbio.org/mousenet), which cov-
ers 17 714 genes (>88% of coding genome) with
788 080 links, along with a companion web server
for network-assisted functional hypothesis genera-
tion. The network database has been substantially
improved by large expansion of genomics data. For
example, MouseNet v2 database contains 183 co-
expression networks inferred from 8154 public mi-
croarray samples. We demonstrated that MouseNet
v2 is predictive for mammalian phenotypes as well
as human diseases, which suggests its usefulness
in discovery of novel disease genes and dissec-
tion of disease pathways. Furthermore, MouseNet
v2 database provides functional networks for eight
other vertebrate models used in various research
fields.

INTRODUCTION

Geneticists have achieved impressive progress in discover-
ing disease-associated genes and genotypes directly in hu-
mans, but the functional validation and mechanistic follow-
up studies of these genes typically relies heavily on the use
of laboratory animals. The laboratory mouse (Mus muscu-
lus) is the experimental tool of choice for many biomedi-
cal researchers, as for example in immunology, cancer bi-
ology, and stem cell biology, and there are many ongoing
efforts to characterize mouse biology. In spite of these ex-
tensive efforts, as of this study, many mouse genes remain
un-annotated. For example, only 7872 mouse genes are an-
notated with Gene Ontology biological process (GOBP)
terms (1) by direct experimental or literature evidence. Even
when considering computationally inferred annotations,
4869 genes have no GOBP functional annotations at all.
Thus, the assignment of functions to mouse genes is a major
ongoing challenge.

One major approach to systematically identify gene func-
tions is through the use of large-scale functional gene net-
works. A genome-scale functional gene network for the
laboratory mouse, dubbed MouseNet, was previously con-
structed by Bayesian statistical integration of heteroge-
neous omics-data in the context of the international Mouse-
Func competition (2). MouseNet construction, however,
was limited to data made available through the MouseFunc
competition (3), which restricted the predictive power of
MouseNet relative to the wealth of available mRNA ex-
pression and protein–protein interaction data now avail-
able. For example, as of September 2015, at least 80 000
mouse mRNA expression profiles measured by microarray
or next generation sequencing (NGS) are freely available
from the Gene Expression Omnibus (GEO) database (4),
whereas fewer than 250 expression experiments were used
for MouseNet. Thus, we anticipated that incorporating a
large amount of the public genomics data will substantially
improve the functional network of mouse genes.
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Here, we present MouseNet v2 (http://www.inetbio.org/
mousenet/), which represents a substantial improvement
over the previous version in both performance and usabil-
ity. By incorporating new large-scale experimental data in-
cluding 8154 microarray samples selected from a total of 76
002 tested samples of GEO (4) and improved network in-
ference algorithms, we observed significant improvements
to accuracy as well as genome coverage by MouseNet v2,
which now covers 17 714 mouse genes (>88% of cod-
ing genome, increased from 72% in v1). In addition to
providing functional associations between mouse genes,
MouseNet v2 serves as a platform for researchers to gener-
ate new functional hypotheses using the principle of guilt-
by-association. The implemented network-assisted search
algorithms can prioritize mouse genes for a pathway or a
trait, and can prioritize functional concepts for a query gene
that needs to be characterized. Therefore, MouseNet v2 is
not only a database but also a hypothesis generation server.

Network edge information for the integrated MouseNet
v2 as well as individual component networks are freely
downloadable. These component networks can be used to
test novel data integration methods and generate alterna-
tive versions of mouse gene networks. Moreover, a total of
183 co-expression networks inferred from 8154 microarray
experiments in the GEO database are also available from
the MouseNet v2 database. Given that GEO database pro-
vides information about study design and relevant biolog-
ical context for the source expression data, co-expression
networks of MouseNet v2 provide a useful resource for
context-specific network analysis.

Other model vertebrates are also widely used in vari-
ous fields of research. For this reason, the Mouse Genome
Informatics (MGI) database (5) provides mouse orthologs
for eight other vertebrates that contain more than 12 000
mouse orthologs to aid the transfer of functional informa-
tion from mouse to other vertebrates: rat (Rattus norvegi-
cus), chimpanzee (Pan troglodytes), Rhesus macaque (Rhe-
sus macaque), dog (Canis lupus familiaris), cattle (Bos tau-
rus), chicken (Gallus gallus domesticus), western clawed frog
(Xenopus tropicalis), zebrafish (Danio rerio). MouseNet v2
provides gene networks transferred from mouse based on
orthology, and allows network-search and hypothesis gen-
eration for these vertebrates.

CONSTRUCTION

MouseNet v2 was constructed as previously described for
other animal gene networks (6,7) with some modifications,
as detailed in full in the Supplementary Online Methods.
Comparisons with the previous MouseNet in terms of data
sources and network inference algorithms are also summa-
rized in Supplementary Table S1. MouseNet v2 is based on
gene annotation from the NCBI Concensus CDS project
(8) (GRCm38.p2, version 16 as of 17 April 2014). To learn
functional associations between mouse genes, we generated
a set of positive gold-standard gene pairs that share func-
tional annotations according to GOBP (1) (downloaded on
3 March 2015) or the MetaCyc database (9) (downloaded
on17 March 2015). To generate an accurate gold-standard
data set, we only consider GO annotations supported by re-
liable evidence codes, such as IDA (inferred from direct as-

say), IMP (inferred from mutant phenotype), IPI (inferred
from protein interaction), and TAS (traceable author state-
ment). Functional couplings between mouse genes were in-
ferred from five main data sources: mRNA co-expression
across experimental conditions, genomic context similarity
based on phylogenetic profiles (10) and gene neighborhoods
(11), physical protein–protein interactions, and functional
gene–gene associations transferred from other organisms by
orthology relationships (associalogs) (12).

In order to infer functional links from mRNA co-
expression patterns, we first evaluated the available sets of
GEO microarray experiments (GSE), selecting only those
sets that contained at least 12 microarray experiments and
measuring whether or not those genes with highly cor-
related mRNA abundances across the set of microarray
experiments also showed an increased tendency to share
gold standard positive functional annotations. This filter
removed a majority of microarray datasets from further
analysis. In total, we tested 76 002 microarray samples,
and ultimately inferred co-expression links from a sub-
set of 183 GSE comprising 8154 microarray experiments.
Each of the 183 co-expression networks were then inte-
grated into a single co-expression network. Functional links
based on genomic context methods were obtained by an-
alyzing gene neighborhood in 1748 prokaryotic genomes
and by analyzing phylogenetic profiles across 396 eukary-
otic genomes. Literature-curated protein-protein interac-
tions were obtained from iRefIndex v14.0 (13). Further-
more, we transferred associalogs from functional networks
for human, fly, and yeast via orthology to mouse genes. Fi-
nally, we then integrated the 13 data-type specific mouse
gene networks using the previously described weighted sum
log-likelihood scoring scheme (14). The resulting functional
network of mouse genes contains 788 080 co-functional
links and covers 17 714 genes (>88% of mouse coding
genome), which is substantially expanded over the cover-
age (72%) of MouseNet v1. The integrated MouseNet v2
and individual component networks are summarized in Ta-
ble 1. MouseNet v2 and all component networks, including
183 co-expression networks, are available from the network
download page of www.inetbio.org/mousenet/.

ASSESSMENT AND APPLICATIONS

Network assessment

We used multiple tests of functional and phenotypic pre-
dictive ability to assess the performance of MouseNet v2,
and its improvement over prior mouse gene networks. There
are several publically-available gene network models for
mouse genes derived by integrating genomics data, includ-
ing STRING v10 (15), Funcoup v3 (16) and Princeton
mouseNET (17). A fair comparison of these networks re-
quires a validation data set that is independent of the
training and input data for all the networks, which are
predominantly trained using GOBP or KEGG pathway
database (18), but can also directly incorporate gene pairs
that share mammalian phenotype (MP) annotations (19),
as for MouseNet v1. Thus, in order to robustly assess the
networks, we purposely avoided validation data sets based
on mouse pathway or phenotype annotations which are bi-
ased toward subsets of the networks being compared.
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Table 1. MouseNet v2 and component networks inferred from 13 distinct data types

Network Description Genes Links

MouseNet v2 Integrated network 17 714 788 080
Component networks
MM-CX By co-expression of mouse genes 14 087 180 037
MM-GN By gene neighborhood of two bacterial orthologs of mouse genes in prokaryotic

genomes
4608 157 769

MM-PG By phylogenetic profile similarity across species 6376 231 833
MM-LC By literature curated mouse PPIs downloaded from iRefIndex v14.0 5289 11 678
DM-CX By co-expression of fly (D. melanogaster) orthologs 4047 31 951
DM-LC By literature curated fly orthologous PPIs 1316 3240
HS-HT By high-throughput human orthologous PPIs 4558 16 487
HS-LC By literature curated human orthologous PPIs 13 676 163 754
SC-CC By co-citation of yeast (S. cerevisiae) orthologs in Pubmed articles 3094 43 148
SC-CX By co-expression of yeast orthologs 1996 40 804
SC-GT By genetic interactions of yeast orthologs 1692 12 526
SC-HT By high-throughput yeast orthologous PPIs 2304 41 735
SC-LC By literature curated yeast orthologous PPIs 2553 25 891

Given the considerations above, we assessed the networks
using the following four sets of gold standard reference
gene pairs: (i) gene pairs that belong to the same protein
complexes annotated by the CORUM database (20), (ii)
protein–protein interactions from the Reactome database
(21), (iii) gene pairs linked to the same human diseases as
annotated by the Online Mendelian Inheritance in Man
(OMIM) database (22) and (iv) gene pairs associated with
the same diseases according to the genome-wide association
study (GWAS) catalog database (23). Although we cannot
completely exclude circularity between these validation data
sets and input or training data used for the networks, a net-
work that consistently shows high performance across the
validation sets can be considered as performing well.

We observed substantially higher performance for
MouseNet v2 than for the other networks for retrieval of
gene pairs for the same CORUM protein complexes (Fig-
ure 1A). For assessment using Reactome protein-protein
interactions, both MouseNet v2 and STRING v10 showed
the top performance, although the STRING performance
curve declined beyond ∼50% of genome coverage (Figure
1B). Mouse gene networks can also be used to study human
disease genes by considering human-mouse orthologs. We
tested the retrieval rate of gene pairs for the same human
OMIM diseases, and found that three networks, Princeton
mouseNET, STRING v10, MouseNet v2, all performed
well, with MouseNet v2 showing slightly lower precision
for the top several thousand links (Figure 1C). Next,
we assessed networks for their ability to identify genes
linked to the same human diseases in the GWAS catalog.
There are two GWAS disease gene sets: genes ‘reported’
by authors and genes ‘mapped’ in the GWAS catalog
database. We generated a validation set based on the
reported gene set. To avoid misleading conclusions due to
a few dominant GWAS phenotypes, we excluded ‘height’
and ‘obesity’, which annotate 322 genes and 559 genes,
respectively. Notably, we observed superior performance
for MouseNet v2 over the other networks in retrieving
gene pairs associated by GWAS with the same diseases
(Figure 1D). The similar analysis using a validation set
based on the sets of mapped genes by the GWAS catalog
database also supported superiority of MouseNet v2 over
all other networks in the comparison (data not shown).

Taken together, we conclude that MouseNet v2 represents
a significant improvement over prior networks for correctly
linking genes to pathways and, by orthology, to diseases.

For each of the validation data sets, MouseNet v2 shows
substantially higher precision than MouseNet v1 across the
full range of genome coverage. MouseNet v2 incorporates
numerous updates to both data sources and network infer-
ence methods, as summarized in Supplementary Table S1,
all of which have likely contributed to the improved perfor-
mance. Firstly, there was dramatic growth in the amount
of input data available for network inferences. The previous
network was developed within the context of the Mouse-
Func competition (3), which artificially limited both train-
ing and input data. In contrast, MouseNet v2 could draw
from a wider range of publicly available data, notably the
large amount of mouse gene expression data available from
GEO and many more sequenced genomes for comparative
genomics network inference. Moreover, many evolutionary
conserved functional couplings transferred from human,
fly (7), and yeast (24), could be incorporated into the new
mouse network. Second, we improved the algorithms for in-
ferring networks from genomic context information, by in-
tegrating distance- and probability-based measures to im-
prove the gene neighborhood method (11), and by incor-
porating within-domain co-inheritance analyses to improve
the phylogenetic profiling method (7).

Network-assisted hypothesis generation

The MouseNet v2 database serves as a research platform
for generating hypotheses about gene function. The options
for hypothesis generation in MouseNet v2 are summarized
in Figure 2.

Find new members of a pathway/trait (pathway-centric net-
work search). MouseNet v2 can prioritize candidate genes
for a pathway/trait of interest. The study of complex traits
such as polygenic diseases can be facilitated by network
analysis, because genes for a phenotype or disease tend
to be functionally associated (25). Thus, we implemented
pathway-centric network search algorithm, in which known
genes for a pathway/trait provided by the user guide the
search for new candidates in the network. If a set of genes
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Figure 1. Performance assessment of publicly available functional gene networks for the laboratory mouse. The results of assessment based on precision
of network gene pairs for the same protein complexes by CORUM database (A), for protein–protein interactions by Reactome database (B), for the same
human diseases by OMIM database (C) or GWAS catalog (D) for the given coverage of mouse coding genome suggests that MouseNet v2 generally
performs better than other mouse functional gene networks including MouseNet v1.

known for a pathway term are already interconnected in
a functional network, new genes that are connected to the
known genes are likely to be involved in the same pathway.
To test whether MouseNet v2 connects known genes for
the same mouse or human phenotype, all mouse genes were
ranked by edge-weighted connectivity to the known pheno-
type genes based on MP or mouse OMIM annotation, and
then the retrieval rate for the known phenotype-linked genes
was measured by receiver operating characteristic (ROC)
analysis and summarized by the area under the ROC curve
(AUC). We observed significantly higher AUC scores for
gene sets for 5424 MP terms and 56 mouse OMIM terms
(with at least four member genes) for MouseNet v2, as com-
pared to random networks (P-value < 1e−16 and 1e−7 for
MP and OMIM, respectively; Wilcoxon signed rank sum
test) (Figure 3A). These results suggest that MouseNet v2
can facilitate discovery of novel genes for many mammalian
phenotypes, as well provide insights into human diseases.

We also tested feasibility of identification of novel genes
for a pathway by performing the pathway-centric network
search. We submitted 41 mouse genes annotated by a GOBP
term, innate immune response, and found that they are
highly predictive by MouseNet v2, as indicated by high

AUC score (AUC = 0.77). The majority of new candidate
genes turned out to be ones annotated by closely related
GOBP terms such as cellular response to lipopolysaccha-
ride, activation of innate immune response, dendritic cell
proliferation, and response to virus. Notably, a top candi-
date gene, Parp12 (rank 9) was not annotated by GOBP, but
recently reported as an interferon induced gene with a po-
tential role in cellular defenses against viral infections (26).

Infer functions from network neighbors (gene-centric network
search). The original aim of the MouseFunc competition
(3) was to expand functional annotation of mouse genes.
Although significant improvements in functional annota-
tion have been achieved over the past several years, there are
still ∼61% of mouse genes (12 186 genes) with no GOBP an-
notation based on direct experimental evidence. Currently,
∼24% of the genes (4869 genes) are completely unannotated
by any GOBP evidence including computational methods.
Thus, a significant portion of the mouse genome remains to
be functionally characterized.

With functional networks, candidate functions can be in-
ferred by searching for enriched functions among network
neighbors of a query gene. Interestingly, MouseNet v2 con-
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Figure 2. Overview of network-assisted research tools in the MouseNet v2 database. MouseNet v2 provides two network search options, one is for finding
new member genes of a pathway/trait and the other is for inferring functions for a query gene from its network neighbors. In addition, MouseNet v2
provides all network information including eight other vertebrate species, enabling various network analysis for mouse and other vertebrates with the
integrated networks, component networks for distinct types of data, and co-expression networks for different biological contexts.

tains 3,852 of the 4,869 completely uncharacterized genes
and 10 063 of the 12 186 genes with no reliable functional
annotation, and thus provides new opportunities for func-
tional annotation of the majority of uncharacterized genes,
capable of suggesting candidate functions for targeted vali-
dation. A step-by-step guide on how to prioritize the candi-
date annotations for a gene using the gene-centric search
option is available from the manual page (http://www.
inetbio.org/mousenet/tutorial.php). We found that 2770 of
the 4869 completely unannotated genes were predicted by
any GOBP term. The MouseNet v2 database serves predic-
tions for not only functions but also phenotypes/diseases as
cataloged in six annotation databases: (i) mouse GOBP, (ii)
mouse KEGG, (iii) MP, (iv) human GOBP, (v) human phe-
notype ontology (HPO) (27) and (vi) OMIM. To test per-
formance of the network search options for inferring func-
tions, we measured the retrieval rate of correct KEGG terms
within top n candidates, and found that MouseNet v2 per-
forms better than MouseNet v1 (Figure 3B).

To demonstrate feasibility of functional annotation of
mouse genes using MouseNet v2, we performed gene-

centric network search for several mouse genes that were
not annotated by GOBP and validated the predicted GOBP
terms by the literature. For example, three completely unan-
notated genes, Adam4, Scgn, and Synpo2 were predicted for
GOBP terms of ‘binding of sperm to zona pellucida’ (rank
1), ‘retinal bipolar neuron differentiation’ (rank 1), and
‘muscle contraction’ (rank2), respectively, and all of these
predictions were validated by experimental results from the
literature (28–30).

Network information for eight other model vertebrates. Be-
sides the laboratory mouse, several other model vertebrates
are often used in various research areas, notably rat (R.
norvegicus), chimpanzee (P. troglodytes), Rhesus macaque
(R. macaque), dog (C. lupus familiaris), cattle (B. taurus),
chicken (G. gallus domesticus), western clawed frog (X. trop-
icalis), zebrafish (D. rerio). The MGI database (5) pro-
vides mouse orthology information for these vertebrate
models, so we expanded the MouseNet v2 server to al-
low network searches for genes of these model vertebrates.
For example, MouseNet v2 server provides an example
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Figure 3. Validating predictions by MouseNet v2. (A) Validation of predictions for new members for a pathways using mouse phenotype and human disease
database. If known genes for a MP or OMIM term are well connected to each other in the network, network-based prediction would predict new genes
for the same MP or OMIM term. The interconnectivity among the known genes for a phenotype was analyzed by ROC curve which was then summarized
into AUC. MouseNet v2 shows substantially higher distribution of AUCs for 5424 MP terms and 56 mouse OMIM terms compared with randomized
networks. (B) Validation of predictions for new functional concepts for a query gene. We have run the prediction for KEGG pathway terms, and count
the number of mouse genes whose correct KEGG annotation was retrieved within top N ranks. For example, known KEGG annotations for ∼60% of
tested mouse genes was retrieved within top 10 predictions by MouseNet v2 ‘Infer functions from network neighbors’ option, whereas only ∼5% was so
by randomized networks. (C) Validation of predictions for new member genes for a pathways in chicken using spatiotemporal expression data of chicken
genes based on GEISHA database. MouseNet v2 shows substantially higher distribution of AUCs for 1749 spatiotemporal expression sets by GEISHA
database compared with randomized networks.

query of 23 zebrafish genes involved in heart morphogene-
sis (GO:0003007). A pathway-centric network search, using
as a query the 23 zebrafish genes associated (via orthology)
with human cardiovascular diseases, returns strong candi-
date genes including gata4 (rank 1), smarca4a (rank 2),
gata6 (rank 3), gata3 (rank 6), scn4aa (rank 10), cacna1da
(rank 15), and csrp3 (rank 16). In addition, we performed
systematic validation of the predictive power of MouseNet
v2 for 1749 sets of chicken genes sharing spatiotempo-
ral mRNA expression patterns, as annotated by the Gal-
lus Expression in Situ Hybridization Analysis (GEISHA)
database (31). We found that chicken genes with similar
tissue/organ and developmental stage expression patterns
are significantly interconnected in MouseNet v2 (Figure 3C,
P-value < 1e−16 by Wilcoxon signed rank sum test), sup-
porting the application of MouseNet v2 to the study of
other vertebrate models. Network data for all eight verte-
brates are available from the MouseNet v2 database.

CONCLUSIONS

In this study, we present an improved functional gene net-
work for the laboratory mouse, MouseNet v2, and demon-
strate its improved performance for the study of labora-
tory mouse gene functions. We confirmed that MouseNet
v2 shows good predictive power for genes linked to spe-
cific mammalian phenotypes and human diseases, neither
of which was explicitly incorporated into the network con-
struction. Thus, a functional interaction map of mouse
genes reveals associations between genes and complex traits
in the laboratory mouse, as well as humans. Tests of
MouseNet v2 on chicken gene mRNA expression patterns
suggest that it generally useful for the study of other ver-
tebrate model organisms as well. All of the functional gene
networks are released for free and can be searched using the

MouseNet v2 web server, which offers a useful resource for
mouse, human and other vertebrate genetics.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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