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INTRODUCTION
The engineering of plant traits holds significant promise for 
improving the production of food, fiber and renewable energy. 
Genetic engineering of plants can benefit from the identification of 
genes that have roles in traits of interest. Over the past few decades, 
plant biologists have been seeking genes that can be modified to 
obtain many desirable traits, such as high yield and stress tolerance. 
One very effective approach that has been used to identify genes 
for important cellular or organismal traits in other organisms is 
the network-guided guilt-by-association approach1,2. Using tradi-
tional forward genetics to identify these genes is limited because 
mutations for many genes may generate only moderate or weak 
phenotypes that may not be sensitive enough for the given screen-
ing method. Reverse genetics allows examination of more subtle 
phenotypic changes by directed assaying of each mutant3; however, 
genome-wide phenotyping for many plant traits is impractical.

In the network-guided guilt-by-association approach, we first 
construct a functional gene network and then computationally sug-
gest new candidate genes for traits on the basis of the connectivity 
of the genes in the network. In a functional gene network4, a link is 
made between two genes if they participate in a common biological 
process or pathway; therefore, the links between two genes represent 
functional associations between them. The functional gene network 
can integrate heterogeneous biological data into a single model; inte-
grating many independent data sets enhances both model accuracy 
and coverage4,5. The network-guided screening method has been 
successfully applied to unicellular organisms1,6 and Caenorhabditis 
elegans7–9, and it has been used for identifying human disease 
genes10–13. Functional networks for a broad collection of organisms 
are available through the STRING14 and GeneMANIA15 websites.

For customizing network-guided guilt-by-association methodol-
ogy to plants, we have constructed a probabilistic functional gene 
network for the reference plant Arabidopsis (AraNet) by a modi-
fied Bayesian integrating diverse ‘omics’ data from multiple organ-
isms (e.g., C. elegans, Drosophila melanogaster, Homo sapiens and 
Saccharomyces cerevisiae), with each data type weighted according 
to how well it links genes that are known to function together in 

Arabidopsis thaliana16 (Box 1). Each interaction in AraNet has an 
associated log-likelihood score (LLS) that measures the probability 
of an interaction representing a true functional linkage between 
two genes. AraNet consists of 1,062,222 functional associations 
among 19,647 genes of Arabidopsis thaliana (~73% of the total 
Arabidopsis genes). This genome coverage is far beyond that of 
genes with any Gene Ontology (GO) annotations (~45% cover-
age of the genome, including 33% by computational inferences 
only). The functional gene associations of AraNet are highly predic-
tive for diverse biological pathways. A previous study of network  
prediction power showed that AraNet outperformed other pub-
lished Arabidopsis gene networks16–20.

We provide AraNet as a web tool (http://www.functionalnet.
org/aranet) to prioritize genes for candidate-based functional 
screening by which plant biologists can more efficiently discover 
novel functions for uncharacterized Arabidopsis genes. Therefore, 
in this protocol, we describe how to use the AraNet web tool for 
predicting new candidate genes for plant traits or identifying new 
biological function of uncharacterized genes. The website provides 
two complementary search options: (i) ‘Find new members of a 
pathway’, which predicts new candidate genes using a set of query 
genes known or inferred to be involved in the same pathway; and 
(ii) ‘Infer function from network neighbors’, which predicts the 
candidate GO biological process terms for a query gene (Fig. 1). 
These two search procedures can be performed individually, but we 
suggest combining them to maximize the effectiveness of biological 
function discovery using the website.

New candidate genes predicted using AraNet should then be 
tested experimentally to confirm the relationships. For example, 
we experimentally tested new candidate genes associated with 
the set of 23 known embryo pigmentation genes. From the top 
200 candidate genes suggested by AraNet, we tested 90 genes with 
available homozygous transfer DNA (T-DNA) insertional mutant 
lines. A total of 14 genes exhibited color and morphology defects 
in young seedlings, reminiscent of embryo pigmentation mutants. 
This represents a tenfold enrichment in the discovery rate of the 
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AraNet is a functional gene network for the reference plant Arabidopsis and has been constructed in order to identify new 
genes associated with plant traits. It is highly predictive for diverse biological pathways and can be used to prioritize genes for 
functional screens. Moreover, AraNet provides a web-based tool with which plant biologists can efficiently discover novel functions 
of Arabidopsis genes (http://www.functionalnet.org/aranet/). This protocol explains how to conduct network-based prediction 
of gene functions using AraNet and how to interpret the prediction results. Functional discovery in plant biology is facilitated by 
combining candidate prioritization by AraNet with focused experimental tests.
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mutant phenotype over that observed during a forward-genetics 
screen of T-DNA insertion lines16.

Experimental design
If you have connected to the AraNet website to find new member 
genes of a pathway, a statistically powerful way to explore AraNet 
is to perform a search with a set of multiple genes known or sus-
pected to be involved in a common pathway or phenotype7. Here 
we query the network with known genes to collect new functional 
information of their network neighbors (‘Find new members of a 
pathway’ option). These genes are called ‘query genes’ in this search 
method. The web tool assesses the predictability of AraNet with the 
given set of query genes by measuring how well the query genes 
are connected to each other in AraNet. (Note that the assessment 
of prediction quality requires at least four known query genes to 
be statistically meaningful. Candidate genes can be identified by 
using even a single query gene, but the prediction quality cannot 
be measured using this approach.)

The predictive power of AraNet for the particular query genes 
is measured using receiver operator characteristic (ROC) curve 
analysis. ROC curve analysis is a useful technique for organizing 
classifiers and visualizing their performance21. ROC curves are 2D 
graphs in which the true-positive (TP) rate is plotted on the y axis 
and the false-positive (FP) rate is plotted on the x axis. The TP rate 
of a classifier is estimated as: 

TP rate
positives correctly classified

total positives

query gen

=

= ees correctly classified

total query genes

The classifier ranks all Arabidopsis genes (including those that 
are not present in AraNet) by the sum of AraNet connections from 
each gene to the set of query genes with edge weights. Thus, if the 
query genes are well connected to one another, they will be highly 
ranked in the classifier. The analysis assumes that the query genes 
are the positives and all other Arabidopsis genes are the negatives 
(a fairly stringent condition, as we posit that there are more genes 
in the genome that are involved in the same process as the query 
genes). Consequently, the TP rate is the ratio of query genes cor-
rectly classified among the total query genes by the given classifier 
threshold. The FP rate of the classifier is 

FP rate
negatives incorrectly classified

total negatives

nonque

=

= rry genes incorrectly classified

total nonquery genes

Similarly, in our analysis, the FP rate is the ratio of nonquery 
genes incorrectly classified as query genes among the total non-
query genes at the given classifier threshold.

After drawing the ROC curves, we calculate the area under the 
ROC curve (AUC) in order to provide a numerical measure of 
prediction strength, ranging from ~0.5 for random expectation to 1 
for perfect predictions. For example, if the AUC score is higher than 
0.68 (our empirical and very approximate choice of AUC threshold 
score for predictable gene function) and the P value is lower than 
0.05, AraNet can be considered to have predictive power for infer-
ring gene function related to a query gene set. The top 200 candi-
date genes associated with the set of valid query genes by AraNet 
will be suggested as the new member genes of the pathway.

 Box 1 | CONSTRUCTING ARANET BY INTEGRATING OMICS DATA 
Constructing a network of functional associations between Arabidopsis genes is essentially an exercise in appropriately weighting  
various types of experimental data according to how well they reconstruct a reference set of gene-gene functional associations  
(Gold standard–positives, GSP), composed of pairs of genes sharing the same GO biological process (GO-BP) annotation, as flagged 
by experimental evidence codes in The Arabidopsis Information Resource (TAIR; downloaded from ftp://ftp.geneontology.org/pub/go/
gene-associations/gene_association.tair.gz)23. Pairs of annotated genes that do not share GO-BP annotation terms are considered  
negative examples (Gold standard–negatives, GSN).
The experimental data sets incorporated into the network are diverse, and include mRNA coexpression patterns, protein-protein  
interaction data, genomic contexts of orthologous proteins, protein domain co-occurrence profiles and functional linkage data  
transferred from other organisms by orthology relationships (identified by INPARANOID27). To integrate those heterogeneous data into 
an integrated model of functional associations, we use a scoring scheme for the linkages based on Bayesian statistics2,4. It measures 
how likely pairs of genes are to be functionally associated, on the basis of how well the relevant experimental data sets capture the set 
of trusted functional associations (GSP) compared with the set of negative associations (GSN). The log-likelihood score (LLS) for a pair 
of genes to be functionally associated can be calculated as follows: 

LLS ln
P(GSP| )/P(GSN| )

P(GSP)/P(GSN)
=







D D

P(GSP|D) is the number of gold standard–positive gene pairs given the experimental data.
P(GSN|D) is the number of gold standard–negative gene pairs given the experimental data.
P(GSP) is the total number of gold standard–positive gene pairs.
P(GSN) is the total number of gold standard–negative gene pairs.
For data sets in which each gene pair is associated with a continuous data score (e.g., correlation coefficients from mRNA coexpression  
data sets), LLS scores are calculated for bins containing equal numbers of rank-ordered gene pairs. These LLS scores and their  
corresponding data scores (the mean score for each bin) are fit with regression models and LLS scores for each gene pair assigned from 
these models. LLS scores from the various data sets are then combined into an integrated score for each gene pair, using a heuristic 
approach—a weighted sum integration4 method using linearly decaying weights—that has been empirically observed to perform well 
on our network data sets (see the weighted sum method in Box 2).
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As AraNet connects functionally associated genes, it can be 
applied to discover the common biological functions (e.g., bio-
logical pathways or GO terms) among connected genes (e.g., a 
set of query genes or a set of the top 200 candidate genes). For 
the functional analysis of gene sets rather than individual genes, 
AraNet provides a ‘Gene set enrichment analysis’ tool. This analysis 
can determine whether any biological process found in the refer-
ence gene set is over-represented among the listed genes. First, we 
calculate the hypergeometric P values of the intersection between 
the listed genes and the genes in the reference gene set annotated 
with the same GO term, and then we adjust the P value as q value, 
which is an extension of a quantity called the false discovery rate, 
to solve the multiple hypotheses testing problem (because we 
test many gene sets for the analysis)22. The ‘gene set enrichment 
analysis’ of AraNet uses three types of reference gene sets: GO23, 
Plant Ontology (PO)24 and InterPro25 protein domain annota-
tions obtained from The Arabidopsis Information Resource26. The 
Arabidopsis Information Resource (http://www.arabidopsis.org/) 
maintains a database of genetic and molecular biology data for 
the model plant A. thaliana and provides extensive gene annota-
tions from manually extracted, experimentally derived data in the 
literature, as well as from computational predictions23.

Alternatively, you can use the AraNet web tool to predict func-
tions of individual genes from their network neighbors (‘Infer func-
tion from network neighbors’ option). This search can be used for 

any genes of interest, including completely uncharacterized genes or 
the query genes that were used for the ‘Find new members of a path-
way’ search that were found to be disconnected from each other. 
This prediction method suggests multiple GO biological process 
terms as candidate functions for each query gene based on known 
GO biological process terms annotated to its neighbors in AraNet. 
The candidate GO terms are rank ordered by the sum of the edge 
weights (LLS) to all neighbors annotated with each GO term.

Searching with genes from plant species other than Arabidopsis. 
If you are interested in searching for functions of genes from plants 
other than Arabidopsis, you can try to find Arabidopsis homologs 
based on sequence analysis such as BLAST at NCBI (http://blast.
ncbi.nlm.nih.gov/Blast.cgi) or look for homologs in databases such 
as INPARANOID27 (http://inparanoid.sbc.su.se/cgi-bin/index.cgi). 
Please note that we have not yet tested performance of AraNet on 
genes from other plant species and the results may be less reliable.

Below we detail a step-by-step procedure for predicting new candi-
date genes for a variety of biological processes using the two AraNet 
search applications described above (‘Find new members of a path-
way’ and ‘Infer function from network neighbors’). These predictions 
should be considered as first-pass clues serving as a guide to generate 
hypotheses regarding gene function, which should then be tested 
experimentally to confirm the gene-phenotype association.

Connect to AraNet

Query gene(s)

Infer function from
network neighbors

Predicted GO
biological
process

Experimental
validation

New gene
functions

A set of query
genes

Connected
genes

Top 200
associated

genes

Disconnected
genes

GO, PO and domain
enrichment analysis

Functional
insights

Find new members
of a pathway

Figure 1 | Overview of the method of using AraNet to discover gene 
function. The AraNet web tool can be divided into two search paths for 
identifying new gene functions: ‘Find new members of a pathway’ and ‘Infer 
function from network neighbors’. If you submit a set of query genes to 
the ‘Find new members of a pathway’ search, you can retrieve three gene 
sets: connected query genes, disconnected query genes and the top 200 
candidate genes that connect to the query genes. The gene set enrichment 
analyses using connected query genes and the top 200 candidate genes can 
provide biological insight from enriched GO, PO and protein domain terms. 
The top 200 candidate genes can be tested directly for identifying new 
gene functions. If you submit query gene(s) to ‘Infer function from network 
neighbors’ search, you can obtain candidate GO biological process terms for 
each query gene. An alternative source of the query gene is the disconnected 
query genes from the ‘Find new members of a pathway’ search. Predicted 
GO biological process terms for each query gene can be tested to discover 
new gene functions. The genes with newly discovered functions may update 
the query genes for the next round of the ‘Find new members of a pathway’ 
search. Such iterative searching can improve the enrichment of GO, PO or 
protein domain terms in subsequent analysis.

MATERIALS
EQUIPMENT

Internet access, web browser
Cytoscape software (optional)

•
•

EQUIPMENT SETUP
Data   An Arabidopsis gene of interest or a group of Arabidopsis genes that  
are known or predicted to be involved in a common pathway or phenotype.  
Our protocol uses the sample query genes given on the AraNet website—20 genes 
associated with Arabidopsis cold acclimation—for demonstration purposes.

PROCEDURE
Connect to the AraNet website 
1|	 Start a web browser such as Internet Explorer, Firefox or Netscape. Go to http://www.functionalnet.org/aranet/. The 
AraNet homepage provides three links: ‘About AraNet’, ‘AraNet Search’ and ‘Batch Downloads’. The ‘About AraNet’ page briefly 
describes AraNet and how to use it. On the ‘Batch Downloads’ page, you can download the benchmark set (341,821 reference  
functional associations between 6,487 Arabidopsis genes sharing GO biological process annotations23) and the full-size 
AraNet (1,062,222 functional associations among 19,647 Arabidopsis genes).
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Find new members of a pathway
2|	 Click the ‘AraNet Search’ link, and four links come up on the page: ‘Find new members of a pathway with graph layout’, 
‘Find new members of a pathway with NO graph layout’, ‘Infer function from network neighbors’ and ‘Evidence Code’.

3|	 Select the search type according to the number of query genes. If the number of query genes is greater than 250, 
choose ‘Find new members of a pathway with NO graph layout’. Otherwise, choose ‘Find new members of a pathway with 
graph layout’. Although the latter option has a limit of 250 query genes, it provides useful graphical displays of the networks 
of query genes along with the predicted candidate genes. The former option does not provide network graphs, but it can 
search AraNet with up to 2,000 query genes. Most pathways or phenotypes have no more than 250 member genes, but some 
phenotypes, such as growth defects, may be caused by more than 250 genes.

4|	 Click on the ‘Find new members of a pathway with (NO) graph layout’ link, paste your query genes (e.g., the example set 
of 20 genes for Arabidopsis cold acclimation) into the text box and click the ‘Submit’ button.

5|	 Obtain a search report. The search report comprises six parts: query genes connected to one another in AraNet;  
disconnected query gene(s) in AraNet; the area under the ROC curve; network layouts by Cytoscape; new candidate pathway 
genes (only top 200 predictions are displayed); and gene set analysis using GO, PO and protein domain.

6|	 Interpret the report of the query genes connected to one another in AraNet. The report table of the query genes con-
nected to one another contains basic information regarding each connected query gene (e.g., locus ID, gene symbol, total 
connection score to all other query genes and GO annotations, Fig. 2a). For all query genes present in AraNet, you can 
obtain information regarding the AraNet connections among them. If two genes connect to each other in AraNet, they are 
likely to operate in the same biological process or pathway. Moreover, genes that are connected in AraNet are four times 

a

b

Figure 2 | A report from a ‘Find new members of a pathway’ search showing an analysis of query genes (e.g., a set of genes involved in cold acclimation) 
connected to one another in AraNet. (a) The list of connected query genes contains information about the rank on the basis of: the total connection score 
to other query genes (Box 2), locus ID, gene symbol, AraNet data types (evidence) supporting connections between the gene and all other query genes 
(Table 1), the fraction of connected query genes out of the total valid query genes, all other query genes connected to the gene, and three Gene Ontology 
(GO) annotations (biological process, cellular components and molecular function). The Locus ID links to the annotation page at the TAIR database26. (b) The 
next round of search using only connected query genes can be run by clicking the ‘Submit’ button at the bottom of the screen.



©
20

11
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.6 NO.9 | 2011 | 1433

more likely to be expressed in the same cell types in the root than expected by chance16. Therefore, if the query genes are 
connected to one another by AraNet, we might expect that they affect the same pathway or trait.

7|	 (Optional) For the search option, ‘Find new members of a pathway’, it is possible to improve network-guided prediction 
by using only connected query genes that may represent core members of the biological process or phenotype. Thus, AraNet 
provides an alternative option to search for function using only the connected query genes listed below the table (Fig. 2b).

8|	 Interpret the report of the AUC result. After drawing the ROC curves, we calculate the AUC providing a measure of  
predictability, ranging from ~0.5 for random expectation to 1 for perfect predictions. The diagonal line y  =  x of the ROC 
curve for 20 cold-acclimation genes (Fig. 3a) represents the performance of the random expectation. Box 2 explains how to 
draw ROC curves using a toy example network (Fig. 3b). If a classifier makes a random guess, we expect to get correct and 
incorrect predictions in proportion to their frequency of occurrence. This classification yields the diagonal line in the ROC 
space, and the area under the diagonal is 0.5. AraNet also reports the P values of the measured AUC score using randomized 
query genes and a normal distribution of the random scores. When the query genes are tightly clustered in the network, 
all of the query genes will be ranked higher than all the nonquery genes; this would yield an AUC of 1, indicating perfect 

a b
1.0

0.9

0.8

0.7

0.6

T
ru

e-
po

si
tiv

e 
ra

te

0.5

0.4

0.3

Query genes

Random

0.2

0.1

0

c 1.0

0.9

0.8

0.7

0.6

T
ru

e-
po

si
tiv

e 
ra

te

0.5

0.4

0.3

0.2

0.1
6.33

5.35

4.92

4.10 3.20

3.10 2.70

2.50

2.35 2.30

2.10 1.90 1.50 1.40 1.20

1.00 0.50 0.30 0.20
Class

Rank

1 6.33Query (G) Query (E)

Query (C)

Query (O)

Query (B)

Query (H)

Query (K)

Query (R)

Query (L)

Query (F)

Non-query (N)

Non-query (Q)

Non-query (A)

Non-query (M)

Non-query (P)

Non-query (D)

Non-query (I)

Non-query (T)

Non-query (S)

Non-query (J)

Score
(Node name)

Class
Rank Score

(Node name)

0

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
False Positive Rate

0.8 0.9

A

B

C

G F

L

E

D

T

H

K
M

N

O

P

R

S

Q

I

J

1.5

2.5

0.3

2.3

1.9
3.1

2.7

2.0
0.8 2.0

2.1

1.0

1.2

3.2

3.0

1.0

4.1 1.0

0.5

0.5

0.2

2.0

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

False-positive rate

0.8 0.9 1.0

2

3

4

5

6

7

8

9

10

11

5.35

4.92

4.10

3.20

3.10

2.70

2.50

2.35

2.30

2.10

1.90

1.50

1.40

1.20

1.00

0.50

0.30

0.20

0.00

12

13

14

15

16

17

18

19

20

Figure 3 | An example of ROC analysis of predictive power of query genes for the ‘Find new members of a pathway’ search in AraNet. (a) A resultant ROC curve 
summarizing the predictive power of AraNet for ‘Arabidopsis cold acclimation’ with the 20 query genes by AUC score and P value. (b) A toy example network,  
in which query genes are represented by red nodes and nonquery genes by gray nodes. The link thickness reflects the log-scaled likelihood of two genes 
sharing a biological function. (c) The resultant curve by ROC analysis of the toy example network. The x axis and the y axis represent the false-positive rate 
and true-positive rate, respectively. Area under the curve (AUC) score is 0.75. Scores of network genes (including query genes) having the same function as 
query genes are calculated by integration of all network connections to query genes with weighted-sum method (Box 2). As expected from the high AUC score, 
the majority of query genes are highly ranked (e.g., all the top four most-likely candidates for query genes are indeed query genes).
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predictions. The AUC score from the 20 cold-acclimation genes is ~0.77, with a P value  <2 × 10–24, thus indicating that 
AraNet is highly predictive for cold-acclimation genes (Fig. 3a).
	 We have previously estimated the proportions of relevant new genes that might be expected to be associated with the 
query gene set as a function of AUC score. This analysis is intrinsically conservative and estimates ‘new’ discoveries from 
known and with-held cases, as it is likely that we do not actually yet know the full complement of genes for any Arabidopsis 
biological process. Many known phenotypes currently have only a small number of associated genes, which also serves to make 
this estimate conservative. Nevertheless, as a lower bound, this approach suggested that, on average, we might expect at least 
four newly discovered genes among the top 200 for the query gene set with AUC > 0.6, 5 for AUC > 0.7, 6 for AUC > 0.85,  
7 for AUC > 0.9, whereas no newly discovered genes are expected by random expectation16. The toy example network in  
Box 2 (Fig. 3b) shows AUC  =  0.75 (Fig. 3c), indicating that the network has enough predictive power for inferring gene 
function related to the query gene set.
? TROUBLESHOOTING

9|	 Interpret the report of the top 200 genes associated with the set of valid query genes by AraNet. A set of valid query 
genes is the combined set of connected query genes and disconnected query genes. In other words, all query genes that 
are present in AraNet are valid query genes. The default setting for network-guided prediction by AraNet uses all valid query 
genes. For example, the AUC score generated by the example cold-acclimation query genes is ~0.77 (Fig. 3a), which implies  
good predictability (see http://www.functionalnet.org/aranet/ROC_help.html), and thus the top 200 genes associated with 
the set of cold-acclimation genes are highly likely to include new cold-acclimation genes (Fig. 4). In fact, the top two 
predicted new genes, At5g52310 and At5g15970, are already known to respond to cold stress. The third predicted candidate, 
however, is a completely uncharacterized gene that is linked to almost the same set of query genes as the top two  
candidates, and thus may represent a novel gene involved in this process.

	 The table listing the top 200 predicted candidate genes provides seven fields of information for each candidate gene: 
paralogs; gene symbol; total score of AraNet links supporting the candidate gene; evidence supporting the candidate gene; 
the fraction of query genes linked to the candidate gene over the total valid query genes; the list of query genes that are 

 Box 2 | ROC ANALYSIS 
In the toy example network shown in Figure 3b, query genes are represented by red nodes and nonquery genes by gray nodes. The link 
thickness reflects the likelihood of a functional association between two genes. The likelihood of two genes interacting functionally 
(i.e., being involved in the same pathway or process) is measured as a log-likelihood score using Bayesian statistics2,4 (see Box 1).
Our network-based classifier calculates the log-likelihood score that each gene has the same function or phenotypic effect as the query 
genes (red nodes) as the sum of the log likelihood scores of links from the candidate gene to the query genes. The linkage scores from 
each candidate gene to the set of red query genes are combined using a weighted sum (WS) method4 using linearly decaying weights 
for additional link scores (D  =  2 for AraNet, found by optimizing performance using recall/precision analysis). The WS score for a gene 
is calculated as follows: 

WS = +
=
∑L

L
D i

i

i

n
0

1 i  

where L represents the score for a linkage to the red query genes, L0 is the maximum link score and i is the rank-order index of the 
remaining link scores (L). For example, four out of six links to gene H are connected to query genes. Therefore, the score for gene H is 
calculated as: 3.0  +  2.5 / (2 × 1)  +  2.0 / (2 × 2)  +  1.0 / (2 × 3) ~ 4.92 (Fig. 3b).
Unlike many other classifiers that produce only a class decision for each gene, such as decision trees or rule sets, this classifier produces  
a quantitative score for each gene21. Such a quantitative classifier can be used to produce a discrete decision (i.e., a positive (P) or 
negative (N) for each gene) with a threshold. If the classifier output is above the threshold, the classifier produces a P; otherwise it 
produces an N. Each threshold value produces a different point in ROC space. For example, if we set the threshold at 3.20, the top five 
genes would be classified as P (query genes) and other genes as N (nonquery genes). The four query genes are correctly classified as 
query genes among the total of ten query genes. Thus, the true-positive rate  =  4/10  =  0.4. The one nonquery gene is incorrectly  
classified as a query gene among a total of ten nonquery genes. Thus, the false-positive rate  =  1/10  =  0.1. Therefore, the coordinate 
of nonquery gene N becomes (0.1, 0.4) in ROC space (Fig. 3c).
Note that the toy example ROC curve here may look slightly different from the resultant ROC curves in AraNet reports (for example, 
see Fig. 3a) because this toy example is a special case in which all genes in a genome are modeled in the network (here we assume 
that there are only 20 genes in the genome), and all of them are connected to query genes except one, ‘O’. In AraNet, the majority of 
Arabidopsis genes are likely to be disconnected from query genes such as ‘O’, and may even be absent from AraNet. Those query genes 
are randomly ranked because they have no network-based score. Therefore, the majority of Arabidopsis genes would be expected to be 
retrieved randomly, and the ROC curve for the gene set is extrapolated toward (1, 1).
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linked to the candidate gene (i.e., query genes supporting candidate prediction); and any known GO annotations for the 
biological process (GO-P), cellular components (GO-C) and molecular function (GO-F) terms. The ‘paralogs’ field lists any  
duplicates of the candidate gene as defined by methods described in Blanc et al.28. Because the paralogs could retain the 
same function as the candidate gene, this information should be considered in designing validation experiments by gene 
perturbation. For example, if we perturb a candidate gene with any paralog, we may detect no phenotypic defect as a result 
of the functional redundancy from the paralogous gene. Thus, detection of phenotypic effect may require perturbation of not  
only candidate genes but also paralogs. The candidate genes are ranked by their total score of connections to the set of valid  
query genes, measured by a weighted sum (Box 2) of multiple supportive AraNet links. The field ‘Evidence’ provides information  
regarding all supporting data types as evidence codes (Table 1) and their relative contributions toward inferring the candidate  
gene (e.g., HS-CX:0.65 AT-PG:0.35 for the 200th candidate AT2G37190 in the Fig. 4 table indicates that the coexpression of 
Arabidopsis orthologs of human genes and of phylogenetic profile similarity between Arabidopsis homologs provides 65% and 
35% of the total supporting evidence, respectively, for being involved in the same process as the query genes).

10| Interpret the reported subnetworks of query genes and their neighboring genes in AraNet. AraNet provides three kinds  
of networks: a ‘query network’ (option A), an ‘extended network’ (option B) and an ‘all-prediction network’ (Option C)  
(Fig. 5a). The query network consists of only query gene nodes and the links among them. The network intuitively shows 
how well query genes are connected to one another. The extended network consists of query gene nodes and the top 200 
gene nodes associated with the set of valid query genes. It shows how well the top 200 associated gene nodes are connected 
to the query nodes. The all-prediction network includes the query genes and all the genes connected to them, including the 
top 200 candidates. This network may be too large to calculate network coordinate values in a reasonable query time. In 
addition, visual inspection of a network with a large number of nodes and edges is not very practical in general. Therefore, 

Figure 4 | An example list of candidate pathway genes from a ‘Find new members of a pathway’ search. AraNet analysis returns a table of rank-ordered new 
candidates for the pathway of the query genes (e.g., a set of genes involved in cold acclimation). AraNet lists only the top 200 candidate genes in the HTML 
table and provides a list of all the candidate genes as a text file. The list contains information about the rank on the basis of the total connection score to 
query genes (Box 2), locus ID, paralogs, gene symbol, AraNet data types (evidence) supporting connections between the gene and all query genes (Table 1), 
the fraction of connected query genes out of the total valid query genes, all query genes connected to the gene and three GO annotations.
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AraNet does not provide the network view for this information but only an edge information file to allow subsequent analysis 
by additional Cytoscape visualization tools (optional; see Step 11), if necessary. The edge information is downloadable as 
Cytoscape Simple Interaction File (SIF) format for all three types of networks.
(A) Query network
	 (i) �Click the hyperlink ‘querynw.html’ to see the visualized query network in a new window. We draw subnetworks using Cytoscape 

Web (http://cytoscapeweb.cytoscape.org/), which is modeled after the Cytoscape Java network visualization and analysis 
software29. The Adobe flash player plug-in must be installed in your web browser for this network visualization function to 
work. Cytoscape Web is based on the Flex/Flash technology. The edge information file (querynw.sif) is also available. 
? TROUBLESHOOTING

TABLE 1 | Twenty-four types of evidence incorporated into AraNet.

Evidence code Evidence description

AT-CX mRNA coexpression between Arabidopsis genes

AT-DC Domain co-occurrence between Arabidopsis proteins

AT-GN Gene neighborhoods between Arabidopsis orthologs in bacterial genomes

AT-LC Literature-curated Arabidopsis protein interactions

AT-PG Phylogenetic profile similarity between Arabidopsis homologs

CE-CC Association between Arabidopsis orthologs inferred from co-citation of C. elegans genes in Medline abstracts

CE-CX Association between Arabidopsis orthologs inferred from mRNA coexpression in C. elegans

CE-GT Association between Arabidopsis orthologs inferred from genetic interactions in C. elegans

CE-LC Association between Arabidopsis orthologs inferred from literature-curated C. elegans protein interactions

CE-YH Association between Arabidopsis orthologs inferred from C. elegans protein interactions by high-throughput yeast 
two-hybrid analysis

DM-PI Association between Arabidopsis orthologs inferred from D. melanogaster protein interactions

HS-CX Association between Arabidopsis orthologs inferred from mRNA coexpression in human

HS-DC Association between Arabidopsis orthologs inferred from domain co-occurrence between human proteins

HS-LC Association between Arabidopsis orthologs inferred from literature-curated human protein interactions

HS-MS Association between Arabidopsis orthologs inferred from human protein interactions by affinity purification/mass 
spectrometry analysis

HS-YH Association between Arabidopsis orthologs inferred from human protein interactions by high-throughput yeast  
two-hybrid analysis

SC-CC Association between Arabidopsis orthologs inferred from co-citation of S. cerevisiae genes in Medline abstracts

SC-CX Association between Arabidopsis orthologs inferred from mRNA coexpression in S. cerevisiae

SC-DC Association between Arabidopsis orthologs inferred from domain co-occurrence between S. cerevisiae proteins

SC-GT Association between Arabidopsis orthologs inferred from genetic interactions in S. cerevisiae

SC-LC Association between Arabidopsis orthologs inferred from literature-curated S. cerevisiae protein interactions

SC-MS Association between Arabidopsis orthologs inferred from S. cerevisiae protein interactions by affinity  
purification/mass spectrometry analysis

SC-TS Association between Arabidopsis orthologs inferred from S. cerevisiae protein interactions, which were also inferred 
from protein tertiary structures

SC-YH Association between Arabidopsis orthologs inferred from S. cerevisiae protein interactions by high-throughput yeast 
two-hybrid analysis
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(B) Extended network
	 (i) �Click the hyperlink ‘extnw.html’ to see the visualized extended network in a new window. Figure 5b–d shows an  

example of extnw.html. The network html page comprises two panels: the upper panel (Fig. 5b) shows the network 
layout view, and the lower panel (Fig. 5c,d) shows network information.

	 (ii) �Click the plus or the minus button in the bottom right corner of the upper panel to zoom in or out of the network 
view. If you click a node or an edge, the lower panel shows its detailed information (e.g., information of a node 
AT5G10760 in Fig. 5c and an edge between ATMKK2 and AT5G24940 in Fig. 5d). The edge information file (extnw.sif)  
is also available.

(C) All-prediction network
	 (i) �Download the edge information file (allnw.sif) for optional analyses using local Cytoscape software, if necessary. 

 CRITICAL STEP Although one would generally provide functionally coherent genes as a query set, it is possible to 
use a set of genes with functional heterogeneity (e.g., genes with similar loss-of-function phenotypes may comprise 
multiple pathways). The network visualization function can help identify new genes associated with each functional 
group, as opposed to global characteristics of all of the query genes. If there are distinct subnetworks among the 
query genes, querynw.html will show them as separate graphs. New query gene sets can be constructed corresponding 
to each of the discovered subnetworks, and separate AraNet searches performed with them. This task is not automated 
in the current version of the AraNet web tool, but requires only minimal manual effort using the network visualization 
function of AraNet.

11| (Optional) Draw and analyze networks using Cytoscape. AraNet also provides a SIF for each network. To draw and analyze 
each network using Cytoscape, follow the next three steps: first, download the Cytoscape network SIF file (querynw.sif, 
extnw.sif, or allnw.sif) and a network node attribute file (nw.noa); next, download Cytoscape software from http://www.
cytoscape.org/ and install it on your local computer; and, finally, draw these networks using the local Cytoscape software  
by importing the downloaded files. For a detailed description of how to install and use Cytoscape, please refer to the  
published protocol30.

Infer function from network neighbors
12| Identify candidate GO biological process terms for each query gene. The query procedure is quite similar to that for 
finding new members of a pathway (Steps 3–6), but the results show the GO predictions of the query genes based on their 
network neighbors instead of candidate genes that might be involved in the same process. The only difference in the 
search procedure is the option to choose an appropriate ‘search filter’ of GO evidence codes (http://www.geneontology.
org/GO.evidence.tree.shtml). The default search filter is composed of six evidence codes based on experimental data (IDA, 
IMP, IGI, IPI, IEP) or authors’ statements in the literature (TAS)31 (Fig. 6a). Prediction with the default filter of GO evidence 
codes uses the neighbor’s GO annotations that are supported by the experimental evidence or by authors’ statements in the 
literature. If more evidence codes are selected (i.e., if you also use computationally predicted evidence such as ISS or IEA), 

Network Layouts by Cytoscape
A network of query set: querynw.html (It requires Adobe Flash Player), querynw.sif
A network of extended set (query + top 200 predictions): extnw.html (It requires Adobe Flash Player), extnw.sif
A network of all set (query + all predictions): allnw.sif
A node attribute file: nw.noa

a

b

c

d

Locus name = AT5G10760

AT3G15020

AT5G08690

AT5G08680

AT1G53240

AT4G26910

AT5G24940

AT5G53140

CAX1

AT1G53210

AT3G12260

AT5G67590

AT5G25450

T5G40400

AT2G36620

AT5G17850

AT4G34700

AT1G54115

AT1G43900

AHK5

AT5G10760

ATMKK2

AT3G13180
AT5G24530

AT2G17120

TAFII59

AT5G67340
SAL2 AT4C

AT2G206

AT4G11890

AT2G32680

A

AT1G14870

AT3G25010

Node type = candidate gene
Gene symbol = AT5G10760
Total connection score to query genes(sum of LLS) = 4.24

Edge = ATMKK2 to AT5G24940
Edge score(LLS by the integrated network) = 3.62
LLS by raw evidence = SC-MS(3.89), AT-GN(3.48), SC-LC(3.23), SC-CC(3.15)

Figure 5 | An example of a network layout 
view page in a new web browser window. 
(a) AraNet analysis provides downloadable 
network edge information files for additional 
network visualization and html pages that 
contain network view generated by Cytoscape 
Web (http://cytoscapeweb.cytoscape.org/). 
(b) A partial view of the network of genes 
known to have roles in cold acclimation and 
their connected genes in AraNet. A blue node 
represents a query gene of cold acclimation, and 
a green node represents a connected candidate 
gene. You can zoom in and out on the image by 
clicking the plus and minus buttons, respectively. 
If you click the hand icon, you can move the view 
window to other parts of the network. (c) If you 
click a node, the lower panel provides detailed 
information, including the total connection score 
to query genes. (d) If you click an edge, the lower 
panel provides detailed information including 
edge score by AraNet and supporting evidences 
with corresponding log-likelihood scores before 
weighted sum integration.
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AraNet might return more predictions. However, the reliability of the predictions may become lower. If using only the ex-
perimentally derived evidence codes returns no predicted GO terms, including additional evidence codes might provide some 
prediction results. Figure 6b shows an example of the results of ‘inferring function from network neighbors’ search. For each 
query gene, the search function provides a report table listing the top 30 enriched GO biological process terms that are  
annotated to the genes that are directly linked to the query gene. The table includes four types of information: the total 
score for the candidate GO term on the basis of the links to the neighbors annotated with the term (Box 2); supporting 
evidence (Table 1), with the fraction of contribution of each; the predicted GO term (biological process); and neighboring 
genes supporting the predicted GO term, with original LLSs of each network connection indicated in parentheses.
	 Example queries using two genes with known GO terms as in Figure 6b demonstrate the power of functional inference 
from network neighbors in AraNet. For both genes, one involved in starch catabolic process and the other in cold-stress 
response, AraNet search returns their known GO terms as top predictions.
 CRITICAL STEP A successful validation does not always come from the top-ranked GO term. Other GO terms with rela-
tively high ranks are also highly probable functions for the query gene. We recommend testing or at least examining the 
top ten candidate GO terms. For example, in our previous work, we successfully validated a gene involved in drought 
sensing from a GO term that was ranked third and a gene involved in lateral root formation from a GO term that was 
ranked fifth16.

13| (Optional) Interpret the AraNet report of the disconnected query genes from the ‘Find new members of a pathway’ search 
(Fig. 7). Some query genes from the ‘Find new members of a pathway’ search may not be connected to one another by 
AraNet or may not even exist in AraNet. For the query genes that are not included in AraNet, the network-guided prediction 
is not applicable. For disconnected query genes, we provide the known GO32 annotation information to help reason possible 
functional hypotheses. However, these genes are often functionally uncharacterized. In this case, we recommend using the 

a

b

Figure 6 | The ‘Infer function from network neighbors’ search. (a) For this search option, we can filter search results by various supporting evidence codes for 
GO annotation. The default GO evidence types are limited to experimental data (IDA, IMP, IGI, IPI, IEP) and literature (TAS). It is possible to choose additional 
evidence codes with less reliability to obtain more prediction results. (b) Example reports of predictions of new functions. For each query gene, the report 
provides candidate GO biological process terms in the prediction table. The table contains five information fields: rank, total score to the neighbors annotated 
by the candidate GO term, evidence supporting the AraNet connections to the neighbors annotated by the candidate GO term (Table 1), a predicted GO term 
and its GO term–supporting genes connected to this query gene.
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other search option, ‘Infer function from network neighbors’. Inferring function from network neighbors provides candidate 
GO biological process terms for each query gene based on its neighboring genes’ known GO biological process annotations in 
AraNet. To do this, you only need to click the ‘Submit’ button below the box containing the disconnected gene list  
(see Step 12 for interpreting the results).

GO, PO and protein domain enrichment analysis
14| Perform gene set enrichment analysis with the valid query genes. The ‘gene set enrichment analysis’ query form is 
shown on the last part of the ‘Find new members of a pathway’ search report page (Fig. 8a). Three types of gene lists 
for the gene set enrichment analysis are provided by AraNet: connected query genes, valid query genes and the top 200 
genes associated with the valid query genes. Copy one of these gene lists into the text box below the gene lists. Click the 
‘Submit’ button to obtain the gene set enrichment analysis results. AraNet simultaneously performs gene set analysis for 
three reference gene sets—all Arabidopsis genes annotated with GO, PO and protein domains—for each submitted query 
gene set. Figure 8b shows an example gene set analysis result for the 20 cold-acclimation query genes. As expected, we 
obtain the GO term for cold acclimation and other closely related terms (e.g., response to cold and response to freezing). 
An enriched PO term for vascular tissue suggests this tissue may be important in response to cold stress. We also find  
enrichment for protein domain family IPR008892, a domain that is contained in several WCOR413-like plant cold-
acclimation proteins33, in addition to the dehydrin domain. The HTML tables display only terms with multiple hypothesis 
test-adjusted P values  <  0.05 (a commonly used cutoff for statistical significance), but the complete lists of enriched 
terms can be downloaded as text files.

15| (Optional) Analyze the gene set enrichment for a subset of the query gene set or a combined set of query genes and 
new candidate genes. For example, it might be useful to analyze different gene lists, such as valid query genes and top ten 
associated genes. If you compare the results of this analysis with those from Step 14, you might find new enriched functions 
with the addition or subtraction of query or candidate genes.

Figure 7 | A report from a ‘Find new members of a pathway’ search. The report shows an analysis of disconnected query genes in AraNet (e.g., a set of genes 
involved in cold acclimation). The list of disconnected query genes contains information such as locus ID, gene symbol and three GO annotations. You may 
directly submit the disconnected genes to an ‘Infer function from network neighbors’ search by clicking the ‘Submit’ button. 
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Experimental validation
16| Candidate gene functions from the above searches can be assayed by investigating the phenotypes of mutants for the genes. 
A genome-wide library of T-DNA insertional mutant seeds is available from the Arabidopsis Biological Resource Center (http://
abrc.osu.edu/)34. Similar resources are available for other plants such as rice (http://www.rgrc.dna.affrc.go.jp/index.html.en).
 CRITICAL STEP Mutants in many candidate genes may show weak, but detectable, phenotypic effects of the given mutant 
allele. Thus, closer examination using quantitative analysis, for example, may be required for successful experimental  
validation. In addition, testing at least two independent alleles for each candidate gene is highly recommended.

Iteration of AraNet searches
17| (Optional) Run the next round of the ‘Find new members of a pathway’ search with updated query genes, including  
any newly discovered genes for the same function. Additional query genes should be selected using conservative criteria 

a

b

Figure 8 | Functional gene set enrichment analysis (e.g., a set of 20 query genes involved in cold acclimation). (a) Optional function enrichment analysis 
is available. Using the listed valid query genes, the top 200 new candidate genes, or the combined gene set, AraNet reports the enriched GO, PO and protein 
domain terms. (b) A GO, PO and InterPro protein domain enrichment analysis report. This enrichment analysis tool provides three analysis results for each 
reference gene set: GO, PO and protein domain. The report table shows the following nine fields of information: rank based on an adjusted P value; GO, PO 
or protein domain ID; a brief description of the ID; hypergeometric P value of the ID; adjusted hypergeometric P value by false discovery rate; the number of 
total Arabidopsis genes; the number of query genes; the number of genes annotated with the ID; and the number of genes common to both the query genes 
and the genes annotated with the ID.



©
20

11
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.6 NO.9 | 2011 | 1441

(e.g., only validated candidate genes from experimental tests) to improve the results of the guilt-by-association approach.  
Therefore, iterative searching through AraNet may gradually extend the understanding of a given pathway. Additional  
pathway genes found by iterative searching may improve enrichment scores for the pathway gene set at subsequent steps.

? TROUBLESHOOTING
Low AUC value (Step 8)
If the query genes are not well connected to one another, the AUC value will be low and the prediction power of the query 
gene set will also be low. There are two major reasons for low AUC scores. First, AraNet may not be a good model for the 
particular function. Although we observe that the general prediction power of AraNet is excellent, we do not expect AraNet 
to be highly predictive for every gene function. The ‘help ROC’ page (http://www.functionalnet.org/aranet/ROC_help.html) 
shows examples of ROC curves for query genes with good (AUC ≥ 0.7), reasonable (0.7 > AUC ≥ 0.6) and poor (0.6 > AUC) 
predictabilities. Excessively low AUC values indicate that the known query genes are not well connected to one another 
within AraNet, and thus the prediction of new genes for this biological process is unlikely to be successful. In this case,  
another network-based prediction method, Gaussian field label propagation15, may improve the predictive performance  
because it takes into account both direct and indirect connections in the network. A general improvement of predictive 
power using this approach has been observed in yeast and worm35. Second, if query genes are involved in a process that is 
not modulated by one group of functionally coherent genes, the given query genes would not be expected to be well con-
nected to one another in AraNet; the query genes are derived from different functional modules that could be separated as 
local subnetworks in AraNet. However, the functional association between each gene pair is still predictive for suggesting 
good candidate genes or functions. Thus, predictions based on disconnected query genes are often still worth examining.

Not seeing network html pages in Linux (Step 10)
As mentioned above, AraNet plots subnetworks using Cytoscape Web, which is based on Flex/Flash technology. If you cannot 
see the networks (especially on a Linux client), you must try to install the Adobe Flash player plug-in into your web browser.

● TIMING
The search procedure described above takes less than 10 min if you do not execute several of the optional steps. However, 
for beginners to fully understand, interpret and follow up on the search results and design experiments, more time will be 
required. Executing only one search option (e.g., ‘Find new members of a pathway’ or ‘Infer function from network neighbors’) 
on the website takes ~1 min, regardless of the number of query genes.

ANTICIPATED RESULTS
‘Find new members of a pathway’ search results
If you execute the search option ‘Find new members of a pathway’, you can obtain a report that includes six subsections:  
(i) query genes connected to one another in AraNet; (ii) disconnected query gene(s) in AraNet; (iii) the area under ROC 
curve; (iv) network layouts by Cytoscape; (v) new candidate pathway genes (only the top 200 predictions are displayed);  
and (vi) gene set analysis using GO, PO and protein domain. The first four parts analyze the query genes in four different 
views. These parts of the results list query genes that are connected to one another (Fig. 2a) as well as disconnected query 
genes (Fig. 7) in AraNet. The AUC score allows the user to assess the predictive power of AraNet by using the query gene set 
to infer new members of a pathway (Fig. 3). The network files provide graphical linkage information among the query genes 
and their neighbors (Fig. 5). On the basis of the top 200 genes connected to the valid query genes, you can identify new 
candidate genes that may have the same function as the query genes (Fig. 4). In the last part of the report, you can analyze 
enriched GO terms, PO terms (growth and structure) and protein domains in both your query genes and the new candidate 
genes (Fig. 8).

‘Infer function from network neighbors’ search results
If you execute ‘Infer function from network neighbors’, you can obtain the candidate GO biological process terms predicted 
by neighbors of each query gene in AraNet. AraNet provides the top 30 enriched GO terms among the neighboring genes of 
each query gene (Fig. 6b).
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