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accordance with the expected value of 6 nm, assuming an interheli-
cal separation of 3 nm (ref. 1). All three distances (d) could be well 
reproduced with values of d1 = 5.8 ± 2.9 nm, d2 = 10.7 ± 1.8 nm and 
d3 = 18.3 ± 5.7 nm (mean ± s.d., n = 30) (Fig. 1e).

DNA origami–based fluorescence standards have matured into 
ready-to-use validation samples. After being covered with a poly-
mer layer, the origami standards can be transported and stored for  
12 months (Supplementary Figs. 7 and 8). We propose DNA origamis  
as a standard platform to test and prove abilities of new super- 
resolution techniques as well as for everyday use to distinguish 
instrument-specific from sample-specific error sources in fluores-
cence imaging.
Note: Supplementary information is available at http://www.nature.com/
doifinder/10.1038/nmeth.2254.
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Exemplary fluorescence-intensity images for origamis contain-
ing 12, 24 or 36 ATTO647N molecules indicated the homogene-
ity of the samples. Analysis of the photons per spot for all samples 
revealed a linear dependence of intensity on dye number (Fig. 1a)  
and excitation intensity (Supplementary Fig. 1a). The linear 
dependence on dye number is notable because samples with such 
a high density of fluorophores commonly exhibit self-quenching. 
A comparison with commercially available fluorescent beads (dark 
red FluoSpheres (Invitrogen) showed that DNA origamis with as 
few as 12 ATTO647N molecules are brighter than FluoSpheres and 
exhibit a more homogeneous intensity and fluorescence lifetime 
(Supplementary Fig. 1b–e). Labeled DNA origamis can therefore 
be used as brightness standards to quantify microscope sensitivities 
and relate emission intensities to absolute numbers of fluorescent 
molecules.

With the DNA origami platform, dyes can be positioned at dis-
tances from the Förster resonance energy transfer range2 up to 
distances corresponding to the longest axis of the specific DNA 
origami. For a calibration standard that can be resolved by conven-
tional diffraction-limited microscopes, we constructed a six-helix 
bundle that has a persistence length of ~2 µm (ref. 3) and placed 
two ATTO647N molecules at a contour-length distance of 386 nm 
(Fig. 1b). A confocal image shows the resulting dumbbell-shaped 
spots that were resolved by the diffraction-limited microscope. The 
histogram of the spot separations (Supplementary Fig. 2) yields a 
distance of 357 nm, demonstrating that robust standards exceeding 
diffraction-limited dimensions could be constructed from single 
DNA origami scaffolds.

STED was the first far-field super-resolution microscopy method 
that abandoned the diffraction barrier, and it is the most promi-
nent representative of a family of super-resolution microscopy tech-
niques based on targeted switching of molecules in a predetermined 
region4. We created a nanoruler for pulsed STED with a distance of 
71 nm between two parallel lines of 12 ATTO647N molecules each. 
The lines were not resolved in a confocal microscope with 5% STED 
beam intensity (Fig. 1c). An increase of the doughnut-shaped STED 
beam intensity to 50% of its maximum caused the spots to shrink 
because of stimulated emission quenching in the outer parts of the 
laser focus, and at 100% STED beam intensity, corresponding to 
110 mW, the two lines were well resolved (Fig. 1c). Analysis of the 
71-nm ruler, a 44-nm ruler and an 80-nm ruler for continuous-wave 
STED are presented in Supplementary Figures 3 and 4.

An alternative approach for super-resolution imaging exploits 
the successive localization of single blinking or photoactivatable 
molecules5. We broadened our initial experiments on single- 
molecule localization on DNA origami6 to measure <100-nm dis-
tances in different spectral ranges (Fig. 1d and Supplementary 
Figs. 5 and 6).

To show that DNA origami standards can cover the full range from 
diffraction-limited to molecular dimensions, we constructed DNA 
origami rectangles with two ATTO647N molecules separated by a 
distance of 6, 12 or 18 nm (Fig. 1e). For these standards, we used 
successive photobleaching and analyzed fluorescence transients from 
identified spots with respect to photobleaching steps. The individual 
molecules were localized in reverse order of photobleaching, and the 
intensity distribution of the second molecule was subtracted from 
that of the first part of the transient (Fig. 1e). The corresponding 
localization map shows a clear separation of the two dye molecules. 
The histogram of localizations reveals a distance of 5.7 nm well in 

Flaws in evaluation schemes for pair-
input computational predictions

To the Editor: Computational prediction methods that oper-
ate on pairs of objects by considering features of each (hereafter 
referred to as pair-input methods) have been crucial in many 
areas of biology and chemistry over the past decade. Among the 
most prominent examples are protein-protein interaction (PPI)1, 
protein-drug interaction2,3, protein-RNA interaction4 and drug 
indication5 prediction methods. A sampling of more than 50 
published studies involving pair-input methods is provided in 
Supplementary Table 1. Here we demonstrate that the paired 
nature of inputs has significant, though not yet widely perceived, 
implications for the validation of pair-input methods.

The effects that the paired nature of inputs has on the cross- 
validation of pair-input methods can be seen in the following 
example. Proteochemometrics modeling2, a computational 
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How representative would such randomly generated test sets be 
of full populations? To answer this question, we performed the 
typical cross-validation using the same yeast and human PPI 
data. Not surprisingly, the C1 class accounted for more than 99% 
of each of the test sets generated for typical cross-validations, and 
accordingly the cross-validated predictive performances closely 
match those for the C1 class (Supplementary Table 2). In con-
trast, within the full population (that is, the set of possible human 
protein pairs), the C1 class represents only a minority of cases: 
21,946 protein-coding human genes7 imply 240,802,485 possible 
human protein pairs. According to HIPPIE8, a meta-database 
integrating ten public PPI databases, the space of C1-type human 
protein pairs accounts for only 19.2% of these cases, compared 
with 49.2% and 31.6%, respectively, for the C2 and C3 classes. 
Hence, the C1 class is far less frequent at the population level 
than for typical cross-validation test sets, and performance 
estimates obtained by a typical cross-validation should not be 
expected to generalize to the full population level.

In summary, computational predictions—whether pair-input or 
not9,10—that are tested by cross-validation on nonrepresentative 
subsets should not be expected to generalize to the full test popula-
tions. A unique aspect of pair-input methods, as compared with 
methods operating on single objects, is that one additionally needs 
to take into account the paired nature of inputs. We have demon-
strated that (i) the paired nature of inputs leads to a natural parti-
tioning of test pairs into distinct classes, and (ii) pair-input methods 
achieve significantly different predictive performances for distinct 
test classes. We note that if one is only interested in the popula-
tion of C1 test pairs, then typical cross-validations using randomly 
generated test sets are acceptable, although this limitation should 
then be noted. For general-purpose pair-input methods, however, 
it is imperative to distinguish distinct classes of test pairs, and we 
propose that predictive performances should be reported separately 
for each distinct test class. In the case of PPI prediction methods, 

methodology for predicting protein-drug interactions, uses a 
feature vector for a chemical and a feature vector for a protein 
receptor to predict the binding between them2. In this case, a test 
pair may share either the chemical or protein component with 
some pairs in a training set; it may also share neither. We found 
that pair-input methods perform much better for test pairs that 
share components with pairs in a training set than for those that 
do not. As a result, it is necessary to distinguish test pairs on the 
basis of whether they share components with pairs in a training 
set when evaluating performance.

A test set used to estimate predictive performance may be 
dominated by pairs that share components with training pairs in 
the training set, yet such pairs may be a minority on the popula-
tion level. In this case, a predictive performance estimated on 
the test set may be impressive, yet it will likely fail to generalize 
to the population level. Indeed, this issue has been previously 
recognized by some researchers6 (Supplementary Table 1).  
However, it has been overlooked by many, and cross-valida-
tions for pair-input methods usually do not distinguish test 
pairs on the basis of this component-level overlap criterion 
(Supplementary Table 1).

To illustrate the issue, we consider PPI prediction methods 
with a toy example (Fig. 1), in which the protein space is com-
posed of nine proteins and a training set consists of four posi-
tive and four negative protein pairs. This training set is used to 
train a PPI prediction method, which is in turn applied to a set 
of 28 test pairs. How well would the trained method perform 
on the 28 test pairs? To determine this, one usually performs a 
cross-validation on the training set. A temporary training set is 
prepared by randomly picking some pairs (Fig. 1), and the rest 
serve as a temporary test set from which predictive accuracy can 
be measured. This cross-validated predictive performance is then 
implicitly assumed to hold for the full space of 28 test pairs. The 
paired nature of inputs leads to a natural partitioning of the 28 
test pairs into three distinct classes (C1–C3, Fig. 1): C1 has test 
pairs sharing both proteins with the training set, C2 has test pairs 
sharing only one protein with the training set, and C3 has test 
pairs sharing neither protein with the training set. 

To demonstrate that the predictive performance of pair-input 
methods differs significantly for distinct test classes, we per-
formed computational experiments using large-scale yeast and 
human PPI data that mirror the toy example (Supplementary 
Methods). For all seven PPI prediction methods (M1–M7, cho-
sen to be a representative set of algorithms; Supplementary 
Methods), the predictive performances for the three test classes 
differ significantly (Supplementary Table 2). The differences are 
not only statistically significant (Supplementary Table 3) but in 
many cases also numerically large. M1–M4 are support vector 
machine (SVM)-based methods, M5 is based on the Random 
Forest algorithm and M6 and M7 are heuristic methods. Thus, 
regardless of core predictive algorithms, significant differences 
for the three distinct test classes are consistently observed. These 
differences arise partly from the learning of differential repre-
sentation of components among positive and negative training 
examples (Supplementary Discussion and Supplementary 
Table 4).

In a typical cross-validation for pair-input methods, available 
data are randomly divided into a training set and a test set, with-
out regard to the partitioning of test pairs into distinct classes. 
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Figure 1 | Toy example (nine proteins) demonstrating prediction of protein-
protein interactions and showing the shortcomings of a typical cross-
validation scheme. The training and test sets for a PPI prediction method 
are shown. The paired nature of inputs leads to a natural partitioning of the 
28 test pairs into three distinct classes (C1, C2 and C3). Cross-validation on 
the training set is typically done by randomly dividing the eight training 
pairs into a temporary training set and a temporary test set as shown, 
without regard to the partitioning of test pairs into distinct classes, and can 
therefore misrepresent overall predictive performance.
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three independent predictive performances should be reported 
(Supplementary Table 2). In the case of protein-drug interaction 
prediction methods, one should report four independent predictive 
performances, as either the protein or drug component of a test pair 
might each be shared with pairs in training data.

Note: Supplementary information is available at http://www.nature.com/
doifinder/10.1038/nmeth.2259.
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