
A single network comprising the majority of genes accurately predicts the 

phenotypic effects of gene perturbation in C. elegans

Insuk Lee, Ben Lehner, Catriona Crombie, Wendy Wong, Andrew G. Fraser, and Edward 

M. Marcotte 

SUPPLEMENTARY FIGURE S1 

ROC plots illustrating the Wormnet-based prediction of RNAi phenotypes.  For each 

known phenotype, we analyzed the ability to predict genes conferring the phenotype 

using leave-one-out analysis.  Every gene in the Wormnet was first rank-ordered by the 

sum of its LLS scores to all other genes with the given RNAi phenotype; we then 

measured the recovery of genes with the given phenotype, calculating true positive rate 

(TP/(TP+FN)) and false positive rate (FP/(FP+TN)) as a function of rank.  In each plot, 

the diagonal represents no predictive power, curves above the diagonal indicate 

prediction of the plotted phenotype, with curves farther to the top left of the plot 

indicating the strongest predictive power. In order to measure rates up to 100%, we 

employed pseudocounts, assigning a very low LLS score (0.00000001) to all unlinked 

gene pairs in Wormnet (i.e., gene pairs lacking all evidence for functional coupling). 

We tested 43 published RNAi phenotypes (see Supplementary Methods, Table C), 

omitting 1 phenotype with counts too low to provide statistical significance (egg size 

abnormal, 4 genes).  Among the 43 tested phenotypes, we found (A) 29 strongly 

predictable phenotypes, (B) 10 moderately or weakly predictable phenotypes, and (C) 4 

predictable at no better than random levels. Strong prediction of phenotypic outcomes 

indicates that genes sharing the same RNAi phenotype are tightly linked in Wormnet and 

are considerably closer to each other in the network than to other genes.
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SUPPLEMENTARY TABLE S1 

Table S1A 

C. elegans DNA microarray mRNA expression data sets analyzed for co-expression, 

downloaded from the Stanford Microarray Database and Stuart et al. [11].  Six subsets of 

SMD and the non-redundant Stuart et al. set showed strong correlations between mRNA 

co-expression and log likelihood scores (see Supplementary Methods, Figure A-2) and 

were therefore incorporated into the network. 

Table S1B 

C. elegans DNA microarray mRNA expression data sets tested but omitted from the 

network for insufficient correlation between mRNA co-expression and LLS scores (see 

Supplementary Methods, Figure C). 

Array group Literature sources # experiments 

GEO heat-stress McCarroll SA, et al. [6] 7 

SMD Alzheimer Link CD, et al. [4] 9 

SMD EDC treatment Custodia N, et al. [1] 6 

SMD ethanol treatment Kwon JY, et al. [3] 7 

SMD hypoxia  Shen C, et al. [10] 9 

SMD sensory ray genes Portman DS and Emmons SW [7] 7 

SMD touch receptor neuron Zhang Y, et al. [13] 6 

Array group Literature sources # experiments 

SMD Aging Lund J, et al. [5] 26 

SMD Dauer Wang, J. and Kim, SK [12] 50 

SMD L1 Wang, J. and Kim, SK [12] 44 

SMD Developmental stages Jiang M, et al. [2] 26 

SMD Germline Reinke V et al. [8] 34 

SMD Heat shock Romagnolo B, et al. [9] 40 

Stuart nonredundant Stuart et al. [11] 635 
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SUPPLEMENTARY TABLE S2 

Table S2A 

Benchmarking of protein physical or genetic interactions with log likelihood scores using 

reference gene pairs generated from Gene Ontology biological process annotation. 

Data set # unique 

genes 

# unique 

gene pairs 

Log likelihood score 

WI5.literature
1
 131 102 1.76

WI5.scaffold 455 487 0.71

WI5.core1 723 809 0.26

WI5.core2 1114 1264 0.013

WI5.noncore 1823 1865 -0.49

Genetic interactions
2
 772 3663 1.15

1. WI5: Worm Interactome version 5 [7] 

2. Collected from Worm base release WS150 

Table S2B 

Human interactome sets from which worm gene functional linkages were inferred. 

Human interactome set # unique 

genes 

# unique 

gene pairs 

Text mining (Bayesian-ranked co-citation) [9] 1,054 2,013

BIND [1] 1,024 1,572

BIOGRID [11] 2,076 7,079

HPRD [8] 2,689 14,909

Reactome [4] 1,152 22,125

Large-scale yeast 2 hybrid analysis [10] 2,998 6,085

Table S2C 

Yeast functional genomics and proteomics data sets from which worm gene functional 

linkages were inferred. Yeast linkages derive from version 2 of the network in [6], with 

additional datasets incorporated where cited below.

Yeast data set # unique 

genes 

# unique 

gene pairs 

Text-mining (by co-citation) 2,111 17,493

mRNA co-expression 1,831 45,252

Gene neighbors 1,301 7,128

Genetic interactions 1,915 10,534

Text-mining (by literature curation) 1,467 7,007

Affinity purification followed by mass spec 

analysis [3, 5] 

1,691 26,153

Rosetta Stone proteins 560 793

Predicted interactions by protein tertiary 

structures [2] 

672 4,201



References for Supplementary Table S2 

1.  Alfarano, C., et al. (2005) The Biomolecular Interaction Network Database and related 

tools 2005 update. Nucleic Acids Res 33(Database issue): D418-24. 

2.  Aloy, P. Russell, R.B. (2003) InterPreTS: protein interaction prediction through 

tertiary structure. Bioinformatics 19(1): 161-2. 

3.  Gavin, A.C., et al. (2006) Proteome survey reveals modularity of the yeast cell 

machinery. Nature 440(7084): 631-6. 

4.  Joshi-Tope, G., et al. (2005) Reactome: a knowledgebase of biological pathways. 

Nucleic Acids Res 33(Database issue): D428-32. 

5.  Krogan, N.J., et al. (2006) Global landscape of protein complexes in the yeast 

Saccharomyces cerevisiae. Nature 440(7084): 637-43. 

6.  Lee, I., Date, S.V., Adai, A.T., Marcotte, E.M. (2004) A probabilistic functional 

network of yeast genes. Science 306(5701): 1555-8. 

7.  Li, S., et al. (2004) A map of the interactome network of the metazoan C. elegans. 

Science 303(5657): 540-3. 

8.  Peri, S., et al. (2003) Development of human protein reference database as an initial 

platform for approaching systems biology in humans. Genome Res 13(10): 2363-

71. 

9.  Ramani, A.K., Bunescu, R.C., Mooney, R.J., Marcotte, E.M. (2005) Consolidating the 

set of known human protein-protein interactions in preparation for large-scale 

mapping of the human interactome. Genome Biol 6(5): R40. 

10.  Rual, J.F., et al. (2005) Towards a proteome-scale map of the human protein-protein 

interaction network. Nature 437(7062): 1173-8. 

11.  Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M. 

(2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res

34(Database issue): D535-9. 



SUPPLEMENTARY TABLE S3 

The final contribution of each of the nine data types to the (A) full and (B) core 

integrated C. elegans network, listing the number of unique genes and functional linkages 

derived from each set.  Note that a given linkage may have evidence from more than one 

dataset.  (C) Optimal values of D and T parameters for the data integration steps, 

indicating that the linkages derived from different expression datasets were reasonably 

independent, while substantial redundancy existed among the 9 datasets for the final 

integration step.

S3A. Complete network 

S3B. Core network 

Data set # unique 

genes 

# unique functional 

linkages 

mRNA co-expression 9,769 64,498

Interologs from human 2,865 27,737

Associalogs from yeast gene network 2,177 22,825

Co-citation  1,288 4,252

Gene neighbors 1,132 3,584

Genetic interactions from Wormbase 771 1,690

Phylogenetic profiles 560 1,558

Interologs from fly 512 321

Worm Interactome version 5 324 232

S3C. Optimized D and T free parameters for each data integration step 

Integrated set D (relative 

dependence) 

T (threshold of LLS of 

individual data set) 

Co-expression network 1.1 0.182

Human interologs network 20.0 0

Yeast associalogs network 2.9 0.405

Wormnet (final integration) +� 0

Data set # unique 

genes 

# unique functional 

linkages 

mRNA co-expression 14,491 287,130

Associalogs from yeast gene network 2,637 56,262

Interologs from human 3,145 30,098

Gene neighbors 2,660 13,645

Co-citation  1,300 5,577

Phylogenetic profiles 649 2,051

Genetic interactions from Wormbase 771 1,690

Worm Interactome version 5 1,165 1,411

Interologs from fly 1,141 910
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SUPPLEMENTARY METHODS 

A single network comprising the majority of genes accurately predicts the 

phenotypic effects of gene perturbation in C. elegans 

Insuk Lee, Ben Lehner, Catriona Crombie, Wendy Wong, Andrew G. Fraser, and Edward 

M. Marcotte 

 

Caenorhabditis elegans proteome 

This study is based on 19,735 predicted protein coding genes (excludes 2,685 

alternative spliced products) of C. elegans (downloaded from WormBase Release WS140 

(1) on March 2005).  All linkages and calculations of genome coverage are based on this 

gene set. 

 

Overview of C. elegans probabilistic functional gene network (Wormnet version 1.0) 

construction 

Different types of functional and comparative genomics data have quite different 

value for reconstructing pathways in a metazoan.  The different data sets are also often 

accompanied by distinct internal measures of confidence.  To integrate these data into a 

composite network, we first evaluated each data set using a common scoring scheme, 

allowing the relative merits of each to be measured prior to integration weighted 

according to their scores.  Specifically, using the log likelihood score (LLS) scheme 

described in (2), we estimated functional coupling between each pair of genes, defined as 

the likelihood of participating in the same pathway, then integrated the gene-gene 

linkages into the final network.  The resulting network therefore represents a unified 

model of coupling between C. elegans genes as estimated from the currently available 

large-scale, predominantly systematically collected, data. 

In this scheme, LLS = ln 








¬
¬

L) /P(P(L)

E)|L /P(E)|P(L
,  

where P(L|E) and P(¬L|E) are the frequencies of linkages (L) observed in the given 

experiment (E) between annotated genes operating in the same pathway and in different 

pathways, respectively, while P(L) and P(¬L) represent the prior expectations (i.e., the 
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total frequency of linkages between all annotated C. elegans genes operating in the same 

pathway and operating in different pathways, respectively).  Scores greater than zero 

indicate the dataset tends to link genes in the same pathway, with higher scores indicating 

more confident linkages and stronger support for the genes operating in the same 

pathway. 

To obtain accurate estimates of dataset accuracy, we employed 0.632 bootstrapping 

(3, 4) for all LLS evaluations.  0.632 bootstrapping has been shown to provide a robust 

estimate of classifier accuracy, generally out-performing cross-validation (5), especially 

for very small datasets (e.g., see (6)).  The data evaluation and integration strategy we 

describe is therefore appropriate even for more poorly annotated genomes.  Unlike cross-

validation, which uses sampling without replacement for constructing test and training 

datasets, 0.632 bootstrapping employs sampling with replacement, constructing the 

training set from data sampled with replacement and the test set from the remaining data 

that weren’t sampled.  Each linkage has a probability of 1-1/n of not being sampled, 

resulting in ~63.2% of the data in the training set and ~36.8% in the test set (7).  The 

overall LLS is the weighted average of results on the two sets, equal to 0.632*LLStest + (1-

0.632)*LLStrain, calculated as the average over 10 repeated sampling trials. 

For data sets accompanied by intrinsic scores that are continuous (e.g., correlation 

coefficients between pairs of gene expression vectors), we ranked gene pairs by the  

scores and calculated log likelihood scores for bins of equal numbers of gene pairs.  

Those LLSs and the corresponding mean of the data intrinsic scores for each bin were 

used to derive regression models mapping the data intrinsic scores to LLS scores, in this 

manner generating LLS scores for both annotated and unannotated gene pairs (see Figure 

A).  For integrating evidence from multiple data sets, we used a modification of the 

weighted sum method (2) described in ref. (8) to account both for differential quality of 

each data set and for correlations among the data sets.  The weighted sum method was 

modified to include a parameter, T, representing a LLS threshold for all data sets being 

integrated.  The total strength of a given functional gene linkage derived from multiple 

data sets was calculated as the weighted sum (WS) of individual scores as 

WS = L0 +∑
= ⋅

n

i

i

iD

L

1

 , for all L ≥  T, 
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where L0 represents the best LLS score among all LLSs for that gene pair, D is a free 

parameter for the overall degree of independence among the data sets, and i is the order 

index of the data sets after rank-ordering the n remaining LLS scores for the given gene 

pair, starting from the second highest LLS score and descending in magnitude.  The 

values of two free parameters (D and T) are chosen by systematically testing values of D 

and T in order to maximize overall performance (area under a plot of LLS versus gene 

pairs incorporated in the network) on the Gene Ontology benchmark, selecting a single 

value of D and of T for all gene pairs being integrated using these datasets.  D is a free 

parameter determining the (linear) decay rate of the weight for secondary evidence.  It 

ranges from 1 to +∞ and captures the relative independence of the data sets, low values of 

D indicating more independence among data sets and higher values indicating less.  As 

the optimal value of D approaches +∞, the scheme is equivalent to taking only the single 

best line of evidence for a linkage (L0), regardless of which data set it derives from, in 

this way avoiding overweighting linkages when datasets are highly correlated.  (Note that 

this overweighting applies only to linkages supported by more than one dataset—links 

from only a single line of evidence are not affected by this scheme regardless of the value 

of D.)  We independently explicitly test the performance of a naïve Bayesian integration 

of the LLS scores (here, simply the sum of the LLS scores for a given gene pair), then 

select the integration approach maximizing the area under a plot of LLS versus gene pairs 

incorporated in the network. 

We first integrated similar classes of data into composite sets (integrating the 6 co-

expression data sets into a single set of co-expression linkages, integrating the human PPI 

data, integrating the worm PPI data, and integrating the yeast-derived linkages), before 

then integrating the 9 composite sets (see Table S3A-B) into an overall network based 

upon co-citation, co-expression, the Worm Interactome version 5, genetic interactions, 

gene neighbors, phylogenetic profiles, and conserved interactions transferred from other 

species (yeast/fly/human).  The optimized free parameters, D and T, for each integration 

steps are summarized in Table S3C. 

We note that this approach minimizes the total number of free parameters (such as by 

not learning weights for all pairs of datasets), making this approach robust to 

overtraining.  In all, <125 free parameters were trained for the reconstruction of the 
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complete set of several hundred thousand pairwise gene linkages in Wormnet from >20 

million experimental observations. 

The final network has a total of 384,700 linkages between 16,113 C. elegans proteins, 

covering ~82 % of C. elegans proteome; all gene pairs have a higher likelihood of 

belonging to the same pathway than random chance.  To define a model with high 

confidence and reasonable proteome coverage, we applied a likelihood threshold, keeping 

only gene pairs linked with a likelihood of being in the same pathway of at least 1.5 fold 

better than random chance.  Using this threshold, we defined the core network, containing 

113,829 linkages for 12,357 worm proteins (~63% of the worm proteome). 

 

Reference and benchmark sets 

Three different reference annotation sets were used to assess the C. elegans functional 

linkages.  The Gene Ontology (GO) annotation downloaded March 2005 from 

WormBase (1) served as the major reference set for training and benchmarking the 

network.  The GO schema lists three hierarchies of function, describing “biological 

process” (i.e., pathways and systems), “molecular function” (i.e., biochemical activities), 

and “cellular component” (i.e., subcellular localization).  For testing hypotheses of 

functional coupling between genes, we used the C. elegans GO “biological process” 

annotation, which contains up to 14 different levels of information under the term 

“biological process” within the hierarchy.  We constructed a reference set consisting of 

gene pairs sharing GO biological process annotation.  To optimize annotation specificity 

and comprehensiveness, we used terms belonging to levels 2 through 10 (terms above 

level 2 are too general, and terms below level 11 too specific).  We sorted all terms by the 

number of genes annotated (Figure B), then excluded the top 5 terms, which account for 

>78% of total reference set gene pairs, in order to reduce functional bias in the 

benchmark set.  The following terms were omitted: embryonic development, positive 

regulation of growth rate, growth, locomotory behavior, regulation of transcription 

(DNA-dependent).  The Kyoto-based KEGG database (9) provides metabolic and 

regulatory pathway annotations that are closely related to biological process annotations.  

A KEGG map for C. elegans downloaded on November 2005 was used to generate the 

second benchmarking set for this study, excluding the 3 most abundant KEGG pathway 



 5 

annotation terms (oxidative phosphorylation, purine metabolism, and ribosome;  

accounting for >40% of the linkages) in order to minimize bias.  After the above post-

processing, there are 786,056 gene pairs sharing annotation from the GO reference set, 

and 9,406 from KEGG.  About half of KEGG gene pairs (5,069 pairs) are shared between 

the two reference sets.  Therefore, the KEGG and GO reference sets for C. elegans are 

fairly independent (10).  Nonetheless, to ensure complete independence, we removed all 

GO pairs from the KEGG set, then used the KEGG minus GO set as a 100% independent 

set for additional tests of the network as well as for comparison to two earlier integrated 

worm network models (11, 12).  As an additional benchmark set, we also considered the 

set of gene pairs sharing GO “cellular component” annotations. 

 Finally, in order to effectively summarize broad trends of biological functions in the 

data set, we desire only a few categories of functional annotation.  For this purpose, we 

employed a reference set of functional categories from the clusters of orthologous group 

(COG) annotation (13), which is based on reconstructing homologous groups of proteins 

in such a manner as to considerably enrich for orthologous proteins within each group, 

with the functions of genes assigned within 23 broad categories (such as “Transcription” 

and “Signal Transduction Mechanisms”) based on the well-annotated proteins with each 

COG.  We use the recently updated COG collection that includes multicellular eukaryotic 

genomes (named eukaryotic orthologous groups, or KOG) (14).  These 23 categories 

were further collapsed into 12 functional groups for more efficient visualization (see 

Table A).  We also constructed a benchmark set from gene pairs sharing KOG 

annotations. 

 

Inferring gene functional linkages from mRNA expression data 

Gene functional linkages were calculated from microarray data of mRNA expression 

as in (2).  Expression data are from the Stanford Microarray Database (SMD downloaded 

on July 2005) (15), GEO database (16), and published by Stuart et al. (11).  We 

established an objective criterion for considering DNA microarray datasets:  For each 

collection of DNA microarray data (defined as a set of arrays listed in SMD as from one 

publication), we considered all gene pairs correlated at the 99% confidence level (by t-

test), then tested for the evidence of a relationship between the Pearson correlation 
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coefficient (PCC) of pairs of genes’ expression vectors and the LLS score.  Only sets of 

experiments that showed a positive correlation were analyzed further.  An example of a 

set meeting this criterion is shown in Figure A-2.  The list of tested datasets meeting this 

criterion and therefore included in the network calculation is presented in Table S1A.  

Two examples of datasets failing this criterion are shown in Figure C; tested but 

excluded sets are now listed in Table S1B. By this criterion, we selected 6 sets of SMD 

data containing a total of 220 separate microarray experiments with significant 

correlations between co-expression and functional associations (see Table S1A), as well 

as the data from Stuart  et al..  For the Stuart et al. data set, we considered only the subset 

of experiments non-redundant with those available independently from SMD, resulting in 

635 separate microarray experiments (the specific experiments analyzed from the Stuart 

et al. dataset are those indicated in their dataset by numerical indices lacking 

descriptions).  We occasionally observed genes with no significant expression dynamics 

across the experiments (i.e., low variance expression vectors) showing high Pearson 

correlation coefficients and leading to spurious (not biologically meaningful) linkages.  

We therefore filtered out such cases by requiring each gene to exhibit significant 

(typically, >1.2-fold) expression changes in some minimal number of experiments, 

optimizing both the threshold of expression and minimum number of experiments for 

each group of expression datasets by recall-precision analysis, maximizing the area under 

a plot of LLS versus genes included in the network. 

 

Gene functional linkages by physical and genetic interactions between proteins 

We incorporated genome-wide yeast two hybrid analyses of C. elegans genes from 

the Worm Interactome database, as well as the published literature set of small scale 

protein-protein interactions (17).  We treated subsets of the Worm Interactome Version 5 

(literature, scaffold, core1, core2, non-core) separately, providing different confidence 

scores for the different data subsets, rather than a single averaged confidence score across 

all interactions of the Worm Interactome set.  Genetic interactions (for ~800 genes and 

~4000 interactions) were included from WormBase (1), derived from >1000 primary 

publications.  Benchmarking of worm protein-protein interactions is summarized in 

Table S2A. 
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Inferring gene functional linkages from genome context 

Functional linkages can be inferred between pairs of genes from comparative 

analyses of genome sequences.  We find the methods of phylogenetic profiling (18-20) 

and gene neighbors (21-23) show reasonable performance for metazoan genes.  Linkages 

for each method were derived from analysis of 149 genomes (117 bacteria, 16 archaea, 

and 16 eukaryotes).  Briefly, each C. elegans protein sequence was compared to every 

other sequence using the program BLASTP with default settings (24), then the alignment 

scores analyzed as follows.   

Phylogenetic profiles were constructed from these comparisons and analyzed as in 

(25) with the following modifications:  We found the profiles derived from organisms of 

different kingdoms provided considerably different strengths of correlation with gene 

functional associations.  Profiles calculated only from bacterial genomes provided the 

best range of LLS scores; including archaea or eukaryotes in the profiles did not 

significantly improve performance.  Therefore, we inferred gene functional linkages from 

phylogenetic profiles constructed from only the 117 bacterial genomes.  For discretizing 

BLASTP E-values during the calculation of mutual information between phylogenetic 

profiles, we employed bins of equal numbers of E-values, rather than equal intervals of 

E-values, accounting for non-uniform E-value distribution.  In previous analyses of 

phylogenetic profiles, we have observed the best results (measured by recall-precision 

analysis using LLS scores and protein coverage as measures of precision and recall, 

respectively) from using 3 E-value bins, and therefore adopted this approach.  Gene 

neighbor linkages were identified as in (21) using both bacterial and archaeal genomes. 

 

Inferring gene functional linkages from literature mining 

We also identified functional linkages by mining the scientific literature (specifically, 

Medline abstracts downloaded on December 2004) using the co-citation approach (26, 

27).  We analyzed a set of N = 7,732 Medline abstracts that included the word “elegans” 

in the abstract for perfect matches to either the systematic names or common names of 

19,735 genes of C. elegans, scoring gene pairs according to the scheme of (2). 
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Functional linkages derived by transferring conserved gene interactions from other 

species’ interactomes 

The assayed subsets of different species’ interactomes often complement one another 

due to differences in bait/prey choices and experimental sensitivity, specificity, and bias.  

By transferring linkages between species (i.e., the functional linkage equivalent to 

‘interologs’ (conserved physical protein interactions) (28), which we term ‘associalogs’), 

we can collect additional gene functional linkages for a given genome.  We therefore 

transferred both physical protein interactions and functional gene linkages from yeast, 

fly, and human into worm. 

For proper identification of worm orthologs of those query genomes, we used 

INPARANOID (29), which reduces false negative ortholog identifications and has 

proved to be a robust method for identifying functionally equivalent proteins (30).  Based 

on the worm and yeast ortholog pairs by INPARANOID, we inferred functional linkages 

between worm genes based upon linkages in the probabilistic functional gene network 

(version 2 (8) of the network described in (2)).  We found that transferring linkage 

information from the individual yeast data sets prior to integration provided better 

performance (assessed by recall-precision analysis on the C. elegans benchmark) than 

direct transfer of the integrated yeast network linkages.  We employed the modified 

weighted sum method of linkage integration (2) described above.  Additional functional 

linkages were inferred from the fly yeast two hybrid network (31), as well as from several 

sets of human protein interaction data (see Table S2B).  Linkages from the individual 

human protein interaction sets were first integrated using the weighted sum method into a 

single set of human-derived linkages before integrating with other datasets.  Prior to this 

integration, individual interactions were either assigned confidence scores according to 

the hypergeometric probability of occurring at random given the total number of 

interactions of each partner, calculated as in (32), or were assigned single confidence 

scores for all linkages derived from a single type of experiment, choosing whichever 

scoring scheme performed better by recall-precision analysis.  

 

Detailed protocol for reconstructing the C. elegans gene network 
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To more clearly define the procedure we employed for generating the network, we 

provide the full procedure as pseudo-code: 

 
1. Identify worm orthologs of human, yeast, and fly proteins using INPARANOID 
2. For worm DNA microarray data 

2.1. For each set of worm DNA microarrays (corresponding to all arrays from a given 
publication, as defined in SMD) 

2.1.1. Calculate the mean-centered Pearson correlation coefficient (PCC) 
between all pairs of genes’ expression profiles 

2.1.1.1.Calculate (by t-test) the minimum correlation coefficient for 99% 
confidence given the # of experiments in the set.  For further analyses, 
consider only pairs meeting this criterion. 

2.1.1.2.Evaluate the regression between PCC and the log likelihood score 
(LLS) of sharing pathway annotations 

2.1.1.2.1. Reject set if no relationship is evident between PCC and LLS 
2.1.1.3.Filter genes considered in the correlation analysis by requiring each 

gene to exhibit significant expression changes (e.g., >x-fold, typically 
~1.2-fold) in some minimal # of experiments across the dataset.  
Optimize these 2 parameters by recall-precision analysis, maximizing 
the area under a plot of LLS versus # of genes participating in the 
linkages. 

2.1.1.4.Fit regression (typically sigmoidal) between PCC and LLS, 
considering only genes passing the optimized filtering criteria (2.1.1.3) 
and only gene pairs whose correlation exceeds the 99% confidence 
level (2.1.1.1). 

2.1.1.5.Using regression fit, assign LLS scores to all gene pairs whose 
correlation exceeds the 99% confidence level, including unannotated 
gene pairs. 

2.1.1.6.Select minimum LLS threshold from inflection point of regression 
model.  Retain only LLS scores/gene pairs surpassing threshold. 

2.2. Integrate LLS scores from complete collection of sets of DNA microarrays  
2.2.1. Calculate the weighted sum of LLS scores for each gene pair across the 

analyses of DNA microarray sets 
2.2.2. Optimize the choice of the weighting parameters D and T using recall-

precision analysis by maximizing the area under a plot of LLS versus # of 
genes participating in the linkages.  Compare to naïve Bayesian integration, 
and choose from weighted integration versus naïve Bayes by recall-precision 
analysis. 

3. For each set of worm protein-protein interaction (PPI) data or genetic interaction data 
3.1. Measure the LLS score for all pairs in the set 
3.2. Assign this LLS score to all interacting pairs in the set, including unannotated 

pairs 
4. For human PPI data 

4.1. For each set of human PPI data, analyze PPI generated by each experimental or 
computational approach (e.g., yeast two-hybrid, text-mining, etc.) independently 
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4.1.1. Measure the LLS score for all worm gene pairs corresponding to 
interacting human proteins in the given data set using the given approach 

4.2. Calculate the weighted sum of LLS scores for each gene pair across the sets of 
human PPI data, optimizing the choice of D and T parameters by recall-precision 
analysis as in (2.2). Compare to naïve Bayesian integration, and choose from 
weighted integration versus naïve Bayes by recall-precision analysis. 

4.3. Fit regression between LLS and weighted sum (or naïve Bayes sum), then assign 
LLS scores to all worm gene pairs corresponding to interacting human proteins, 
including unannotated pairs 

5. For worm co-citation, phylogenetic profiles, and gene neighbors data 
5.1. Fit regressions between LLS and data-intrinsic scores (–log(random probability 

of co-citation), mutual information of phylogenetic profiles, and –log(random 
probability of being gene neighbors, respectively) 

5.2. Using regression fit(s), assign LLS scores to all co-cited (or co-inherited or co-
neighboring) gene pairs, including unannotated gene pairs 

6. For fly PPI data 
6.1. Considering worm gene pairs corresponding to interacting fly proteins, fit 

regression between LLS and fly PPI confidence scores provided with fly PPIs 
6.2. Using regression fit, assign LLS scores to all worm gene pairs corresponding to 

interacting fly proteins, including unannotated pairs 
7. For yeast functional network data 

7.1. Analyze each data type (e.g., DNA microarrays, affinity purification/mass spec, 
etc.) separately, considering worm gene pairs whose yeast orthologs are linked 
by the given data type. 

7.1.1. Fit regression between LLS for worm gene pairs and LLS associated with 
corresponding yeast gene pairs in the yeast network 

7.1.2. Using regression fit, assign LLS scores to all worm gene pairs 
corresponding to linked yeast genes, including unannotated pairs 

7.2. Integrate yeast-derived linkages by calculating the weighted sum of LLS scores 
for each gene pair across the set of yeast data types, optimizing the choice of D 
and T parameters by recall-precision analysis as in (2.2).  Compare to naïve 
Bayesian integration, and choose from weighted integration versus naïve Bayes 
by recall-precision analysis. 

7.3. Fit regression between LLS and weighted sum (or naïve Bayes sum), then assign 
LLS scores to all worm gene pairs corresponding to linked yeast genes, including 
unannotated pairs 

8. Integrate all linkages using the weighted sum method, optimizing the choice of D and 
T parameters by recall-precision analysis as in (2.2). Compare to naïve Bayesian 
integration, and choose from weighted integration versus naïve Bayes by recall-
precision analysis. 

 

Evaluation of the integrated network model 

The final C. elegans network model has been assessed extensively using a variety of 

approaches.  First, the accuracy of linkages in the integrated model was evaluated on the 
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GO annotation benchmark using 0.632 bootstrapping as described above and illustrated 

in Figure 1A.  As expected, we observe the LLS scores of linkages to increase with the 

number of lines of supporting evidence (Figure D).  The LLS scores decrease reasonably 

uniformly as a function of network size, as shown in Figure E.  We observe the linkage 

scores to be reasonably robust even to large changes in the reference annotation set—for 

example, limiting the GO reference set to terms in levels 5 – 10, rather than 2 – 10, 

results in removal of ~36% of all reference set positive examples.  However, a plot of 

recall versus precision using this reduced reference annotation set shows little change in 

performance from the larger set (Figure F). 

Linkage quality was also evaluated on the KEGG annotation set, as described in 

Figure 1D.  We also evaluated the network on the KEGG minus GO set, which 

represents a small, highly biased, but 100% independent subset of reference linkages.  

This benchmark should be considered to provide a lower bound of accuracy, as all high-

confidence linkages confirmed by GO have been removed.  Nonetheless, the ranking of 

network accuracies in Figure 1D is generally preserved using this reference (Figure G).  

Figures H-1 to 5 and Q present comparisons of Wormnet with 4 previous C. elegans 

gene networks on 5 different annotation sets, including KEGG annotations, KOG 

annotations, GO cellular component annotations, GO biological process annotations with 

terms related to protein synthesis removed, and the most recent set of GO biological 

process annotations.  In each test, Wormnet shows considerably increased recall of both 

genes and linkages, while maintaining an accuracy comparable to the other networks.   

Next, we examined functional clusters in the network, with the notion that genes of 

the same pathway should generally cluster strongly in the overall network.  Genes of the 

core network were clustered by their connectivity and modules were defined as in (2), 

requiring each module to contain at least 3 member genes.  In total, we defined 402 

modules (median size 8 genes) covering 8,195 C. elegans proteins (~42 % of C. elegans 

proteome).  The functional coherence of genes in the same module was evaluated as in 

(2).  Figure I illustrates the high functional coherence of genes in the modules using 12 

collapsed KOG gene functional categories (Table A; represented by different color 

codes).  The core network is therefore a reliable model of functional associations among 
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C. elegans genes giving rise to biologically reasonable and functionally coherent 

estimates of higher level pathway organization in C. elegans.   

The observation that many RNAi phenotypes are strongly predictable from Wormnet 

v1 suggests that genes exhibiting similar RNAi phenotypes are also clustered in the 

network.  We explicitly tested this notion for phenotypes of differing specificity.  We first 

examined how genes exhibiting 3 broad categories of RNAi phenotypes (nonviable, 

growth defective, visible post-embryonic phenotypes (33)) were distributed across the 

modules.  Of the 402 modules, 91 showed strong clustering of phenotypes, far greater 

than random (Z-score = 7.04; p < 10-11), with >=25% of the genes in each module sharing 

a particular broad phenotype, and the remaining modules being dominated by genes with 

no visible loss-of-function phenotype.  The modules that we identify via clustering of 

gene linkages clearly have some capacity for predicting the phenotypic outcome of 

perturbing gene activity. However, since many datasets used in network construction are 

still incomplete, the modules that we discover are likely to be correspondingly of limited 

resolution. To improve our predictions, we thus focused primarily on individual linkages 

between genes, rather than module membership, as a means to predict phenotypes.  

Interestingly, we observe a decay in the probability of genes being essential with 

increasing distance from other essential genes (Figure J), also consistent with the 

clustering of genes conferring these phenotypes in the network.  Similarly, the penetrance 

of essentiality decreases in a similar fashion (Figure J). 

As described in the main text, we exhaustively tested Wormnet’s ability to predict the 

genes identified in each of 43 genome-wide RNAi phenotypic screens (Table C).  Using 

ROC analysis (Figure S1), we find 29 of these screens are strongly predictable from 

Wormnet, 10 are weakly or moderately predictable, and 4 are predicted at no better than 

random levels.  This trend depends strongly upon including network edges supported 

only by single lines of evidence (Figure R), arguing that while data integration is useful 

for identifying multiple lines of support for each association, an equally important role is 

to select confident linkages where only one line of evidence is available. 

We next examined topological properties of the network and compared these with 

properties of a randomized version of the network.  Figure K-1 plots the node degree 

distribution of the core C. elegans gene network.  Many network models derived from 
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complex biological systems are characterized by scale-free degree distributions (34). 

However, the core functional gene network is not scale-free.  Instead, we find the degree 

distribution is well fit (r2 = 0.99) by a combined power-law/exponential decay model, 

following a power-law for genes with lower connectivity, then exponential decay for 

genes with degrees higher than a characteristic threshold (β = 101, Figure K-1).  

Previous protein interaction networks have been observed to be scale-free, although it has 

been argued that this is simply a consequence of incomplete sampling of the networks 

(35).  Wormnet’s non-scale free nature may simply be a consequence of the more 

complete network, or possibly a variation due to its more inclusive linkage type, which 

spans physical as well as other interactions.  One possibility is that it may derive from 

practical limits on the sizes of typical cellular pathways—this would imply a rough upper 

bound on pathway size, resulting in systematic under-representation of genes with the 

highest connectivities.   

In further examination of Wormnet topology, the distribution of shortest path lengths 

between all gene pairs in the network (Figure K-2) differs from that of a randomized 

version of the network that was calculated by randomly swapping edges while 

maintaining each node’s degree (36).  The real network shows a significantly higher 

frequency of long paths, indicating that the network exhibits considerable non-random 

structure.  Consistent with the effective capture of pathways and processes in the 

network, Wormnet shows considerably more clustering than expected at random (Figure 

L ). 

We tested for representational bias in the core network by ensuring that genes from 

different functional categories were evenly represented in the network.  We measured the 

retrieval rate of genes from each of 12 functional categories (Table A) to test for 

systematic functional bias among the linkages.  Figure K-3 illustrates that while some 

bias exists for genes of protein synthesis among high-confidence linkages, such bias is 

minimal across the other functional categories, which show similar retrieval rates.  The 

final core network includes ~60-90% of the genes from each of the 12 functional 

categories.  We attempted to clarify the contribution to the predictive power of specific 

GO annotations made by each type of evidence integrated into the network in Figure M.  

To further evaluate the coverage of Wormnet for different biological systems, we 
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demonstrated that Wormnet effectively captures the ‘molecular machines’ previously 

defined by Gunsalus et al. (37) by testing the ability of Wormnet to predict components 

of each machine using ROC analysis (Figure N). 

We asked if genes linked in Wormnet were more likely to be co-expressed in the 

same tissues.  We observed this to be the case (Figure O) at levels significantly above 

random expectation, supporting the observation that Wormnet is capable of making 

tissue-specific phenotypic predictions, at least in part because genes linked in Wormnet 

have a higher chance of being expressed in the same tissues. 

Finally, we compared the prediction of RNAi phenotypes by Wormnet and four 

previous networks using a set of 10 RNAi phenotypes reported after all networks were 

constructed and/or published (Figure P).  As expected, Wormnet shows greatly increased 

coverage of genes with each phenotype (accompanied by increased accuracy), largely due 

to its increased coverage of the proteome over previous networks.  The full version of 

Wormnet shows enhanced performance over the core set, supporting the use of 

probabilistic linkages for phenotype prediction. 
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FIGURES 

Figure A 

Regression models derived between the data intrinsic scores for each functional genomic 

data set and log likelihood scores (LLS).  The likelihoods of functional association 

between gene pairs derived from the given experimental or computational lines of 

evidence was assessed on a reference set of gene pairs derived from the Gene Ontology 

biological process annotation.  Lines of evidence include: (A-1) co-occurrence of  two C. 

elegans gene names in across the set of Medline abstracts (2), (A-2) mRNA co-

expression (as an example of a time series profiling following dauer exit (38); see Table 

S1), (A-3) phylogenetic profiles calculated from 117 bacterial genomes (25), (A-4) gene 

neighbors calculated from 133 archaeal and bacterial genomes, ranked used the scheme 

of ref. (21), (A-5) linkages between orthologs in a yeast probabilistic functional gene 

network (8), (A-6) interologs from the fly yeast two-hybrid based interactome (31), (A-7) 

interologs from human protein interaction data (Table S2B).  Each filled circle represents 

a bin of between 500 and 2000 gene pairs, depending on data set. 
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Figure B 

The GO biological process reference set was constructed from terms in GO level 2 to 10, 

removing terms annotating excessive genes.  This plot shows the number of reference set 

gene pairs contributed from each GO annotation, ranked by abundance.  The top 5 terms 

account for >78% of the reference set gene pairs and were therefore omitted to remove 

excess bias in the reference set. 
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Figure B 
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Figure C 

Two examples of DNA microarray datasets that failed the test for inclusion in the 

network.  For the GEO heat shock data set (39), we considered all gene pairs correlated > 

0.87 (i.e., the 99% confidence level for a sample size of 7 arrays) and observed no 

elevated LLS score.  Likewise, for the SMD hypoxia data set (40), we considered all gene 

pairs with correlation coefficient > 0.80 (i.e., the 99% confidence level for a sample size 

of 9 arrays) and observed no elevated LLS score.  Contrast these cases with the SMD 

Dauer example in Figure A-2, which shows excellent correlation between PCC and LLS 

and which was therefore included.  
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Figure C 
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Figure D 

The number of lines of evidence for a linkage correlates with the LLS of the linkage, as 

shown by plotting the distribution of LLS scores for linkages with different numbers of 

lines of supporting evidence.  Each distribution is summarized as a standard bar-and-

whiskers plot, with the central horizontal line indicating the median LLS score and the 

boundaries of the box indicating the first and third quartiles of the distribution.   We see 

up to 5 lines of evidence for individual links—such links are measurably more accurate 

on average. 
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Figure D 

For the core network: 

 
 
For the full network: 
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Figure E 

The distribution of LLS scores in the network is apparent in a plot of network size as a 

function of LLS score.  The core network represents the top 113,829 linkages and 

captures the strongest available linkages, following which linkage scores decline towards 

LLS = 0, with the full network consisting of  384,700 linkages (cumulative LLS > 0).  
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Figure E 
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Figure F 

To demonstrate the robustness of the training algorithm employed, we tested the 

Wormnet on a new reference set representing only GO terms between level 5 and 10 

(506,517 positive example gene pairs), which removes ~280,000 positive example gene 

pairs from the original reference set (786,056 positive example gene pairs).  Even after 

removing ~36% of all reference examples, there was no major change in the performance 

as measured by recall-precision analysis.   
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Figure F 
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Figure G 

Evaluation of Wormnet v1 and two earlier worm gene networks (11, 12) by comparison 

to an independent set of pathway relationships composed of gene pairs belonging to the 

same KEGG pathways, but not sharing GO biological process terms (i.e., a set of 

pathway linkages completely independent from GO).  Values are otherwise calculated as 

in Figure 1D.  Note that this benchmark should be considered to provide a lower bound 

of accuracy, as all high-confidence linkages confirmed by GO have been removed.  This 

removal most affects the highest confidence interactions in the intersection of all three 

data sets.  Nonetheless, the general ranking of network accuracies seen in Figure 1D is 

preserved using this reference set. 
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Figure G 
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Figure H 

Comparative performance of Wormnet and four other C. elegans gene networks on five 

reference linkage benchmark sets: (H-1) KEGG pathways, (H-2) GO cellular component 

annotations, downloaded March 2005, curated by removing the dominant terms (i.e., that 

annotate the most genes: plasma membrane, cytoplasm, nucleus), (H-3) GO biological 

process annotations downloaded March 2007, (H-4) GO biological process annotations 

downloaded March 2005 with protein biosynthesis-related terms removed (protein 

biosynthesis, translation, ribosome biosynthesis, rRNA process, etc.), and (H-5) KOG 

protein function categories.  Note that in each test, the 5 network models show 

comparable ranges of precisions, but differ dramatically in recall of genes and/or 

linkages, with Wormnet showing higher recall than the other networks.  Comparison of 

the two type of recall for the networks from Li et al. and Gunsalus et al. indicates a 

sparse network and a dense network, respectively.  Note also that the network of Zhong 

& Sternberg employs GO ‘biological process’ terms as data features for calculating the 

network, and thus the precision of this network on these annotation sets may be an 

overestimate. 
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H-1.  Testing versus the KEGG reference set 
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H-2. Testing versus the GO ‘cellular component’ (March 2007) reference set 
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H-3.  Testing versus the GO ‘biological process’ (March 2007) reference set 
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H-4. Testing versus the GO ‘biological process’ (March 2005) reference set with 
protein synthesis/ribosome biogenesis-related terms removed 
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H-5. Testing versus the KOG protein function category reference set 
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Figure I 

For the network of functional modules, we summarize the functions of the genes in each 

module by plotting the distribution of 12 collapsed KOG functional categories (Table A) 

among the 402 modules, ordered according to the hierarchical clustering tree.  The y axis 

indicates the number of genes per cluster in a given functional category, indicated by 

color.  The functional coherence of genes in each cluster is apparent; adjacent modules 

(sequential along the x axis) are often functionally related.  The network of functional 

modules covers 8,195 worm proteins (~42 % of the worm proteome). 
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Figure I 
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Figure J 

Essentiality of genes appears to ‘diffuse’ across the network.  (Left) Based on RNAi 

phenotype, we categorized genes into two classes, embryonic lethal (emb) and non-

embryonic lethal, and plot the % of genes that are emb at  1, 2, and 3 hops from each emb 

gene (0 hops corresponds to 100%).  We find that the probability of being embryonic 

lethal decays with increasing distance from other embryonic lethal genes in the network. 

(Right) For the cases where essential genes are linked, we also examined the penetrance 

of the embryonic lethal RNAi phenotype as it diffuses through the network.  We 

measured the mean % embryonic lethality for lethal genes linked by 1, 2, and 3 hops to a 

gene with 100% penetrance.  The mean penetrance of lethality appears to decay with 

increasing distance from the 100% penetrant embryonic lethal genes. 
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Figure J 
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Figure K 

Analyses of topological properties of the core network.  (K-1) The network’s degree 

distribution is not scale-free, as shown here with a plot of the probability (P(k)) of each 

degree (k), fit by a power-law with exponential cut-off (red curve; r2 = 0.99).  (K-2) The 

distribution of shortest path lengths between all gene pairs in the core network shows 

higher frequencies of long shortest path lengths than are seen in a randomized version of 

the network, indicating extensive non-random structure in the actual network.  (K-3) The 

cumulative retrieval rates of genes in each of 12 functional categories (Table A) as a 

function of network size (i.e., rank ordering linkages by LLS score and measuring 

retrieval as a function of score threshold),  shows that there is minimal systematic bias for 

the different gene functions.
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Figure K 
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Figure L 

Wormnet is considerably more clustered than a randomized version of itself, as seen by 

plotting the clustering coefficient (as defined by Watz & Strogatz (41)) as a function of 

network size. 
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Figure L 
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Figure M 

We tested the contribution to the predictive power of specific GO annotations made by 

each type of integrated data.  Specifically, we examined how the different lines of 

evidence contribute to linkages from each GO term, considering the top 290 GO 

biological process terms with at least one Wormnet link.  For each evidence-GO term 

pair, we calculated the extent of contribution by that evidence towards that GO term as: 

Score = total true links with the evidence / total possible true links among genes with the 

GO term. 

The matrix of evidence-GO term relationships is shown following hierarchical clustering 

(42) and indicates by increasing red intensity the extent of contribution of a given line of 

evidence (columns) to a given GO term (rows).  For example, the strongest contributions 

to linkages relating to the GO term “proline biosynthesis” were made by phylogenetic 

profiles and gene neighbors datasets, while the strongest contribution to “transcription 

initiation” was made by the yeast and human datasets.
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Figure M 
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Figure N 

We examined the extent to which Wormnet captures the ‘molecular machines’ reported 

by Gunsalus et al. (37), testing the ability to recover each Gunsalus machine using ROC 

analysis (i.e., as for the gene groups in Figure 3).  Note that none of the RNAi phenotype 

data used by Gunsalus et al. to construct their network was used in the construction of 

Wormnet.  If components of a given machine are clustered in the network, we expect a 

strongly predictive ROC plot, with a correspondingly large area under the ROC curve 

(AUC) close to 1.0.  By contrast, if the components do not cluster at all, we expect no 

better than random performance (AUC = 0.5).  We observe that the machines are strongly 

recovered by Wormnet, as represented by standard bar-and-whiskers plots, with the 

median AUC indicated by the central horizontal line and the boundaries of the box 

indicating the first and third quartiles. By contrast, randomizing the linkages in Wormnet 

destroys the signal. 

 

The list of Gunsalus et al. machines tested: 
1. Actin (5 genes) 
2. APC (6 genes) 
3. Chromatin maintenance and nuclear membrane function (41 genes) 
4. COPI complex (4 genes) 
5. F1F0 ATPase (6 genes) 
6. Histones (7 genes) 
7. mRNA protein metabolism (35 genes) 
8. MT cytoskeleton (13 genes) 
9. Oocyte integrity meiosis (47 genes)  
10. Polarity (6 genes) 
11. Proteasome (26 genes) 
12. Ribosome (59 genes) 
13. Translation initiation (5 genes) 
14. Vacuolar ATPase (9 genes) 
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Figure N 

 
A

re
a 

un
de

r 
R

O
C

 c
ur

ve

0.0

0.2

0.4

0.6

0.8

1.0

Random network Wormnet

 



 47 

Figure O 

Linkages in Wormnet tend to connect genes expressed in the same tissue. We measured 

how often genes linked in Wormnet are also co-expressed in a given specific tissue, using 

for this purpose four tissue-specific SAGE libraries derived from specific flow-

cytometry-purified GFP-marked cell populations (McKay et al. (43); data downloaded 

from http://elegans.bcgsc.bc.ca).  The 4 tissues were purified by McKay et al. (43) using 

either microdissection or flow cytometry on tissue specific promoter::GFP marked cell 

populations.  The depth of SAGE analysis (the number of total tags sequenced) and the 

number of worm genes identified by at least one sequence tag are as follows: 

 Gut specific, 54,001 tags, 6,503 worm genes 

 Neuron specific, 91,752 tags, 8,558 worm genes 

 Oocyte specific, 160,053 tags, 8618 worm genes 

 Pharynx specific, 144,788 tags, 8772 worm genes 

 

We measured the enrichment of tissue specific co-expression of two genes in the 

Wormnet-core using the following measure:  

P(tissue specific co-expression) = # of (gene pairs that are linked and co-expressed in the 

tissue) / # of linked gene pairs.   

 

We observed that genes linked in Wormnet are significantly more co-expressed spatio-

temporally in gut, neurons, oocytes, and pharynx than gene pairs from random networks 

generated with the same number of genes and linkages as Wormnet (error bars indicate 

+/- s.d. following 10 random trials), with >200% enrichment over random for tissue-

specific co-expression in all four tissues. 
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Figure O 
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Figure P 

Prediction of 10 genome-wide RNAi screens (44-53) published after June 2006 (i.e., after 

all networks were constructed) by using Wormnet or four other C. elegans gene 

networks.   For each network, the median area under the ROC curve (AUC) for each of 

the 10 phenotypes was calculated as in Figures 3 and S1, then plotted versus the median 

fraction of the seed gene sets covered by the network.  Error bars indicate the first and 

third quartiles.  Wormnet shows increases in both accuracy and coverage over other 

networks at predicting RNAi phenotypes, presumably due to its more comprehensive 

nature.  Note also that the full network shows improved performance over the core 

network, indicating the utility of probabilistic linkages for this purpose. 
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Figure P 
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Figure Q 

Utility of linkages supported by single lines of evidence.  While data integration acts in 

part to increase support for each given linkage, an important role is the selection of 

confident linkages with only single lines of evidence.  The importance of these latter 

cases can be seen clearly in a plot of the effects of only including single-evidence (SE) or 

multiple-evidence (ME) interactions on the accuracy and coverage of Wormnet – without 

the SE interactions the coverage is massively reduced.  Performance of the network of 

Zhong & Sternberg is included for comparison purposes.  Measurements are made on the 

function benchmark based upon KOG protein function categories.  
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Figure Q 
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Figure R 

The use of single-evidence interactions is also essential for the network’s ability to 

successfully predict the genes associated with RNAi phenotypes. The plots shows a 

comparative performance of Wormnet, Wormnet subsets containing only multiple 

evidence or only single evidence linkages, and the network of Zhong and Sternberg on 

prediction of the complete set of 43 RNAi phenotypes.   For each network, the median 

area under the ROC curve (AUC) for each of the phenotypes (calculated as in Figures 3 

and S1) is plotted versus the median fraction of the seed gene sets covered by the 

network.  Error bars indicate the first and third quartiles.  Single evidence links are 

therefore critical for the full predictive power in Wormnet. 
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Figure R 
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TABLES  

Table A 
Twelve functional category-keys collapsed from 23 KOG (Eukaryote clusters of 
orthologous genes) functional category-keys.  These 12 keys were used for data 

visualization.  
 

Collapsed 
key 

Collapsed key description Corresponding 
KOG key(s) 

01 Metabolism G, E, F, H, I, P, Q 
02 Energy C 
03 Cell cycle, DNA replication/recombination/repair L, D 
04 Transcription, RNA processing A, K 
05 Protein synthesis J 
06 Protein post-translational modification, turnover, 

folding 
O 

07 Nuclear/Chromatin structure/dynamics B, Y 
08 Cellular transport U 
09 Cell motility N, Z 
10 Signal transduction T 
11 Defense V 
12 Cell wall, membrane, envelope, extracellular structure M, W 
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 Table B.  50 core and 124 non-core interactors tested by RNAi for their ability to 
suppress the SynMuv phenotype 
 
These genes represent the immediate neighbours of the 6 known suppressors of the 
synMuv pathway (the genes zfp-1, gfl-1, mes-4, pqn-28, ZK1127.3, M03C11.3 (54, 55)) 
that could be targeted by RNAi using clones from the Ahringer feeding library (33). 
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Table B. 
 
Gene targeted (Wormbase 
WS140 Public gene name) 

Interaction 
classification 

act-1 core 
act-2 core 
act-3 core 
act-4 core 
arx-5 core 

C04D8.1 core 
C09H10.8 core 
C14B1.4 core 
C17E4.6 core 

dac-1 core 
daf-12 core 
egl-45 core 
egr-1 core 
epc-1 core 

F49E10.5 core 
F53F8.1 core 

gei-8 core 
hda-1 core 
hda-4 core 
hmp-2 core 
hsp-1 core 
lin-53 core 
lin-59 core 
lsm-1 core 

M04C9.5 core 
mdl-1 core 
mep-1 core 
mes-3 core 
mes-6 core 
mom-2 core 
mrg-1 core 
mys-1 core 
npp-9 core 
ogt-1 core 
pcaf-1 core 
pgp-1 core 
psa-4 core 

R07E5.3 core 
R08C7.3 core 
ruvb-1 core 
ruvb-2 core 
set-2 core 
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spr-1 core 
tra-1 core 
trr-1 core 

unc-55 core 
VF13D12L.1 core 
Y105E8A.17 core 
Y110A7A.16 core 

zif-1 core 
apr-1 noncore 
aat-5 noncore 
aat-6 noncore 
apl-1 noncore 
arl-5 noncore 
arx-2 noncore 

B0207.6 noncore 
B0336.5 noncore 

bir-1 noncore 
bub-1 noncore 

C07A9.2 noncore 
C08B11.6 noncore 
C08F8.1 noncore 
C10C6.6 noncore 
C13F10.2 noncore 
C13F10.7 noncore 
C16C10.1 noncore 
C17H11.4 noncore 
C26C6.1 noncore 
C26F1.3 noncore 
C28A5.1 noncore 
C28H8.1 noncore 
C32D5.3 noncore 
C35B8.3 noncore 

C35D10.13 noncore 
ccf-1 noncore 
ccr-4 noncore 
clr-1 noncore 
cyb-3 noncore 
dnc-1 noncore 
dnj-5 noncore 
dom-6 noncore 

E02H1.1 noncore 
egl-18 noncore 
elt-6 noncore 

F01D4.5 noncore 
F22E5.9 noncore 
F32B6.3 noncore 
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F33G12.4 noncore 
F41H10.6 noncore 
F44F4.2 noncore 
F46B6.5 noncore 
F47B7.7 noncore 

F54D10.5 noncore 
F55A3.3 noncore 
F55A3.7 noncore 
F55C5.7 noncore 
F55G1.7 noncore 
F57C2.3 noncore 
F57C9.3 noncore 
F58G6.1 noncore 

frm-7 noncore 
gsk-3 noncore 

H19N07.2 noncore 
hda-3 noncore 
his-1 noncore 
his-10 noncore 
his-14 noncore 
his-26 noncore 
his-31 noncore 
his-37 noncore 
his-38 noncore 
his-46 noncore 
his-5 noncore 
his-64 noncore 
his-67 noncore 

hmg-1.2 noncore 
hum-1 noncore 
ima-3 noncore 
ire-1 noncore 
isw-1 noncore 

K03B8.4 noncore 
K03H1.7 noncore 
K05C4.7 noncore 
K06A9.1 noncore 

lig-1 noncore 
mdf-2 noncore 
mdt-18 noncore 
mpk-1 noncore 
pgp-12 noncore 
pgp-13 noncore 
pgp-14 noncore 
pgp-15 noncore 
pgp-2 noncore 
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pgp-3 noncore 
pgp-4 noncore 
pgp-6 noncore 
pgp-7 noncore 
pgp-9 noncore 

R02E12.2 noncore 
R02F2.7 noncore 
R06A4.8 noncore 
R07E5.10 noncore 
R12E2.10 noncore 

R144.4 noncore 
rfp-1 noncore 
rnp-2 noncore 
sax-1 noncore 
srj-44 noncore 
srt-67 noncore 
srw-35 noncore 

T01B7.5 noncore 
T04C9.1 noncore 

T07G12.6 noncore 
T09F3.2 noncore 
T13F2.2 noncore 

T16G12.5 noncore 
T21F4.1 noncore 
T22C1.5 noncore 
T24C4.6 noncore 
T24D1.3 noncore 
T24F1.2 noncore 

tfg-1 noncore 
unc-16 noncore 

W02F12.6 noncore 
Y106G6H.15 noncore 

Y39B6A.1 noncore 
Y44E3A.6 noncore 

Y53C12A.4 noncore 
Y5F2A.4 noncore 

Y87G2A.10 noncore 
ZK1127.10 noncore 
ZK863.3 noncore 

zyg-9 noncore 
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Table C. 
List of RNAi screens predicted from the network and used to annotate Wormnet v1 
modules with enrichment for phenotypes.  Predictability indicates ability to recover genes 
with the marked phenotype in leave-one-out ROC analysis (Figure S1).
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Table C.  
 
Phenotype Predictability Library screened Reference 
Nonviable 
Growth defective (not Nonviable) 
Visible post-embryonic phenotypes (not 
nonviable/growth defective) 
Dumpy 
Body morphology defect 
Small 
Long 
Clear 
Blistered 
Protruding vulva 
Egg laying abnormal 
Patchy coloration 
High incidence of males 
Ruptured 
Sluggish 
Uncoordinated (not Nonviable) 

strong  
strong  
weak                                              
 
strong   
strong    
strong     
strong     
strong      
strong         
strong      
weak      
strong      
weak       
strong       
weak         
weak                              

Ahringer (33) 

Fat content reduced 
Fat content increased 

random     
random 

Ahringer (56) 

Transposon silencing defective strong Ahringer (57) 
Mutator weak Ahringer (58) 
Polyglutamine toxicity enhanced strong Ahringer (59) 
Germ line apoptosis increased random Ahringer (60) 
Synthetic multivulva strong Ahringer (61) 
Egg osmotic integrity abnormal 
Egg size abnormal 
Pace of development abnormal 
Pace of p-lineage development abnormal 
Severe pleiotropic defects 

strong    
n/a       
strong      
strong      
strong 

Cenix (62) 

Aldicarb resistant/synapse function defective weak 2,072 genes from 
Ahringer  

(63) 

Lifespan increased (Hamilton) weak Ahringer (64) 
Lifespan increased (Hansen) strong Ahringer (65) 
Molting defect strong Ahringer (66) 
RNA interference defective strong Ahringer + Vidal (67) 
PTEN(daf-18) synthetic lethality weak Ahringer (68) 
Radiation sensitive strong Ahringer (44) 
FSHR1 synthetic interactions random  (45) 
Axon guidance weak 4,577 genes from 

Ahringer 
(46) 

Osmotic stress response strong Ahringer (47) 
Distal tip cell migration strong Ahringer (48) 
dsRNA uptake strong Ahringer (49) 
Meiotic maturation strong Ahringer (50) 
Suppressors of par-2 lethality strong Ahringer (51) 
MAT-3 suppressors strong Ahringer (52) 
Lifespan increased (essentials, Curran) strong 2,700 genes from 

Ahringer 
(53) 
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Table D 
List of the top 200 genes predicted to increase C. elegans lifespan found by using the 29 
genes identified by Hansen et al. (65) as a seed set.  Predictions confirmed by the 
longevity screens of Hamilton  et al. (64) and Curran and Ruvkun (53) are indicated. 
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Table D. 
 

Prediction 
(Wormbase WS140 
Public gene name) 

Sum of LLS 
scores to 

seed gene set 

In Hansen et al. 
seed set? 

Confirmed by 
Hamilton et al. or 

Curran & Ruvkun? 

isp-1 13.67   
H28O16.1 10.88  Yes 
F58F12.1 10.42   

R53.4 9.95   
atp-2 9.93  Yes 

Y82E9BR.3 9.87   
asg-2 9.87  Yes 
asg-1 9.87   

T02H6.11 9.69   
Y69A2AR.18 9.3   

F53F4.10 9.14   
W10D5.2 9.12   
T20H4.5 9.12  Yes 
tag-99 9.02   
gas-1 9.02   

F27C1.7 8.42 Yes  
T10B10.2 8.37   

VW06B3R.1 8.14   
T24C4.1 8.14   
ZC410.2 8.14   
E04A4.7 8.14   

Y54F10AM.5 8.09   
asb-2 7.77 Yes  

W09C5.8 7.72  Yes 
F22D6.4 7.71   

asb-1 7.65   
cyc-1 7.61 Yes  

Y56A3A.19 7.53  Yes 
ZC116.2 7.53   
C34B2.8 7.49   
D2030.4 7.4  Yes 

Y51H1A.3 7.33   
Y54E10BL.5 7.33   

lpd-5 7.33   
Y63D3A.7 7.33   
C33A12.1 7.33   
Y94H6A.8 7.33   
F59C6.5 7.33  Yes 
C16A3.5 7.33   
C25H3.9 7.33   
mdh-1 7.32   

Y37D8A.14 6.81 Yes  
F54D8.2 6.75   

Y71H2AM.5 6.72   



 65 

T10E9.7 6.68 Yes  
Y45G12B.1 6.6 Yes  
Y53G8AL.2 6.19   

nuo-1 6.19  Yes 
cco-1 6.11 Yes Yes 

Y57G11C.12 6 Yes  
K04G7.4 5.41 Yes Yes 
F43G9.1 5.29  Yes 
F25H2.5 4.46   
T22B11.5 4.45   
F36A2.7 4.21   

W02F12.5 3.81   
ZK809.3 3.8   
C37E2.1 3.68   
T08B2.7 3.57   
B0303.3 3.57   

C30F12.7 3.57   
F35G12.2 3.57   

ech-1 3.57   
F56D2.1 3.52   
daf-21 3.16   

F33A8.5 3.12   
rps-0 3.12   
rps-19 2.98   
mev-1 2.94   

C06E7.1 2.78   
unc-97 2.72   
unc-112 2.71   
T26E3.7 2.66   

ctb-1 2.65   
T06D8.5 2.65   
C06E7.3 2.63   
vha-12 2.61   
rps-11 2.61  Yes 
tag-32 2.54   
unc-89 2.53   

F23B12.5 2.52   
R05G6.7 2.51   

let-60 2.5   
fum-1 2.47   
rps-2 2.46   

C06H2.1 2.46 Yes  
Y110A7A.12 2.44   

pab-1 2.43   
F55A12.8 2.39   

rab-1 2.38   
unc-52 2.35  Yes 

Y105C5B.12 2.35   
rps-4 2.34   
rps-1 2.33   
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C16C10.11 2.28   
R04F11.2 2.27   

deb-1 2.27   
Y49A3A.3 2.26   

pab-2 2.22   
C16A3.3 2.21   

rab-7 2.21   
pdk-1 2.19   

C53A5.1 2.19 Yes  
unc-11 2.19   
rps-13 2.16   
rps-7 2.14   

vha-10 2.12   
rps-26 2.08   
rab-5 2.05   
rpl-16 2.03   
rps-23 2.02   

rab-11.1 2.02   
Y48B6A.13 2.01   

B0511.6 2.01  Yes 
pas-1 1.98   

K02F2.2 1.95   
rab-6.2 1.94   
rps-8 1.91   
rpl-15 1.89   
unc-10 1.89   
smg-4 1.88   
tba-4 1.87   
egl-45 1.87  Yes 
unc-8 1.82   
tag-29 1.81   
tag-207 1.81   

T26C12.1 1.81   
F55F8.3 1.8   
rps-27 1.8   
LLC1.3 1.8   
rab-6.1 1.8   
ran-4 1.79   
rps-24 1.79   

Y46E12BL.2 1.78   
MTCE.26 1.76   
F33A8.6 1.76   

rhi-1 1.75   
rap-1 1.75   
rpl-9 1.74   
app-1 1.73   
rpl-5 1.72   
sri-45 1.72   
rps-9 1.71   
ras-1 1.71   
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pat-3 1.7   
rps-15 1.7   

F56D2.6 1.69   
rps-3 1.66  Yes 
ran-3 1.66   
rps-10 1.65   
byn-1 1.65   

B0513.9 1.64   
sem-5 1.64  Yes 

W02B12.8 1.61   
rfc-2 1.61   
unc-5 1.6   
rps-22 1.6   

C49G7.4 1.58   
ZK430.1 1.58   
rps-18 1.57   
pat-4 1.57 Yes Yes 
pat-6 1.57 Yes  

F13H8.2 1.57   
C18E9.6 1.54   
mel-11 1.53   
cav-1 1.53   
ifg-1 1.53  Yes 
inf-1 1.53   
pbs-3 1.52   

F23C8.5 1.52   
eif-3.B 1.51  Yes 
acs-17 1.51   

Y40B1A.4 1.5   
ZC373.1 1.5   
F54A3.4 1.5   

atm-1 1.5   
hmp-2 1.5   
eif-3.K 1.5   

Y48G1A.4 1.5   
F54A5.3 1.5   
F59A2.3 1.5   

unc-1 1.49   
rps-30 1.49   
tag-55 1.48   

C32B5.6 1.47   
T21B10.2 1.47   
R04A9.1 1.47   
eif-3.E 1.46   

C04C3.3 1.45   
rpl-24.1 1.45   
rps-5 1.45   
rpl-13 1.43   
rps-17 1.43   
clk-1 1.42   
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daf-12 1.42   
daf-1 1.42   
akt-1 1.42  Yes 

daf-11 1.42   
daf-16 1.42   
daf-7 1.42   
daf-18 1.42   
age-1 1.42  Yes 
akt-2 1.42   
gro-1 1.42   
daf-28 1.42   
clk-2 1.42   
daf-5 1.41   

T25B9.9 1.41   
ZK1127.5 1.4   
K04G2.1 1.4   
rps-21 1.4   
eif-3.F 1.4  Yes 
eif-3.D 1.4   

 
 
 


