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the relative contributions of transcriptional and
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We report a method for large-scale absolute protein expression measurements (APEX) and apply it to estimate the relative

contributions of transcriptional- and translational-level gene regulation in the yeast and Escherichia coli proteomes. APEX

relies upon correcting each protein’s mass spectrometry sampling depth (observed peptide count) by learned probabilities

for identifying the peptides. APEX abundances agree with measurements from controls, western blotting, flow cytometry and

two-dimensional gels, as well as known correlations with mRNA abundances and codon bias, providing absolute protein

concentrations across approximately three to four orders of magnitude. Using APEX, we demonstrate that 73% of the variance in

yeast protein abundance (47% in E. coli) is explained by mRNA abundance, with the number of proteins per mRNA log-normally

distributed about B5,600 (B540 in E. coli) protein molecules/mRNA. Therefore, levels of both eukaryotic and prokaryotic

proteins are set per mRNA molecule and independently of overall protein concentration, with 470% of yeast gene expression

regulation occurring through mRNA-directed mechanisms.

Although routine, large-scale measurement of expressed cellular
proteins has yet to be realized1, shotgun proteomics is perhaps closest
to reaching this goal2,3. This technology involves proteolysis of protein
mixtures, followed by analysis of the peptides generated using chro-
matography and mass spectrometry (MS). In shotgun proteomics
—for example, MudPIT, based on multidimensional chromatography
(two-dimensional (2D) high performance liquid chromatography
(HPLC)) with in-line tandem mass spectrometry (MS/MS)2—evi-
dence for individual proteins accumulates through observations of
component peptides. This technique is mature enough to observe
B500–1,000 different proteins from a cell lysate (e.g., see Peng et al.4).
However, this approach is not generally thought to be quantitative
because the efficiency with which peptides ionize and enter the mass
spectrometer depends upon both their composition and the local
chemical environment1, producing variation in the MS signal inten-
sity, that is, peak height. Several approaches quantify peptides by
introducing internal reference standards (e.g., see Silva et al.5), typi-
cally by mixing in isotopically labeled samples6. These reference
peptides derive either from cells grown in labeled medium (Stable
Isotope Labeling with Amino acids in Cell culture, SILAC7), by
derivatizing natural samples (Isotope Coded Affinity Tags, ICAT8)
or by doping in synthetic peptides, as in isotope dilution (e.g.,
Absolute Quantification of proteins, AQUA9). The first two
approaches result in protein quantification relative to the isotopically
labeled reference sample. In contrast, AQUA provides absolute quan-
tification because the amounts of added reference peptides are known.

However, owing to the expense and difficulty of synthesizing thou-
sands of isotopically labeled peptides, this approach has yet to be
applied on a proteomic scale.

Research in quantifying MS proteomics data has mainly focused on
measuring peak heights rather than using other information, such as
peptide counts. Several peptides may be observed for each protein,
some of these many times (Fig. 1). Both the coverage of unique
peptides (that is, percentage of possible peptides per protein actually
observed) and the total number of repeat observations of peptides
provide rough approximations of protein abundance (e.g., see
refs. 10–12). However, both of these measures have distinct short-
comings. Coverage of unique peptides is a poor measure of abun-
dance, saturating at 100% and limiting the dynamic range. It is
normalized for protein size but ignores different sampling depths
between experiments. By contrast, approximating abundance from the
number of repeat peptide observations per protein ignores protein
size—as large proteins contribute more peptides than small ones, their
abundance will be overestimated unless the data are normalized13,14.
Like peptide coverage data, data from this method are not directly
comparable between experiments with different sampling depths.
Most importantly, neither approach includes any prior expectations
of which peptides are observed in the mass spectrometer, although
such trends can in part be predicted from a peptide’s composition15–17.

We derive a simple but robust measure of protein expression
that can be calculated from peptide sampling depth. This provides
a strategy for rapid, highly reproducible and accurate absolute
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quantification in shotgun proteomics. APEX provides a measure of
absolute protein abundance that correlates well with measurements
from control mixtures, from 2D gel electrophoresis18,19 and from the
only other large-scale protein quantification approaches for which
absolute expression measurements are available: high-throughput
analysis of fusion proteins by western blotting20 or flow cytometry21.
We apply APEX to characterize the yeast and E. coli proteomes and
their transcriptional and translational regulation.

RESULTS

APEX estimates absolute protein concentration per cell from the
proportionality between the abundance of a protein and the number
of its peptides observed in a MudPIT experiment. APEX is corrected
by the background expectation of observing each peptide in the
experiment, the total sampling depth and the confidence in protein
identification. In an experiment (Fig. 1), a mixed pool of peptides
derived from many proteins of varying concentrations is injected into
the mass spectrometer (‘injected peptides’). Owing to differential
ionization, molecular weight, solubility and other properties, only
some fraction of these peptides is ionized, analyzed by the mass
spectrometer and identified (‘observed peptides’). An individual
protein will account for some fraction of the total number of peptides
in the injected peptide pool, and it will account for some fraction of
the interpreted peptide mass spectra. The key to APEX is the
introduction of appropriate correction factors that make these frac-
tions proportional to one another. We estimate the protein’s abun-
dance from the fraction of peptide mass spectra associated with one
protein, corrected by the prior expectation of observing each peptide.

Validating APEX with other measures of protein abundance

To be useful for expression profiling, the accuracy of APEX measure-
ments must be validated. First, APEX-derived abundances match
known abundances in simple protein mixtures over B2.5 orders of
magnitude, with mean abundance differences of 2.3 ± 1.1- and 3.0 ±
3.5-fold for mixtures comprising ten and five different proteins,
respectively. A more than tenfold difference for individual proteins
was never observed (Fig. 2a and Supplementary Notes online).
Second, the protein abundances determined by APEX are highly

reproducible between replicate experiments, both in small-scale (Fig. 2b)
and proteome-scale (Spearman rank correlation Rs ¼ 0.95, squared
Pearson correlation R2 ¼ 0.88, Fig. 2c and Supplementary Notes)
experiments. Third, for high-complexity samples, APEX compares
favorably to other approaches. As other MS-derived protein expression
measurements (e.g., ICAT and SILAC) provide only relative expression
changes and are not comparable with APEX, we used technologies (2D
gels and high-throughput fusion protein analysis) that produce compar-
able large-scale absolute measurements of protein abundance.

We applied APEX to yeast growing in rich medium to measure
absolute abundances of 454 proteins with o5% false discovery rate.
We compared APEX-derived measurements with 3,869 measurements
from an analysis by western blotting20 (Fig. 2d), 2,214 measurements
by flow cytometry of GFP-tagged fusion proteins21 (Fig. 2e) and 71
measurements by 2D gels18 (Fig. 2f). APEX data provided measure-
ments of an additional 76 proteins omitted by the other approaches.
APEX-derived values correlated better with western and 2D gel
measures (Rs ¼ 0.61 and 0.80; R2 ¼ 0.34 and 0.52; respectively)
than they correlated with each other (Rs ¼ 0.30, R2 ¼ 0.02). Good
correlation with GFP fusion protein quantities (Rs ¼ 0.69, R2 ¼ 0.49)
confirms that APEX is comparable to other approaches.

Given that all datasets are noisy, we assume that data points with
similar values in two independent measurements are reasonably
reliable. In all comparisons, the measurements correctly fell along
the diagonal, estimating absolute protein abundance across three to
four orders of magnitude. The results were similar when analyzing
APEX abundances for 555 yeast proteins with a 10% false discovery
rate (Supplementary Data 1 online). Most (95%) of the APEX-
observed protein abundances fell between B1,300 and B710,000
molecules/cell. The least abundant proteins observed were YHL009W-
B and BRE4, at 482 and 851 molecules/cell, respectively, whereas the
most abundant were enolase 2 (ENO2; B2,500,000 molecules/cell)
and translation elongation factor 1 alpha (TEF2; B1,200,000 mole-
cules/cell). Although the expression levels of ENO2 and TEF2 have
been confirmed by independent estimates22,23, both represent outliers
in the western blot data (Fig. 2d), indicating that APEX produces
more typical values. Lower detection limits for APEX can be achieved
through higher sampling depth (Supplementary Notes).
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Figure 1 Absolute protein expression (APEX)

profiling exploits the proportionality between

the fractions of peptides expected and observed

from a given protein. Proteins are analyzed by

standard shotgun proteomics, beginning with

tryptic digest of a protein mixture, liquid

chromatographic separation of the mixture

(2D HPLC), analysis of peptide masses by
mass spectrometry (MS) and fragmentation

of peptides and subsequent analysis of the

fragmentation spectra (MS/MS). Each step

introduces bias into the peptides ultimately

interpreted from the analysis, thereby affecting

the probability pij of observing each peptide

j from protein i. APEX involves training a

classifier to estimate Oi, the prior estimate of

the number of unique peptides expected from

a given protein during such an experiment.

By correcting for Oi, the number of peptides

observed per protein thereby provides an

estimate of the protein’s abundance. HPLC,

high-performance liquid chromatography.
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Further, we found good correlation (Rs ¼ 0.77, R2 ¼ 0.68;
Supplementary Notes) when the APEX-derived yeast protein
abundances were compared with published measurements of absolute
expression of the corresponding mRNAs. Comparisons of APEX-
derived protein abundances to other properties revealed that the
APEX-based protein levels were well correlated with codon bias
(Rs ¼ 0.80, R2 ¼ 0.69), codon adaptation indices (Rs ¼ 0.79,
R2 ¼ 0.70), the frequency of optimal codons (Rs ¼ 0.80, R2 ¼ 0.69)
and protein molecular weight (Rs ¼ –0.67, R2 ¼ 0.28). Also, consistent
with previous observations20,24, APEX-derived protein abundances
were not correlated with protein isoelectric point (pI; Rs ¼ 0.12,
R2 ¼ 0.04), aromaticity (frequency of aromatic amino acids; Rs ¼
–0.21, R2 ¼ 0.04) and hydropathicity25 (Rs ¼ 0.10, v2 ¼ 0.01)
(Supplementary Notes).

Validating APEX with differentially expressed proteins

To demonstrate the sensitivity to expression changes under different
conditions, we compared APEX measurements of 626 proteins
observed from yeast grown in either rich or minimal media. As
expected, the changes in expression predominantly reflect differential

expression of metabolite biosynthetic enzymes (Fig. 3). We require a
statistical framework for deciding which proteins are significantly
differentially expressed, adapting statistics developed for SAGE (Serial
Analysis of Gene Expression) mRNA expression profiling26,27.

Using this framework, 80 proteins were significantly induced
(Z 4 2.58, corresponding to 99% confidence, as defined in Methods)
in minimal medium relative to rich medium. These minimal med-
ium–induced proteins are statistically significantly enriched for pro-
teins of metabolism (P o 2 � 10–14; 70 proteins) and biosynthesis
(P o 9 � 10–14; 36 proteins)28, as expected for cells forced to
manufacture all amino acids and nucleotides from glucose. Twenty
out of 23 significantly enriched Gene Ontology (GO) ‘biological
process’ categories involve small molecule metabolism, for example,
amino acid biosynthesis (P o 10–14), or metabolism of the aspartate
family (P o 4 � 10–14), glutamine family (P o 2 � 10–10),
methionine (P o 3 � 10–9), sulfur amino acids (P o 5 � 10–8),
branched chain family amino acids (P o 2 � 10–7), aromatic
compounds (P o 2 � 10–6), glutamate (P o 4 � 10–7) and lysine,
aminoadipic pathway (P o 2 � 10–6). More specifically, targets of
transcription factor GCN4 (ref. 29) are significantly upregulated in
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Figure 2 APEX measurements are both reproducible and consistent with other abundance measurements. (a) APEX measurements are accurate to

approximately twofold, on average, for a control set of ten proteins spiked into yeast cell lysate in a mass ratio of 1:1 (see Supplementary Notes for more

control experiments) (Rs ¼ 0.93, R2 ¼ 0.84 for linear data, R2 ¼ 0.89 for log-transformed data). (b) APEX measurements are reproducible, even under

changing experimental backgrounds, as shown by comparing abundances derived for the control mixture of ten proteins analyzed as a distinct set without

lysate and as spiked into yeast cell lysate in a mass ratio of 1:1 (Rs ¼ 0.98, R2 ¼ 0.997 for linear data, R2 ¼ 0.98 for log-transformed data). (c) Proteome-

scale APEX measurements are highly reproducible (Rs ¼ 0.95, R2 ¼ 0.97 for linear data, R2 ¼ 0.88 for log-transformed data), as shown for 278 yeast

proteins measured in independent shotgun proteomics experiments on cells grown in minimal (YMD) medium (two sets of data pooled from three injections

each). (d–f) APEX measurements of absolute protein abundance per cell are also correlated with abundances measured by western blot20 (Rs ¼ 0.61,

R2 ¼ 0.34; 340 proteins) (d), flow cytometry21 (Rs ¼ 0.69, R2 ¼ 0.49; 308 proteins) (e) and 2D gel18 (Rs ¼ 0.80, R2 ¼ 0.52; 48 proteins) (f). In a–d

and f, the line indicates the diagonal of the plot (omitted for e as the data are reported in arbitrary units), demonstrating that APEX is generally correct as

to magnitude of absolute abundance.
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minimal versus rich medium (15/50; P o 4 � 10–6), as expected for
the amino acid starvation response. By contrast, no amino acid or
nucleotide biosynthetic GO categories were enriched among the
66 rich medium–induced proteins (Z o –2.58). Instead, six GO
categories for rapid growth were seen: protein biosynthesis (P o
7 � 10–7), macromolecule biosynthesis (P o 9 � 10–7), biosynthesis
(P o 5 � 10–7), metabolism (P o 4 � 10–6), alcohol metabolism

(P o 3 � 10–6) and cell growth and/or maintenance (P o 2 � 10–6).
The significant expression changes (|Z|42.58) range from as little as
B1.3-fold for highly abundant proteins (CDC19, EFT2, ADH1,
PGK1) to B60- or even B190-fold changes (SSB1, GDH1) (Supple-
mentary Notes and Supplementary Data 1).

We obtained similar, biologically meaningful results when analyzing
data from an independent yeast study and from mouse T-cell
lymphoma nuclear and cytoplasmic fractions (Supplementary Notes
and Supplementary Data 2 online), confirming that MS-derived
peptide counts, and thus APEX, can be used for sensitive protein
quantification in any species.

The number of proteins per mRNA is log-normally distributed

To improve our understanding of proteome dynamics, we compared
APEX-based protein abundances with absolute expression levels of the
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Figure 3 APEX is a sensitive measure of differential expression. APEX

abundances are plotted for 265 proteins from yeast grown in rich and

minimal media; an additional 361 proteins are seen in only one condition.

Although the measurements generally agree (Rs ¼ 0.91, R2 ¼ 0.63), 146

of the 626 proteins observed in either of the two media are significantly

differentially expressed (|Z| 4 2.58, 99% confidence). Proteins induced in

minimal medium are predominantly involved in biosynthesis of amino acids

and nucleotides, consistent with expectation. We obtain similar results in
two additional analyses of differential protein expression (Supplementary

Notes and Supplementary Data 2 online).
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Figure 4 mRNA abundance explains over 70%

of variance in yeast protein abundance and

about half of variance in E. coli protein

abundance. Abundances of 346 yeast proteins,

calculated as the average of at least two of

three independent proteomics measurements

(APEX, 2D gel18, western20), correlate very
well (Rs ¼ 0.85, R2 ¼ 0.73) with absolute

mRNA abundances, calculated as the average

of at least two of three independent mRNA

expression measurements (SAGE27, single-

channel microarrays33, dual-channel

microarrays34). APEX-derived abundances

of 437 E. coli proteins show moderate

correlation (Rs ¼ 0.69, R2 ¼ 0.47) with

absolute mRNA abundance (average of at least

two of three independent measurements30–32).

(a,d) Plots of individual protein and mRNA

abundances. (b,e) Binned measurements,

calculated by rank-ordering mRNAs by

expression level and calculating average

protein and mRNA expression levels

per bin of 20 genes, with error bars indicating

± 1 s.d. Lines correspond to the power law

relationships between protein and mRNA
abundances (yeast: log[protein] ¼ 1.08 �
log[mRNA] + 3.67; E. coli: log[protein] ¼ 0.96

� 0.96 � log[mRNA] + 2.53), well

approximated by the equations [protein] ¼ 5,600

� [mRNA] and [protein] ¼ 540 � [mRNA],

with the exact proportion varying between

B4,000–7,000 (yeast) and B300–600

(E. coli), depending on method of calculation

and on estimates of the total number of

molecules/cell. The histograms of protein

abundances per mRNA, plotted in (c,f), are

well-fit as log-normal distributions.
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corresponding mRNAs, measured by single channel DNA microar-
rays30–33, SAGE27 and microarrays using genomic DNA as reference34.

We assume that each proteomics technology exhibits intrinsic
measurement biases and stochastic error. For instance, fusion protein
analysis can underestimate protein abundance because of destabiliza-
tion by epitope tags, and western blotting signal may saturate at high
concentrations. Shotgun proteomics may introduce bias through
differential peptide isolation, solubilization, and ionization, although
APEX is explicitly designed to correct the latter two biases. 2D gel
quantification may be affected by signal saturation and multiple
proteins per spot. Thus, averaging measurements from different
technologies can improve estimates of steady-state protein levels.

Average yeast protein concentrations from at least two of the three
technologies correlated extremely well with average mRNA expression
levels from at least two of the three methods (Rs ¼ 0.85, R2 ¼ 0.73;
346 proteins; Fig. 4a). This correlation was considerably higher than
previously observed (R2 ¼ 0.58 (ref. 18)) for high-abundance proteins
only; Rs ¼ 0.21–0.58 (refs. 20, 35–37), suggesting that averaging across
technologies does indeed remove technology-specific errors. We also
observed a strong correlation if only APEX-based measures were
compared with the average of at least two out of three yeast mRNA
expression measures (Rs ¼ 0.77, R2 ¼ 0.68; Supplementary Notes),
and if we selected a high-confidence set of 58 proteins for which the

relative s.d. for both average protein and
average mRNA abundance is r0.5 (Rs ¼
0.87, R2 ¼ 0.77; Supplementary Notes).
The correlation coefficient R2 indicates the
amount of variance in protein levels
explained by mRNA levels. Given remaining
measurement errors, the true correlation
between mRNA and protein abundances is
likely to be even higher (473%) and the
contribution of factors other than mRNA
levels even lower (o27%).

Further, binning the measurements
(Fig. 4b) indicates that the relationship
between the numbers of protein and mRNA
molecules has the form of a power law with
an exponent close to one. Therefore, the
distribution of individual proteins is also
well fit by a linear relationship of [protein]
¼ 5,600 � [mRNA], implying B5,600 pro-
teins present per mRNA, which is somewhat
higher than previous estimates20,35. The loga-
rithm of the ratio of proteins per mRNA is
well modeled (R2 ¼ 0.98) by a normal dis-
tribution (Fig. 4c).

The E. coli proteome revealed a similar
trend—APEX-based protein abundances
correlated with average absolute mRNA abun-
dances from at least two of three experi-
ments30–32 (Rs ¼ 0.69, R2 ¼ 0.47; Fig. 4d).
Again, the relationship is well described by a
linear relationship [protein] ¼ 540 �
[mRNA], with B300–600 proteins/mRNA
(Fig. 4e), depending upon details of normal-
ization (Supplementary Notes and Supple-
mentary Data 3). As with yeast, the logarithm
of the ratio of proteins per mRNA is well fit
(R2 ¼ 0.94) by a normal distribution (Fig. 4f).

Further characteristics of yeast protein abundance per mRNA

The log-normal distribution of protein per mRNA suggests that a
systematic search for significantly different protein/mRNA ratios using
a Z-score should reveal post-transcriptional gene regulation. Using
this approach in yeast, we identified 16 proteins with |Z| 4 1.96 (95%
confidence threshold; Fig. 4). These include protein per mRNA ratios
either higher (ADH2, ALD6, ILV5, MET6, LYS1, BMH2) or lower
(RPS21A, APE3, TOM1, TOS4, YLR422W, SPO14, PMT4, YCF1,
YKR089C, TIF34) than expected. Examination of these proteins
rationalizes their post-transcriptional regulation. For example,
ADH2 mRNA associates substantially more with polysomes than
RPS21A (Supplementary Notes). ADH2 protein levels are also
catabolite repressed by multiple unexplained mechanisms38. ILV5
exhibits strong codon bias39 and is regulated by leucine levels40,
suggesting possible post-transcriptional regulation similar to CPA1
(ref. 41). Some variation in protein per mRNA may arise from
technical factors, for example, differences between strains, cell popula-
tions and laboratories. We expect that future systematic comparisons
of mRNA and protein levels will identify additional examples of post-
transcriptional regulation.

Having shown that the level of mRNA explains 470% of the yeast
protein levels, we examined factors that might affect translation
efficiency in order to explain the remaining variance. Surprisingly,
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Figure 5 Yeast protein per mRNA ratios are correlated with amino acid frequencies and variance in

molecular weight. (a) Protein molecular weight is poorly correlated with protein per mRNA levels,

shown for bins of 20 proteins each as well as for individual proteins (R2 ¼ 0.10 and 0.76 for

logarithmic relationships with raw (inset) and binned data, respectively). Much of this trend is

accounted for by the variance in the data. (b) The coefficient of variance of molecular weight (100 x

sMW / mMW, the s.d. of molecular weight divided by the average molecular weight within a bin of
20 proteins) is strongly anti-correlated to protein per mRNA levels (Rs ¼ –0.67, R2 ¼ 0.60, for the

logarithmic relationship plotted). We find sMW/mMW decreases as the number of proteins per mRNA

increases, indicating that proteins with a wide range of molecular weights are found with low steady-

state protein per mRNA levels, but that proteins with high ratios of protein to mRNA show considerably

less variance and tend to be smaller in molecular weight, perhaps reflecting constraints of the

translational apparatus to express large proteins at high protein to mRNA levels. (c) Biases in the

amino acid frequencies in proteins with the 50 highest and 50 lowest levels of proteins per mRNA.

Significantly different frequencies, calculated by Z-score test statistic, are indicated by asterisks.

***, P o 0.001; **, P o 0.01; *, P o 0.05.
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codon bias (Rs ¼ 0.80, R2 ¼ 0.69) and codon adaptation indices
(Rs ¼ 0.79, R2 ¼ 0.70) correlated well with overall protein levels, but not
with protein per mRNA levels (Supplementary Notes). This suggests
that codon choice is important on an evolutionary time scale, but not
on the kinetic time scale of protein synthesis. Neither transcription nor
translation rates explain additional protein per mRNA variance (Sup-
plementary Notes). However, protein per mRNA levels correlated
negatively with the variance of the proteins’ molecular weights (Rs ¼
–0.67, R2 ¼ 0.60; Fig. 5a,b). We also observed amino acid composition
biases as a function of protein per mRNA levels (Fig. 5c).

DISCUSSION

APEX is a robust and rapid method to quantify absolute protein
abundance, without requiring construction of fusion protein libraries,
labeling or internal standards. Given the simplicity with which it can
be used for large datasets, APEX may have important applications in
biomarker discovery or serum profiling. The ability to associate
abundance measurements with proteins from historical shotgun
proteomics experiments emphasizes the importance of public deposi-
tion of proteomics data42.

We illustrated the biological relevance of APEX-identified protein
abundances by comparison with other measures, such as mRNA levels
and analysis of differentially expressed proteins. Protein levels correlate
well with mRNA abundance data obtained using SAGE and DNA
microarrays. This suggests that 470% of yeast and about half of E. coli
protein levels are determined by transcriptional regulation, with the
protein per mRNA levels log-normally distributed. The weaker corre-
lation in E. coli may stem from bacterial operon structure, in which
genes are cotranscribed but often differentially translated.

Log-normal distributions typically arise from multiplicative ran-
dom effects (the product of many small independent factors) when the
growth over a time step is normally distributed and independent of
the total size. Log-normal distributions occur frequently in natural
systems. Here, this distribution implies that the logarithm of the
amount of protein maintained per mRNA per time step can be
modeled as a normally distributed random variable centered on
B4,000–7,000 proteins/mRNA for yeast and B300–600 proteins/
mRNA for E. coli. Note that proteins at the distribution tails are far
from these values. Nonetheless, both eukaryotic and prokaryotic
steady state protein levels appear to be primarily set on a per
mRNA molecule basis, independent of total protein concentration.

We observe that proteins present at high copies per mRNA are of
low molecular weight; proteins present at low copies per mRNA show
no such constraint. These results may indicate a ceiling on the capacity
of the cell to maintain high ratios of protein to mRNA levels for large
proteins, and possibly a limit on the capacities of the translational or
degradative apparatus. However, it is consistent with the findings that
ribosome density on mRNAs decreases with increasing gene lengths43,
and that longer mRNAs have disproportionately lower ribosome
initiation rates44.

Lastly, availability of absolute protein abundance data enables a
variety of future analyses. For example, we can use it to estimate
protein degradation rates, which are hard to measure systematically45.
Indeed, the least abundant yeast proteins have an increased occurrence
of the PEST (proline, glutamic acid, serine, threonine) ubiquitinyla-
tion signal46 compared to the most abundant proteins. However, this
does not hold true for the protein per mRNA ratio (Supplementary
Notes). Investigators have analyzed amino acids at the N-terminal end
of proteins with respect to their influence on molecular stability
and determined a set of stabilizing and a set of destabilizing amino
acids, known as the N-end rule47. Although we find only minor bias

with respect to amino acid occurrences at protein N termini (Supple-
mentary Notes), we find stronger signal when we analyze whole
sequences. The least abundant proteins per mRNA have significant
protein-wide surpluses of serine, leucine and asparagine, whereas the
most abundant proteins per mRNA have significant surpluses of
valine, alanine and glycine (Fig. 5c). This is largely consistent with
the N-end rule, suggesting that protein degradation contributes to
protein per mRNA levels. By such analyses, we can describe and
compare the influence of various factors, such as mRNA levels, growth
conditions, molecular weight or sequence characteristics, on absolute
protein expression levels and thus complete the picture of in vivo
transcriptional and translational regulation.

METHODS
Derivation of the absolute protein expression index (APEX). If each protein i

is present in ci copies in the injected sample, then the expected fraction of the

observed peptide pool accounted for by protein i of all injected proteins is:

ci �Oi

P#injected
proteins

k ¼ 1

ðck �OkÞ

;whereOi ¼
X#peptides from

protein i

j¼1

pij;

where Oi is the expected number of unique peptides observed for protein i, and

pij is the probability of observing peptide j from protein i through the course of

the MS experiment, which is a function of the peptide’s ionization efficiency,

solvent conditions, appropriate mass-to-charge ratio for analysis, and

other factors.

Likewise, the fraction of the observed peptide mass spectra accounted for by

protein i is:

ni � pi

P#observed
proteins

k¼ 1

ðnk � pkÞ

;

where ni is the total number of redundant MS/MS scans observed from

peptides of protein i through the course of the experiment, and pi represents

the probability of correctly identifying the protein. Assuming the maximum

likelihood estimate of proportionality between these two fractions and solving

for the concentration of protein i gives:

ci /
ni � pi
Oi

� �
�

P#injected
proteins

k¼ 1

ðck �OkÞ

P#observed
proteins

k¼ 1

ðnk � pkÞ

0
BBBBBB@

1
CCCCCCA
:

The second term captures the ratio of the total number of expected peptides to

the total number of observed MS/MS spectra. As this term is constant for all

proteins in a given experiment, it can be divided out to create a normalized

protein score. Based on this derivation, we define the absolute protein

expression index APEXi of protein i as:

APEXi ¼
ni � pi

Oi �
P#observed

proteins

k ¼ 1

nk � pk
Ok

�C;

where C is an estimate of the total concentration of protein molecules in the

sample, approximately 5 � 107 molecules/cell for a typical yeast cell18 and

2–3 � 106 molecules/cell for E. coli 48, serving to convert a normalized

expression measure to an absolute protein number per cell. Under different

experimental conditions, this number can, of course, be replaced by the

measured total protein concentration.

Although both ni and pi are experimentally measured variables (here,

calculated by ProteinProphet49), Oi is not directly available. This parameter
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provides the expected contribution of a protein to the pool of observed

peptides, and it captures a broad set of trends, such as the total number of

possible peptides generated from the proteins under the given experimental

conditions (e.g., by tryptic digest) and the probability of each peptide ionizing

and ultimately being analyzed by the mass spectrometer. A simple first

approximation of Oi for a typical shotgun proteomics run can be calculated

as the number of possible tryptic peptides of protein i that fall within the mass/

charge window examined by the mass spectrometer. We obtained a more

accurate estimate of Oi by training a classification algorithm to predict the

observed tryptic peptides from a given protein based upon peptide length and

amino acid composition. Although, in theory, all peptides from the same

protein occur stoichiometrically, not all are observed; our classifier Oi captures

trends leading to differential observation. In other words, Oi accounts for both

protein- and peptide-specific sequence characteristics that bias observation in

the mass spectrometer. Oi is a key feature of APEX that improves estimation of

protein abundance by up to B30% (see Supplementary Notes).

In this manner, we can correct the abundance for proteins with unusual

amino acid sequences. For example, we observe the yeast protein FLO1 to have a

particularly low Oi value: only 11 of the 64 predicted FLO1 tryptic peptides (or

17%) are deemed likely to be observed in an 2D HPLC-MS/MS experiment.

The low value results from the unusual amino acid composition: FLO1 has an

extremely high percentage of serine and threonine residues (41%). These

residues are often sites of post-translational modifications, for example, glyco-

sylation, which change peptide fragmentation patterns and therefore reduce the

interpretability of the MS/MS spectra. Similarly, the protein RPL39 is only

51 residues long, but one-third of these are lysine and arginine residues, the sites

of trypsin cleavage specificity. Thus, the majority of RPL39 tryptic peptides are

too short for reliable detection. We expect to see only 3 of 38 tryptic peptides

and the Oi value is correspondingly low. By contrast, the protein glyceraldehyde

3-phosphate dehydrogenase (TDH3) has one of the highest Oi values—39 of

the 103 tryptic peptides (38%) are of a length and composition likely to be

observed. Running the classifier on the set of all predicted tryptic peptides from

yeast proteins provided an estimate of Oi for each protein. Normalizing the

number of observed tryptic peptides by the prior expectation Oi improves

estimates of each protein’s abundance (Supplementary Notes).

A classifier for predicting observed peptides. To estimate Oi, we first derived a

benchmark set of tryptic peptide amino acid sequences from the 40 most

abundant (and therefore well sampled) proteins observed in a shotgun analysis

of the yeast proteome. All training data are provided (Supplementary Data 4

and 5 online). All possible tryptic peptides with at most two missed trypsin

cleavages were predicted from these 40 proteins, keeping the 4,023 peptides in

the molecular weight range 250–7,500 with at least three amino acids. Peptides

ranged from 3 to 69 amino acids in length, with the average B19 amino acids.

Of these, 714 were observed in the shotgun proteomics experiment; the

remaining 3,309 were not observed. For each peptide, a feature vector was

constructed from the frequencies of each amino acid, the peptide length and

molecular weight. Diverse classification algorithms, implemented in Weka

Explorer v.3.4.4 (http://www.cs.waikato.ac.nz/ml/weka/), were tested for their

performance in differentiating the ‘observed’/‘non-observed’ peptides based

upon these properties, including Bayesian classifiers, support vector machines,

logistic regression, instance-based learners and decision trees. As simply

guessing that all peptides are ‘non-observed’ is correct 82% of the time, cost-

sensitive classifiers were used to balance the performance across the two peptide

categories (Supplementary Notes).

The best performance (as judged by optimizing classifier precision and recall

in tenfold cross-validated tests and requiring balanced performance on the two

sets) was shown by a cost-sensitive classifier based upon bagging with a forest of

random decision trees, with a final performance of 86% correct classifications

on the cross-validated training set and true positive rates of 69% on observed

peptides and 90% on non-observed peptides. Using the learned model, the

classifier (Supplementary Data 4 and 5) was applied to the set of tryptic

peptides from all yeast or E. coli proteins, predicting the likelihood of each

peptide to be observed in a shotgun proteomics experiment. The value of Oi

was calculated for each protein as the sum of probabilities for observing each

tryptic peptide derived from that protein, and can be interpreted as the

maximum number of unique peptides likely to be observed from the protein

in a shotgun proteomics experiment conducted similarly to those described

here. Values of Oi for all yeast and E. coli proteins are provided in Supple-

mentary Data 1 and 3.

Analysis of differential protein expression using APEX. Given a shotgun

proteomics experiment, we calculate the fraction fi of interpreted peptides

accounted for by protein i in the experiment as ni/N, where ni is the number of

peptides from protein i, and N is the total number of interpreted peptides in

that experiment. At typical values of N (B5,000–30,000), we find ni to be well-

approximated by a normal distribution of mean fi and s.d.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fið1 � fiÞ

p
(see

Supplementary Notes online for the test). We make the assumption that the

probability of observing each peptide in the mass spectrometer, pij, is constant

between two samples and can be ignored. We then calculate the test statistic for

differential expression of a protein as:

Z ¼ fi;1 � fi;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fi;0ð1 � fi;0Þ=N1 + fi;0ð1 � fi;0Þ=N2

p ;

where the numerator represents the difference in sampled proportions of

protein i in two shotgun proteomics experiments, and the denominator

represents the standard error of the difference under the null hypothesis in

which the two sampled proportions are drawn from the same underlying

distribution with the overall proportion fi,0 ¼ (ni,1 + ni,2)/(N1 + N2).

Shotgun analysis of the yeast proteome. Yeast, E. coli, and mouse T-cell

lymphoma cells, growth, protein extraction and proteolysis are described in the

Supplementary Notes online. Tryptic peptide mixtures were separated by

automated 2D HPLC. Chromatography was performed at 2 ml/min with all

buffers acidified with 0.1% formic acid. Chromatography salt step fractions

were eluted from a strong cation exchange column with a continuous 5%

acetonitrile (ACN) background and 10-min salt bumps of 0, 20, 60 and 900

mM ammonium chloride. Each salt bump was eluted directly onto a reverse

phase C18 column and washed free of salt. Reversed-phase chromatography

was run in a 125-min gradient from 5% to 55% ACN, and then purged at 95%

ACN. Peptides were analyzed online with electrospray ionization ion trap mass

spectrometry using a ThermoFinnigan Surveyor/DecaXP+ instrument. In each

MS spectrum, the five tallest individual peaks were fragmented by collision-

induced dissociation (CID) with helium gas to produce MS/MS spectra. Gas

phase fractionation was used to achieve maximum proteome coverage50: each

tryptic peptide mixture was analyzed by three sequential 2D HPLC-MS/MS

analyses, in each case examining a different mass/charge (m/z) range (300–650,

650–900 and 900–1500 m/z) for data-dependent precursor ion selection for

CID; fragmentation data from the three runs were then combined for analysis

by BioWorks (ThermoFinnegan). In total, 246,820 MS/MS scans were collected

for yeast rich medium (YPD) data, 241,288 scans for yeast minimal medium

(YMD) data, B144,000 scans for E. coli and B384,000 for mouse. The

probability of observing each protein and the total number of observed

peptides were calculated using ProteinProphet49, selecting proteins above a

5% false discovery rate for protein identification threshold. Proteins identified

for yeast, mouse and E. coli are provided in the Supplementary Data 1, 2 and

3, respectively. Control protein mixtures were analyzed in a similar fashion

(Supplementary Notes).

Quantitative properties of the yeast proteome. Protein-derived data, includ-

ing aromaticity, hydrophobicity and codon adaptation index, frequency of

optimal codons and codon usage, were downloaded from the Saccharomyces

Genome Database (SGD). mRNA expression data were taken from SAGE data27

as reported in the SGD database and from DNA microarray data30–34. Protein

expression data were taken from western blot analyses20, flow cytometry21 and

from 2D gel electrophoresis-based quantification18,19.

All raw shotgun proteomics data are freely available for download from

the Open Proteomics Database42 at http://bioinformatics.icmb.utexas.edu/

OPD under accession numbers opd00038_YEAST – opd00042_YEAST,

opd00047_YEAST – opd00051_YEAST, opd00098_YEAST, opd0095_ECOLI

– opd0097_ECOLI, and opd00087_MOUSE – opd00094_MOUSE. The train-

ing set and classifier used to assign Oi values to proteins are available as

Supplementary Data 4 and 5 and are suitable for use in assigning APEX-based

abundances to proteins from organisms other than yeast.
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Note: Supplementary information is available on the Nature Biotechnology website.
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