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Understudied proteins: opportunities and 
challenges for functional proteomics
Most research aiming at understanding the molecular foundations of life and disease has focused on a limited 
set of increasingly well-known proteins while the biological functions of many others remain poorly understood. 
We propose to form the Understudied Protein Initiative with the objective of reducing the annotation gap 
by systematically associating uncharacterized proteins with proteins of known function, thereby laying the 
groundwork for future detailed mechanistic studies.
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Different proteins receive very 
different levels of attention from 
scientists. The most frequently 

studied protein in the human proteome 
is p53. On average, it is the subject of two 
publications per day1. At the same time, 
the biological functions of thousands of 
human proteins remain unexplored2–5. This 
bias in the functional characterization of 
the human proteome is massive: 95% of all 
life science publications focus on a group 
of 5,000 particularly well-studied human 
proteins6. The sequencing of the human 
genome was expected to be a crucial step 
toward reducing this bias: by identifying all 
human genes, researchers would be offered 
opportunities to study previously unknown 
genes. However, in 2011, a decade after the 
publication of the genome sequence, 75% of 
publications still focused on genes that were 
already being studied before the genome 
was mapped7. Annotation inequality has 
increased since then and has almost  
doubled since the human genome  
sequence was released2.

Annotation inequality hinders 
biomedical progress because mechanistic 
investigations of gene–disease associations 
typically focus on proteins that are  
already well known (Fig. 1), a phenomenon 
also known as the street-light effect8. 
Meanwhile, many uncharacterized  
proteins are not subjected to functional 
studies despite strong evidence from omics 
studies for their association with human 
disease2. For example, the functions of 
many proteins involved in rare diseases 
(which are not rare collectively) are poorly 
understood9. Moreover, common diseases 
such as neurodevelopmental disorders 
and cancer are caused by collections of 
numerous rare genetic variants in different 
genes10. Remarkably, out of the 1,878 
genes that are essential for proliferation 

in a human cell line, 330 (18%) remained 
uncharacterized as of 2015 (ref. 11). This bias 
extends to the ~3,000 proteins currently 
expected to be druggable: only 5–10% 
of these potentially druggable proteins 
are currently targeted by FDA-approved 
pharmaceuticals5.

Functional proteomics could  
be instrumental in reducing the  
annotation gap by systematically  
associating uncharacterized proteins with 
proteins of known function and thereby 

assigning them to cellular processes. 
An important element of targeting 
uncharacterized proteins is to broaden 
the range of investigation beyond typical 
laboratory conditions and the limited set 
of laboratory model organisms’ genetic 
backgrounds. With a focus on mass 
spectrometry (MS)-based methods, here we 
outline opportunities and challenges for a 
coordinated functional proteomics initiative 
that would lay the groundwork for future 
detailed mechanistic studies.
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Fig. 1 | Protein annotation inequality impedes biomedical progress. The availability of prior 
publications, data and tools dictates the ease by which research questions involving a protein can be 
formulated and addressed. This reinforces annotation bias and the persistence of understudied proteins.
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origins of protein annotation inequality
The reasons for the protein annotation 
bias are manifold. Some are of a practical 
nature, reflecting how easily a protein can 
be studied with widely available methods. 
For example, the availability of experimental 
tools such as antibodies, plasmids or curated 
reference data is a strong incentive to work 
on well-studied proteins2,7. The number 
of publications about a protein is also 
related to basic biological and biochemical 
properties, such as protein size, abundance, 
hydrophobicity and the sensitivity of its  
gene toward mutations4. The dynamic range 
of our detection devices does not yet  
match that of proteins in a cell. In  
fact, to date, 1,899 (9.6%) of the 19,733 
human protein-coding genes lack credible 
support from any proteomics technology, 
some of which may constitute genome 
annotation errors12.

In addition, having a very small size 
is a strikingly common feature among 
under-studied proteins: 40% of the least 
well-annotated proteins in SwissProt 
are smaller than 15 kDa (ref. 13). This is 
despite the importance of microproteins, 
for example, as neuropeptides in brain 
development14. Moreover, what we currently 
consider to be the repertoire of understudied 
small proteins may just be the tip of an 
iceberg, as we are only beginning to uncover 
the array of ‘alternative proteins’ coming 
from genomic regions previously considered 
to be noncoding15.

Other reasons for protein annotation 
inequality may reflect conceptual biases in 
the research system rather than properties 
of the proteins themselves. For example, it is 
often assumed that proteins studied by many 
people are functionally more important7, 
although this is not supported by evidence 
such as genome-wide association studies 
or functional genomic screens2,11,16,17. 
In addition, scientists often prefer to 
explore a problem they already work on 
in more detail, in part because funding 
and peer-review systems are risk-averse7. 
Working in a large research field enhances 
the likelihood of being cited, and, 
consequently, also increases the possibility 
for high-impact journal publications, 
which are required for academic success18. 
However, large fields also tend to favor 
existing paradigms over new ideas, thus 
slowing scientific progress overall4,19,20.

Equally important is the limited set 
of conditions studied in the laboratory, 
a situation that might paradoxically be 
a consequence of the desire to make 
research more reproducible through 
standardization of experimental conditions. 
For example, under standard laboratory 
growth conditions, the deletion of ~20% 

of Saccharomyces cerevisiae genes causes 
a lethal phenotype21. However, when the 
condition space is expanded, 97% of the 
genes are essential for optimal growth 
under at least one condition22. Indeed, 
the choice of ‘standard’ conditions often 
reflects historical reasons rather than the 
desire to capture the entirety of biological 
complexity. For instance, the most popular 
synthetic yeast medium in use today 
emerged from an early 1950s publication 
of the US Department of Agriculture 
technical bulletin which attempted to help 
farmers and biotechnologists to grow a 
wide variety of yeasts; for example, to start 
fermentation processes23. The problem 
is further compounded for multicellular 
organisms with specialized cell types; some 
tissues or cell types are much more studied 
than others.

Finally, protein annotation bias could 
reflect the focus on hypothesis-driven 
rather than question-driven research24,25. 
It is difficult to formulate hypotheses on 
the mechanistic molecular function of an 
uncharacterized protein. Intriguingly, the 
philosopher Francis Bacon, often credited 
as the father of the scientific method, 
argued in the early 1600s that experiments 
should not be driven by hypotheses for fear 
of introducing bias in the observer and 
stifling innovation24,26. In line with this, it 
has been suggested that strictly data-driven 
approaches could help to reduce protein 
annotation inequality2,27.

accelerating drug discovery for under-
studied proteins
From a standpoint of drug discovery, 
fundamental advances toward the 
characterization of understudied proteins 
are being made by initiatives that improve 
our understanding of protein–small 
molecule interactions, such as the Structural 
Genomics Consortium28, the Enzyme 
Function Initiative29, the Illuminating the 
Druggable Genome program5 and Open 
Targets30. In this context, ‘functional 
characterization’ is typically interpreted as 
revealing molecular properties of a protein 
that are particularly relevant for drug 
development; for example, its structure, 
ligands, inhibition by chemical probes and 
association with disease. Particular emphasis 
is placed on pharmacologically tractable 
protein families, such as ion channels, 
G-protein-coupled receptors  
and kinases5,31,32.

From a perspective of understanding 
protein function, it is equally important to 
study other levels of protein annotation, 
such as cellular processes, pathways and 
subcellular compartments. In addition, 
many understudied proteins do not belong 

to a traditional druggable family, although 
the definition of a druggable protein is 
evolving over time as new approaches (such 
as PROTACs33) are developed. One set of 
methods ideally suited to study the cellular 
functions of proteins, and to do so on a 
comprehensive, proteome-wide scale, is 
functional proteomics.

tackling annotation inequality with 
functional proteomics
Two different types of protein annotation 
efforts may be distinguished: original 
investigations and ‘guilt-by-association’ 
approaches. The original investigation of a 
novel biological function is an essential but 
time-consuming and costly effort involving 
many detailed mechanistic studies. For 
researchers to commit to such an effort, it 
is necessary for a protein to have a certain 
basal annotation level. Without this, 
hypotheses to probe a protein’s function lack 
foundation. Here, annotation by ‘functional 
association’ can provide the lacking 
foundations through knowledge transfer, 
whereby previously uncharacterized proteins 
are linked to well-studied factors and their 
biological functions34–38.

Proteomics approaches are particularly 
well suited to revealing functional 
associations on a large scale. Such 
approaches include techniques that identify 
protein–protein interactions, such as affinity 
purification MS39–41, crosslinking MS42 and 
co-fractionation MS43; approaches that 
identify which proteins are co-regulated44–51; 
and methods that reveal which proteins 
share subcellular space52–55 (Box 1). For 
example, the majority of centrosomal 
proteins were considered to have been 
already identified56, and then hundreds 
more were identified by antibody-based 
proteomics57. It is noteworthy that although 
we focus here on MS and antibody-based 
proteomics, powerful alternative proteomics 
approaches also exist that have been 
reviewed elsewhere58,59. There are also many 
functional genomics approaches that do not 
rely on measuring proteins for functional 
association, including gene expression 
profiling, whereby functionally related 
genes are linked on the basis of similar 
expression patterns60, metabolic profiling61 
and genetic interaction screening62. Rapid 
advances in genome-wide CRISPR–Cas9 
screening have accelerated the pace of 
functional annotation of proteins involved 
in susceptibility to therapeutic compounds, 
or those that become essential in a specific 
genetic context63.

While MS-based proteomics does not 
yet reach the gene coverage of genomic 
approaches, observing proteins directly can 
be especially informative when studying 
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the function of (protein-coding) genes. For 
example, protein co-expression captures 
functional relationships considerably better 
than mRNA co-expression13,64. Protein-based 
analyses also have the potential to 
distinguish between proteoforms; that 
is, the individual molecular forms of 
expressed proteins65, which, as a result 
of splicing and post-translational 
modifications, dramatically increase the 
functional diversity of the proteome65. 
Proteoform characterization may require 
the use of top-down66,67 or middle-down68 
proteomics approaches. Proteomics is 
rapidly increasing in throughput, with 
methods emerging that allow for hundreds 

of proteomes to be recorded per day on 
a single mass spectrometer69,70. A new 
generation of functional proteomic studies 
will hence be able to generate a much more 
comprehensive spectrum of biological 
functionality.

Nevertheless, protein annotation 
inequality is unlikely to be resolved 
exclusively by large-scale approaches. 
The first step in a concerted effort to 
address protein annotation bias could be 
to systematically provide the necessary 
minimal data foundation required for 
individual researchers conducting targeted 
experiments. Ongoing examples of this 
include BioPlex71 and hu.MAP72, which 

use MS for the large-scale identification of 
protein–protein interactions and protein 
complexes; the Human Protein Atlas73,74, 
which uses antibodies to assign human 
proteins to different tissues and subcellular 
locations; and the neXt-CP50 project 
that aims to characterize 50 understudied 
proteins by proteomics75.

how to increase the impact of func-
tional proteomics on mechanistic 
research
Some highly promising proteins remain 
ignored despite being perfectly amenable 
for detailed functional investigation4. 
Making protein–protein associations more 
accessible and usable for mechanistic 
follow-up studies will therefore be an 
important step toward reducing annotation 
inequality. Biologists can inspect molecular 
networks through a variety of powerful and 
user-friendly resources76, including IntAct, 
BioGRID, NDEx and STRING. The fact that 
annotation bias is worsening2 despite the 
wide availability of such resources could be 
the result of a number of factors. One may 
be a lack of awareness of such annotation 
portals among cell biologists. Others may 
be lack of trust in the available annotation, 
lack of annotations and lack of integration of 
different annotation types.

Cell biologists may hesitate to rely on 
data from large-scale projects due to a 
perceived lack of accuracy, which could be 
improved by better communication. Indeed, 
the possibility of treating error in a statistical 
sense is a particular strength of large-scale 
approaches. While error cannot be avoided, 
its size is a critical parameter to understand 
how reliable results are. One example of a 
functional proteomics technique where false 
discovery rate (FDR) calculation has been 
established is crosslinking MS77. Similarly, 
FDR is routinely calculated for all MS 
protein identifications78,79. In addition, in 
spatial proteomics, statistical frameworks  
are being developed to encapsulate 
confidence of assigning proteins to 
subcellular niches80,81.

In addition to expanding the amount 
of available large-scale data, it will 
undoubtedly be necessary to develop new 
tools and techniques to provide additional, 
complementary links and fill systematic 
gaps left by current approaches. Examples 
of emerging functional proteomics 
technologies are crosslinking MS42, 
coaggregation proteomics82 and methods to 
study dynamic subcellular niches52,55. The 
large success by which protein structures 
can be predicted now83 offers the exciting 
possibility to improve structure-based 
function prediction, especially when 
predicted structures could be experimentally 

Box 1 | Proteomic approaches that reveal protein–protein associations

MS and antibody-based approaches that 
enable annotation transfer by identifying 
protein–protein interactions (PPIs) differ 
in the nature of the links they provide, 
their scalability and their biases. Each 
approach has strengths and weaknesses. 
The following is a non-exhaustive list of 
key technologies applied in recent years:

Crosslinking MS: Identifies PPIs by 
crosslinking proteins in vitro or in situ, 
followed by MS-based detection of 
crosslinked peptides. Links represent 
binary physical interactions between two 
proteins at amino acid residue resolution. 
Crosslinking MS is starting to be applied 
to complex mixtures, with the benefits of 
revealing protein interaction topology42 
and having a systematic error assessment77.

Affinity purification MS: ‘Bait’ proteins 
are fused to affinity purification tags, 
expressed in cells and subsequently 
purified together with multiple ‘prey’ 
proteins that physically interact with 
the bait, either directly or indirectly39–41. 
Alternatively to epitope tags, antibodies or 
other specific affinity probes against the 
endogenous bait protein can be used.

Co-fractionation MS: Cell extracts 
are fractionated biochemically, 
typically using ultra-centrifugation, 
size exclusion chromatography or ion 
exchange chromatography, and protein 
co-fractionation patterns are identified by 
MS and compared by machine learning 
to identify protein complexes43,99 and the 
subcellular localization of proteins54,55,80.

Proximity labeling MS: ‘Bait’ proteins  
are fused to enzymes that enable 

biotinylation of ‘prey’ proteins in close 
spatial proximity in living cells, which 
can subsequently be affinity-purified and 
identified by MS52,53.

Antibody-based proteomics: Subcellular 
localization of proteins is revealed  
using antibodies74. The assays provide 
single-cell resolution in situ, can  
detect multi-localizing proteins and  
may contribute to understanding 
pleiotropic effects.

Protein co-regulation: Protein abundance 
changes between different biological 
conditions, or in response to perturbations, 
are determined by MS and compared 
using correlation analysis or machine 
learning13,44–51. This improved on previous 
mRNA co-expression studies13,64. Unlike 
other methods listed here, protein 
co-regulation does not detect physical 
relationships but coordinated protein 
abundance changes, which are taken to 
reflect shared participation in a biological 
process.

Emerging approaches: Novel proteomics 
methods to study protein–protein 
interactions using MS are developed 
continuously. An example of a recent 
addition to the repertoire is thermal 
proteome profiling, which can detect 
shared membership in protein 
complexes82.

Notably, there are a variety of 
non-MS-based methods that also reveal 
protein–protein associations58,59, including 
binary assays such as yeast two-hybrid100, 
LUMIER101, genetic interaction 
screening16,17,62 and metabolic signature 
profiling61.
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confirmed by, for example, crosslinking 
MS84. These and other intracellular 
techniques are particularly attractive, as 
many proteins require folding assistance, 
cofactors or post-translational modifications 
to function correctly and would therefore 
need to be studied in their native 
environment. In addition, it is becoming 
increasingly feasible to study proteomes of 
single cells, allowing the determination of 
cell-to-cell heterogeneity85.

Finally, a key remaining challenge is 
the integration of different types of data 
across scales (time and space), which would 
maximize synergies between different types 
of omics data. An example for this is the 
integration of the Human Protein Atlas 
and BioPlex data, underpinning that the 
generation of a cellular hierarchy reveals 

many novel cellular systems undetectable by 
either dataset when used in isolation86. Such 
computational tools could also accelerate 
science through providing data-driven 
hypothesis generation; that is, opportunities 
for researchers to connect their data to big 
proteomics data.

Even where the function of a protein is 
well annotated, there is increasing evidence 
suggesting that a number of proteins 
have the capacity to carry out alternative, 
unrelated functions, reported in the 
literature as ‘moonlighting’87. Historically, 
as researchers have assumed ‘one-protein 
one-function’, alternative functions have not 
been sought for most proteins. An additional 
benefit of the systems-wide interrogation 
of the functional proteome will be to 
provide alternative functional annotations 

even for well-studied proteins, as well as a 
better understanding of the extent to which 
proteins are capable of ‘moonlighting’.

how to quantify progress of functional 
characterization
To develop, optimize and evaluate strategies 
to tackle protein annotation inequality, one 
needs to be able to measure their impact in 
a robust and informative way. Measuring 
the degree of functional characterization 
is far from trivial, not least because the 
term itself can have different meanings. 
‘Protein function’ may refer to the wider 
biological purpose of a protein, such as to 
which phenotype it associates, or to which 
metabolic pathway it belongs to. It could also 
refer to structural and mechanistic insights 
into how a protein fulfils these functions at a 
molecular level; for example, the enzymatic 
mechanism.

A number of approaches to determine 
protein annotation levels have been 
developed, including a literature score based 
on text mining6, the UniProt annotation 
score88, an assessment of Gene Ontology 
(GO) coverage3 and a system to classify 
proteins based on their development 
as drug targets5. Each of these metrics 
captures or emphasizes slightly different 
aspects of the available annotations. 
They do not distinguish between original 
characterization and functional association. 
However, to systematically evaluate the 
performance of an annotation transfer 
system, it will be necessary to quantify 
it adequately. The McNamara fallacy89 
illustrates the danger of evaluating progress 
toward a complex goal on the basis of a 
single, easy-to-measure target variable 
without taking into account broader and 
more difficult to measure aspects of the 
challenge (McNamara’s over-reliance on 
a single quantitative metric — number of 
enemy combatants killed or wounded —  
has been linked to the US failure in the 
Vietnam War).

how to avoid exchanging one bias  
for another
We have argued that the proteome is a 
powerful layer for annotating gene function, 
but proteomics approaches are also 
susceptible to biochemical bias; for example, 
from protein abundance and solubility. 
Therefore, to achieve a systematic reduction 
in the genome-wide annotation bias, it may 
be necessary to optimize multiple individual 
functional proteomics methods and 
integrate their results in a concerted effort. 
One may also integrate proteomics data with 
data produced by other omic disciplines. 
Metabolomics, for instance, can capture a 
complementary functional spectrum61,90. 
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Fig. 2 | roadmap of the understudied Proteins Initiative. A survey will help define the challenge and 
goals for the initiative. Then a workshop will bring together experts from the large-scale data community 
to establish the initiative framework, covering six action areas to be discussed. Finally, a collaborative 
effort of many labs will experimentally tackle the problem of understudied proteins.
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Note that combining proteomics 
with genetics, functional genetics or 
metabolomics substantially improves the 
predictability of phenotypes91,92.

Regardless of the approaches taken, 
however, the narrow window of standard 
laboratory conditions should probably 
be left behind. Recent multi-organism 
proteomics surveys93,94 suggest that 
potentially many more proteins could be 
characterized by comparative proteomics, 
taking advantage of the broad evolutionary 
conservation of many proteins’ functions 
and the differential accessibility of 
conserved proteins across organisms. The 
fact that many omic technologies can be 
directly applied to human cells, combined 
with the advent of genome editing, has 
raised concerns that funding for work 
on non-human organisms might be in 
decline95,96, although in-depth statistics 
indicate that these concerns may be, at 
present, unfounded97. Studying a broad 
diversity of organisms has not only brought 
us penicillin, green fluorescent protein 
and CRISPR–Cas9, but may also help us 
to capture the functional spectrum of the 
human proteome.

the understudied Proteins Initiative
We envisage that the time is right for a 
coordinated effort to reduce annotation 
inequality across the human genome and 
proteome (Fig. 2). Our Understudied 
Proteins Initiative will include different 
data generation approaches, develop an 
integration framework and make the 
annotations available to researchers via an 
appropriate platform. The project will aim 
to address not only the technical but also 
the biomedical reasons for missing gene 
functions, such as narrowly defined growth 
conditions, single time-point studies and 
the focus on very few laboratory models 
with low genetic variability. This protein 
function moonshot may also stimulate 
methodological developments in functional 
proteomics and may extend to other species.

As a first step, the goal must be defined 
clearly. If the contribution of functional 
proteomics is to stimulate mechanistic 
studies of under-characterized proteins, 
then what is the minimum information that 
scientists require to start such work? This 
question can only be answered by those that 
illuminate the cellular function of individual 
proteins in molecular and mechanistic 
detail. Ultimately, it is the sum of their 
individual subjective decisions as laboratory 
scientists and reviewers that decide  
what proteins are being studied in detail.  
We recently launched a survey to capture 
their views (https://understudiedproteins.
org/survey)98.

As a second step, a community of 
interested scientists must be built. This 
will be started at an upcoming meeting 
supported by the Wellcome Trust (https://
understudiedproteins.org/conference). The 
meeting will discuss the outcome of the 
survey and its implications for the goals of 
an Understudied Proteins Initiative, and 
how progress toward these goals could be 
monitored. This will set the framework for 
an open discussion on what technologies or 
developments may be able to systematically 
unlock the potential of currently 
uncharacterized proteins in biomedical 
research, and therefore become part of a 
larger roadmap. ❐
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