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Neurospora crassais a central organism in the history of twentieth-century genetics, biochemistry and molecular biology. Here, we
report a high-quality draft sequence of the N. crassa genome. The approximately 40-megabase genome encodes about 10,000
protein-coding genes—more than twice as many as in the fission yeast Schizosaccharomyces pombe and only about 25% fewer
than in the fruitfly Drosophila melanogaster. Analysis of the gene set yields insights into unexpected aspects of Neurosporahbiology
including the identification of genes potentially associated with red light photobiology, genes implicated in secondary metabolism,
and important differences in Ca®* signalling as compared with plants and animals. Neurospora possesses the widest array of
genome defence mechanisms known for any eukaryotic organism, including a process unique to fungi called repeat-induced
point mutation (RIP). Genome analysis suggests that RIP has had a profound impact on genome evolution, greatly slowing the
creation of new genes through genomic duplication and resulting in a genome with an unusually low proportion of closely related

genes.

Research on Neurospora in the early part of the twentieth century
paved the way for modern genetics and molecular biology. First
documented in 1843 as a contaminant of bakeries in Paris',
Neurospora was developed as an experimental organism in the
1920s>’. Subsequent work on Neurospora by Beadle and Tatum* in
the 1940s established the relationship between genes and proteins,
summarized in the ‘one-gene-one-enzyme’ hypothesis. In the latter
half of the century, Neurospora had a central role as a model
organism, contributing to the fundamental understanding of gen-
ome defence systems, DNA methylation, mitochondrial protein
import, circadian rhythms, post-transcriptional gene silencing and
DNA repair’. Because Neurospora is a multicellular filamentous
fungus, it has also provided a system to study cellular differentiation
and development as well as other aspects of eukaryotic biology®.

The legacy of over 70 years of research’, coupled with the
availability of molecular and genetic tools, offers enormous poten-
tial for continued discovery. The sequencing of the N. crassa genome
was undertaken to maximize this potential. Here, we report an
initial sequence and analysis of the Neurospora genome.

Neurospora genome sequence

The Neurospora genome is much larger (greater than 40 megabases
(MD)) than that of S. pombe and Saccharomyces cerevisiae (both
about 12 Mb). Accordingly, first we sought to produce and analyse a
high-quality draft sequence en route to a finished sequence.

The genome sequence was assembled from deep whole-genome
shotgun (WGS) coverage obtained by paired-end sequencing from a
variety of clone types (Supplementary Information). In all, the data
provided an average of >20-fold sequence coverage and >98-fold
physical coverage of the genome. The Arachne package® was used
to assemble the draft genome sequence. The resulting assembly
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consists of 958 sequence contigs with a total length of 38.6 Mb
(Table 1) and an N50 length of 114.5 kilobases (kb) (that is, 50% of
all bases are contained in contigs of at least 114.5 kb). Contigs were
assembled into 163 scaffolds with a total length of 39.9 Mb (includ-
ing gaps between contigs) and an N50 length of 1.56 Mb.

Most of the assembly (97%) is contained in the 44 largest
scaffolds, and there are 38 tiny scaffolds with lengths <4 kb.
Forty-two of the large scaffolds (and one of the smaller ones)
could be anchored readily to the Neurospora genetic map’ by virtue
of their containing genetic markers with sequence.

The assembly has long-range continuity, with the N50 scaffold
size being nearly 1,000-fold larger than the average gene size. The
assembly represents the vast majority of the genome, as assessed by
comparison with available finished sequence and genetic markers. It
contains 99.13% of available finished sequence (17 Mb from linkage
groups Il and V°) and all of the 252 genetic markers with sequence.
This estimate, however, does not account for unusual genomic
regions such as the ribosomal DNA repeats, centromeres and
telomeres; such regions may contain about 1.7 Mb of additional
sequence', corresponding to 2-3% of the genome that cannot be
assembled readily with available techniques. The long-range con-
tinuity of the assembly was also confirmed by comparisons with
previously described bacterial artificial chromosome (BAC) physi-
cal maps for linkage groups Il and V"', as only one discrepancy was
noted.

The assembly also has high accuracy, with 99.5% of the sequence
having Arachne quality scores =30. Comparison with the 17 Mb of
finished sequence confirms the sequence accuracy, with a discre-
pancy rate for this subset of less than 10>, The comparison also
largely confirms the assembly, as only 12 minor discrepancies were
identified (Supplementary Information).
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Genes

Gene count and basic characteristics

A total of 10,082 protein-coding genes (9,200 longer than 100
amino acids) were predicted (Table 1 and Supplementary SO).
This constitutes nearly twice as many genes as in S. pombe (about
4,800) and S. cerevisiae (about 6,300), and nearly as many as in
D. melanogaster (about 14,300). Genes cover at least 44% of the
genome sequence with an average gene density of one gene per
3.7 kb. The average gene length of 1.67 kb is slightly longer than the
1.4-kb average gene length for both S. cerevisiae and S. pombe. The
difference in gene length is due to the greater number of introns in
Neurospora genes—an average of 1.7 introns per gene with an
average intron size of 134 nucleotides. Notably, most predicted
Neurospora introns lack a polypyrimidine tract, which is common in
other eukaryotic introns, but do contain a strong branchpoint
sequence (Supplementary Information).

Comparative analysis

A total of 4,140 (41%) Neurospora proteins lack significant matches
to known proteins from public databases (Table 1), reflecting the
early stage of fungal genome exploration and the diversity of
fungal genes remaining to be described. Furthermore, 5,805
(57%) Neurospora proteins do not have significant matches to
genes in either of the sequenced yeast species (Supplementary
Information). When compared to sequenced eukaryotes, a total
of 1,421 (14%) Neurospora genes display best BLASTP matches to
proteins in either plants or animals (Supplementary Information).
Of these, 584 lack high-scoring hits to either sequenced yeast
species. These data reflect the biology shared by filamentous fungi
and higher eukaryotes, which in a number of cases is absent in the
yeasts.

Epigenetics, genome defence and genome evolution
Neurospora is an important model for the study of epigenetic
phenomena, possessing a wide variety of epigenetic mechanisms
and related genome defence mechanisms. The most remarkable of
these mechanisms is repeat-induced point mutation (RIP), a
process unique to fungi.

Repeat-induced point mutation

First discovered in Neurospora'>'®, RIP is a process that efficiently
detects and mutates both copies of a sequence duplication. RIP acts
during the haploid dikaryotic stage of the Neurospora sexual
reproductive cycle, causing numerous CeG to TeA mutations
within duplicated sequences. In a single passage through the sexual
cycle, up to 30% of the CeG pairs in duplicated sequences can be
mutated, with a strong preference for C to T mutations occurring
at CpA dinucleotides'. The pattern of mutations produces a

Table 1 Neurospora crassa genome features

Feature Value
General
Size (bp) (assembly 5) 38,639,769
Chromosomes 7
G + C content (%) 50
Protein-coding genes 10,082
Protein-coding genes >100 amino acids 9,200
tRNA genes 424
5S rRNA genes 74
Per cent coding 44
Per cent intronic 6

Average gene size (bp) 1,673 (481 amino acids)

Average intergenic distance (bp) 1,953
Predicted protein-coding sequences

Identified by similarity to known sequences 1,336 (13%)

Conserved hypothetical proteins 4,606 (46%)

Predicted proteins (no similarity to known sequences) 4,140 (41%)
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characteristic skewing of dinucleotide frequencies that allows RIP-
mutated sequences to be detected accurately'. RIP requires a
minimal duplicated sequence length of about 400 base pairs
(bp)'® and greater than roughly 80% sequence identity between
duplicates”. In addition to suffering mutations, RIP-mutated
sequences are frequent targets for DNA methylation. As with
mammals, DNA methylation has been shown to cause gene silenc-
ing in Neurospora'®. RIP thus mutates and epigenetically silences
repetitive DNA.

RIP has been proposed to act as a defence against selfish or mobile
DNA". However, because RIP mutation and methylation can
extend beyond the bounds of duplicated sequences'’, RIP can
have both mutational and epigenetic effects on neighbouring
unique sequences. Furthermore, RIP acts on all duplicated
sequences, including those arising from large-scale chromosomal
duplications as well as gene duplications®’. The presence of RIP thus
has profound consequences for the evolution of the Neurospora
genome. Indeed, it has been proposed that RIP might prevent gene
innovation through gene duplication'**". With the availability of
the Neurospora genome sequence, we were able to address this
hypothesis.

Multigene families

To investigate the impact of RIP on protein families in Neurospora,
genes were clustered into ‘multigene families’ on the basis of an all
versus all comparison of protein sequences (see Methods). As
shown in Fig. 1, the percentage of genes in multigene families in
selected sequenced eukaryotes is correlated with genome size.
However, in marked contrast to the other analysed organisms,
Neurospora possesses many fewer genes in multigene families than
expected. When the analysis is expanded to include an additional 17
sequenced prokaryotes (Supplementary Information), only Myco-
plasma genitalium, Mycoplasma pulminus, Ureaplasma urealyticum
and Vibrio cholerae display a correspondingly small proportion of
genes in families. This is noteworthy considering that the Myco-
plasma genus is thought to have undergone reductive evolution and
represent minimal life forms®.

Our analysis reveals another characteristic of Neurospora gene
families. Unlike other sequenced eukaryotes, Neurospora possesses
only a handful of highly similar gene pairs. Figure 2 displays
histograms of amino acid and nucleotide similarities between
each gene in the six organisms analysed and the best-matching
gene in that organism. A significant proportion of genes have best
matches with greater than 80% amino acid and nucleotide identity
in all the organisms considered except Neurospora. Neurospora
contains only eight genes with top matches of greater than 80%
amino acid or coding sequence identity. This value is significant
because, as described above, RIP mutates duplicated sequences that
display greater than about 80% nucleotide similarity. Thus, the
small proportion of genes in multigene families and the near
absence of highly similar genes are consistent with the actions of
RIP.

An example of the lack of highly similar genes in multigene
families is revealed in an analysis of predicted major facilitator
superfamily (MEFS) sugar transporters (Fig. 3). Neurospora has
about the same number of predicted MFS sugar transporters as
S. cerevisine. However, a phylogenetic analysis of fungal sugar
transporters indicates that the Neurospora proteins are substantially
more divergent than those of S. cerevisiae as well as those of S. pombe.
Furthermore, the Neurospora transporters contain no apparent
instances of recent duplication. In contrast, most of the S. cerevisiae
HXT hexose and S. pombe GHT transporters represent two rela-
tively recent and independent expansions and include very recently
duplicated genes. Thus, despite a diversity of MFS sugar transpor-
ters, Neurospora seems to lack close paralogues in this gene family,
consistent with the results of the genome-wide multigene family
analysis.
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Analyses of other gene families yielded similar results (data not
shown). Furthermore, the paucity of closely related sequences is
evident not only at the level of complete genes, but even at the level
of individual exons, protein domains and protein architectures
(Supplementary S4).

Gene evolution through gene duplication

The above results suggest that RIP has had a powerful impact in
suppressing the creation of new genes or partial genes through
genomic duplication. This is consistent with the large number of
mutations induced in duplicated sequences by RIP. Computer
simulations (see Methods) indicate that after a gene duplication,
each copy has an 80% probability of acquiring an in-frame stop
codon after only a single round of RIP and a 99.5% probability by
the point that RIP has mutated the copies to less than 85%
nucleotide similarity. The high frequency of stop codons reflects
the preference of RIP for mutating CpA to TpA, increasing the
prevalence of the stop codons TAA and TAG.

These results raise the critical question of whether any significant
gene duplication has occurred in Neurospora subsequent to the
acquisition of RIP. We searched for empirical evidence of duplicated
genes that have survived RIP by analysing the set of Neurospora
coding sequences using two different measures'® for detecting
RIP-mutated sequences (see Methods). These measures use the
characteristic skewing of dinucleotides produced by RIP to detect
mutated sequences. According to these measures, only 59 of the
9,200 predicted genes encoding proteins =100 amino acids show
evidence of mutation by RIP. Of these, only eight consist of pairs of
predicted duplicated genes (genes in the same multigene family) in
which both copies are predicted to be RIP-mutated. Thus, few pairs
of duplicated genes display evidence of having both survived RIP
(Supplementary Information).

Gene duplication is thought to have a primary role in the
innovation of new genes®. However, taken together, our data
support the conclusion that most, if not all, paralogous genes in
Neurospora duplicated and diverged before the emergence of RIP,
and since that point the evolution of new genes through gene
duplication has been virtually arrested. This conclusion raises the
question of whether and how Neurospora is able to evolve new genes.
A number of mechanisms that do not involve gene duplication
are conceivable, although ultimately a conclusive analysis may be
possible only by comparing the genome of Neurospora with the
genomes of closely related species to illuminate recent evolutionary
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Figure 1 Neurospora has a low proportion of genes in multigene families. The graph
displays the proportion of genes in multigene families (see Methods) as a function of the
number of genes in the genomes of selected sequenced eukaryotic organisms. The arrow
indicates Neurospora. See text for more details.

NATURE | VOL 422 | 24 APRIL 2003 | www.nature.com/nature

© 2003 Nature Publishing Group

articles

history. Nonetheless, our results indicate that the cost to Neurospora
of increased genome security through RIP is a significant impact on
the evolution of new gene functions through gene duplication.

Repetitive DNA

An analysis of repeat sequences longer than 200 bp and with greater
than 65% similarity (see Methods) revealed that 10% of the
Neurospora assembly consists of repeat sequences, consistent with
previously reported estimates®'.

The repeat sequence of Neurospora provides a testament to the
efficiency of RIP. Applying the measures of RIP mentioned above to
the Neurospora genome revealed that most of the repetitive
sequences (81%) in Neurospora have been mutated by RIP. Con-
versely, only 18% of predicted RIP-mutated sequence is non-
repetitive, potentially reflecting loss of the corresponding dupli-
cated sequence. As described above, duplications greater than about
400 bp are susceptible to RIP'®. In keeping with this, we observe that
over 97% of genomic repeats greater than 400 bp in length are RIP-
mutated. Moreover, repeats longer than 400bp clustered by
sequence similarity display an average sequence identity within
clusters of 78%, with 93% of clusters displaying an average identity
of less than 85%. This corresponds to previous estimates indicating
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Figure 2 Neurospora possesses few highly similar genes. a, b, Histogram of amino acid
(a) and nucleotide (b) per cent identity of top-scoring self-matches for genes in selected
sequenced eukaryotic genomes. For each organism, the protein and coding regions for
each gene (not including pseudogenes) were compared to those of every other gene in the
same genome using BLASTX. Top-scoring matches were aligned using ClustalW and per
cent identities calculated. In contrast to other eukaryotes, Neurospora possesses only
eight genes with a top match of greater than 80% amino acid or nucleotide identity.
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that RIP requires greater than about 80% sequence identity to detect
duplicated sequences.

Consistent with the hypothesis that RIP acts as a defence
mechanism against selfish DNA', no intact mobile elements were
identified. Furthermore, a significant proportion of the Neurospora
RIP-mutated sequence (46% of repetitive nucleotides) can be
identified as relics of mobile elements (Supplementary Infor-
mation).

Ribosomal RNA

The only large repetitive sequences known to have survived RIP in
Neurospora are the approximately 175-200 copies' of the large
rDNA tandem repeat containing the 178, 5.8S and 25S rRNA genes.
As in higher eukaryotes, these tandem repeats occur within the
nucleolar organizer region (NOR), and their resistance to RIP seems
to stem from this localization'. Within the genome sequence we
found several copies of the rDNA repeat outside the NOR. In every

case, they display evidence of mutation by RIP, consistent with
previous observations'”. Thus, the sequence of the rDNA repeat
does not in itself seem to confer resistance to RIP.

The 5S rRNA genes in Neurospora have survived RIP in a different
manner. In contrast to most higher eukaryotes in which the 5S
rRNA genes form tandem repeats, the 5S genes are dispersed
throughout the genome in Neurospora®. A total of 74 copies
comprising several different subtypes of 5S rDNA are dispersed
through all seven chromosomes. This dispersal coupled with their
small size (approximately 120 nucleotides) ensures that they are not
recognized by RIP.

DNA methylation

Neurospora has been used extensively as a model for studying DNA
methylation in eukaryotes®. The Neurospora genome includes two
potential cytosine DNA methyltransferase genes. One, called dim-2,
is required for all known DNA methylation®®. The other, called rid, is
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Figure 3 Example of lack of recent duplications in a Neurospora gene family. Phylogenetic
tree of major facilitator superfamily (MFS) sugar transporters from S. cerevisiae, S. pombe
and Neurospora. Coloured dots represent branching points between predicted paralogous
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genes in Neurospora (red), S. cerevisiae (blue) and S. pombe (green). In contrast to both
yeast species, Neurospora transporters contain no predicted instances of recent
paralogous duplication.
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required for RIP and is a member of a family found thus far only in
filamentous fungi®’. In Neurospora, an estimated 1.5% of cytosines
are methylated®®”, and it has been suggested that nearly all DNA
methylation is a result of RIP"**',

Plasmid reads for Neurospora were sequenced from libraries
cloned separately in methylation-tolerant and methylation-
intolerant strains of Escherichia coli. Although not intended for
this purpose, these libraries provided a basis for predicting DNA
methylation by comparing the representation of regions in sequence
obtained from each library (see Methods). Testing the accuracy of
such predictions, we found that 8 of 10 regions predicted to be
methylated were experimentally confirmed as such. The predictions
thus have good specificity—although they lack sensitivity (see
Methods).

The specificity of the predictions provides insight into the pattern
of methylation in the Neurospora genome. Regions predicted to be
methylated show a marked correspondence to regions predicted to
be repetitive and RIP-mutated (Fig. 4). Fully 85% correspond to
predicted RIP-mutated sequences. However, a small proportion
(10%) corresponds to predicted non-repetitive and non-RIP-
mutated sequence. In two out of ten such cases, both the methyl-
ation and the non-repetitive nature of these sequences were exper-
imentally verified. This raises the possibility that methylation in
Neurospora may also have non-defence roles, as proposed for higher
organisms.

RNA silencing

Post-transcriptional gene silencing (PTGS), or RNA silencing, is
widespread among organisms and is increasingly being recognized
as a principal switch for controlling eukaryotic gene expression®.
RNA-silencing pathways are thought to be derived from ancestral
natural defence systems directed against invading nucleic acids™.
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Consistent with this, all known PTGS mechanisms share similar
components™.

Neurospora possesses two RNA-silencing pathways. The first,
called quelling, acts during vegetative growth. This pathway was
uncovered through the study of three genes, gde-1, gde-2 and gde-3,
coding respectively for an RNA-dependent RNA polymerase
(RARP), an argonaute and a RecQ helicase®. The second pathway,
called meiotic silencing, acts during sexual reproduction®®”’. Before
our analysis, a gene called sad-I, encoding an RdRP, had been
identified for this pathway™.

Our analysis of the Neurospora genome sequence uncovered
several additional genes implicated in RNA silencing (Table 2).
These include one RARP, one argonaute-like protein and one RecQ-
like helicase, as well as two dicer-like ribonucleases. A phylogenetic
analysis (Supplementary S7) of the predicted RARPs, argonaute-like
proteins and dicer-like proteins indicates that the Neurospora genes
comprise two paralogous sets. One set includes the three gde genes
and is thus predicted to correspond to the quelling pathway. The
other set includes sad-1, and in phylogenetic trees these genes
branch consistently with those of the single pathway observed in
S. pombe’**. On the basis of this analysis, we predict that one of the
identified dicers, Sms-3, belongs phylogenetically to the meiotic
silencing pathway, whereas the other, dcl-2, belongs to the quelling
pathway (Table 2). In addition, we predicted that the identified
argonaute, Sms-2, also belongs phylogenetically to the meiotic
silencing pathway. Subsequent experimental work has supported
roles for Sms-2 (ref. 40) and Sms-3 (M. McLaughlin, D. W. Lee,
R. Pratt and R. Aramayo, manuscript in preparation) in meiotic
silencing. Taken together, these results suggest that meiotic silencing
and quelling represent two phylogenetically distinct RNA-depen-
dent silencing pathways. We further hypothesize that both might
have evolved from a single ancestral RNA-silencing pathway.
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Figure 4 Correspondence between predicted RIP, methylation and repetitive DNA.
Prediction of RIP, methylation and repeat sequence in 1-kb windows for selected contigs.
Red lines plot the TpA/ApT RIP index (see Methods); red dots indicate windows predicted
to be RIP-mutated (TpA/ApT > 1.2). Blue lines plot the proportion of reads from the
methyl-tolerant library; blue dots indicate windows predicted to be methylated based on
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>70% methyl-tolerant reads (see Methods). Black lines plot repeat content as a fraction
of nucleotides in each window that is in repetitive sequence; black dots indicate windows
with >50% repeat sequence. Contigs were selected to illustrate regions predicted as
methylated.

863




articles

Fungal biology and evolution

The Neurospora genome sequence provides an opportunity to study
the genetic basis underlying the extraordinary biochemical and
metabolic diversity exhibited by a filamentous fungus. Our analysis
of the genome sequence has resulted in a number of surprising
insights into the biology and evolution of Neurospora and other
filamentous fungi.

Cell signalling and environmental responses

Discovery of putative red-light-sensing genes
Blue light is an important regulator of Neurospora growth and
development, affecting the circadian rhythm of conidiation, caro-
tenogenesis of hyphae and numerous facets of sexual develop-
ment*'. Although Neurospora photobiology has been studied
intensively for more than two decades, the genome sequence has
nonetheless revealed a number of previously uncharacterized
sequences with similarity to blue-light-sensing genes, including
both a cryptochrome homologue and a gene whose product con-
tains a single PAS/LOV-type domain associated with light sensing.
Furthermore, Neurospora possesses two putative phytochrome
homologues most similar to bacteriophytochromes—genes known
for their role in red light sensing in prokaryotes—and a putative
homologue of the Aspergillus nidulans velvet gene implicated in the
regulation of both red and blue light responses. The presence of
these genes is unexpected given that no red light photobiology has
been described for Neurospora so far. It has been shown recently that
in addition to red light sensing, some Arabidopsis phytochromes
associate with cryptochromes to have a role in blue light sensing and
signalling®. Therefore, the two phytochromes and the velvet hom-
ologue may also regulate this aspect of Neurospora photobiology.

Importance of two-component signalling in filamentous fungi

Mitogen-activated protein kinase (MAPK) pathways integrate sig-
nals from multiple receptor pathways including two-component
signalling systems*’. The basic two-component system consists of a
histidine kinase and a cognate response regulator. The nine MAPK
pathway proteins identified in the Neurospora genome sequence
(Fig. 5) correspond to those found in S. pombe and S. cerevisiae,
indicating that the basic MAPK machinery is conserved between
these species. In contrast, Neurospora has a significantly expanded
complement of 11 histidine kinases, as compared with one in
S. cerevisiae and three in S. pombe. Two of the 11 genes have been
characterized previously in Neurospora®, whereas a third is similar
to proteins in Aspergillus fumigatus and A. nidulans that affect
conidiation (L. A. Alex and M. L. Simon, unpublished observations;
see also ref. 44). Functions for the remaining genes are unknown,
although seven (including the two phytochromes discussed above)
contain PAS/PAC domains, implicating them in oxygen and light

responses. This number of histidine kinases suggests a larger role
than previously expected, and reveals filamentous fungi to be more
similar in this regard to plants, where two-component systems are
abundant, than to animals, where these systems are absent.

A new family of G-protein-coupled receptors

Eukaryotic cells sense many environmental stimuli through seven-
transmembrane-helix, G-protein-coupled receptors (GPCRs)*>.
Our analysis indicates that Neurospora possesses ten predicted
seven-transmembrane-helix proteins (Fig. 5), three of which belong
to a new class not previously identified in any fungus. These three
genes encode proteins similar to cyclic AMP GPCRs from the
protists Dictyostelium discoideum*® and Polysphodylium pallidum,
and also to predicted proteins from Arabidopsis thaliana*” and
Caenorhabditis elegans. The D. discoideum proteins sense cAMP
levels during chemotaxis and multicellular development*®. This
suggests a possible analogous function in Neurospora. The existence
of an extracellular cAMP signalling pathway has never been demon-
strated previously in any fungal system.

In support of this hypothesis, along with the presence of putative
cAMP receptors, Neurospora was found to possess the full comp-
lement of proteins required for the synthesis and degradation of
cAMP. Furthermore, Neurospora wild-type strains accumulate
cAMP in the extracellular medium®, although a role in extracellular
signalling has not been established. Taken together, these data
suggest the possibility that cAMP or a related molecule may serve
as an extracellular signal in Neurospora.

Ca’* sensory transduction in filamentous fungi

A considerable body of evidence, primarily from pharmacological
studies, indicates that Ca>* signalling regulates numerous processes
in filamentous fungi®*. However, the identification of the main
components of even one Ca”"-mediated response pathway in
filamentous fungi has remained elusive. The genome sequence of
Neurospora has provided over 25 of the proteins likely to be
necessary for Ca®" signalling in filamentous fungi (Fig. 5).

A notable difference between Ca* signalling in Neurospora as
compared with plants and animals was revealed by the genome
sequence. An important aspect of Ca’" signalling in plant and
animal cells involves Ca®" release from internal stores. This is
commonly mediated by the second messengers inositol-1,4,5-
trisphosphate (InsP3) and cADP ribose, or by Ca®*-induced Ca**
release’'. InsP; is present within Neurospora hyphae®*, and physio-
logical evidence including intracellular membrane-associated,
InsPs-activated Ca®" channel activity supports a role in Ca**
signalling®**. In spite of this, Neurospora (and S. cerevisiae) lacks
recognizable InsP; receptors. In addition, neither ADP ribosyl
cyclase nor ryanodine receptor proteins, principal components of
Ca®" release mechanisms in plant and animal cells, are found in
Neurospora. These observations raise the question of whether other

Table 2 Neurospora has two RNA-silencing pathways

Predicted protein Neurospora A. fumigatus™ S. pombet Pathwayt
RNA-directed RNA polymerases qde-1 (NCU07534.1) rrpA (contig 158) - Quelling
sad-1 (NCU02178.1) rrpB (contig 472) rdp1™ (SPAC6BF12.09) Meiotic silencing
mp-3 (NCU08435.1) - - Unknown
Argonaute-like, related to translation qde-2 (NCU04730.1) ppdA (contig 720) Quelling

initiation factors

Dicer-like, related to SFIl-RNAse Il
ribonucleases of the carpel factory

Sms-2 (NCU09434.1)

dcl-2 (NCU0B766.1)
Sms-3 (NCU08270.1)

qde-3 (NCU08598.1)
RecQ-2 (NCU03337.1)7

RecQ helicase-like, related to Bloom’s
and Werner syndrome helicases

ppdB (contig 196) ago1™ (SPCC736.11)

dclB (contig 618)
dclA (contig 310)

rqhA (contig 443)§
rqhB (contig 58)§

Meiotic silencing

Quelling

der1™ (SPCC584.10C) Meiotic silencing

Quelling

hus2* (SPAC2G11.12) Unknown

*Unfinished A. fumigatus genome project (http://www.tigr.org).
+Schizosaccharomyces pombe genome project (http://www.genedb.org).

FPathway assigned on the basis of either known experimental data for gde- 1, gde-2 and qde-3 (quelling pathway); or sad-1, Sms-2 and Sms-3 (meiotic silencing pathway); or predicted on the basis of

phylogenetic analysis.
§RecQ helicase-like (rgh).
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second messenger systems responsible for Ca** release from
internal stores remain to be discovered in filamentous fungi.

Growth and development

Hyphal growth
True hyphae produced by filamentous fungi are tubular structures
consisting of cellular compartments that are usually delineated by
incomplete septa®. In contrast, the pseudohyphae produced by
yeasts consist of chains of uninucleate elongated cells®® with no
apparent cytoplasmic continuity. The molecular mechanisms
underlying these two modes of growth are not well understood.
The two signalling pathways that regulate pseudohyphal growth
in S. cerevisiae—the MAPK and cAMP modules—are both conserved
in the Neurospora genome. In Candida albicans, capable of pseu-
dohyphal, true hyphal and budding growth, both pathways are
required for true hyphal production, suggesting a similar role in
Neurospora®. However, at least three transcription factors—Teclp,
Flo8p and Sfl1p—specifically required for regulating pseudohyphal
development in S. cerevisiae®® were not found in Neurospora.
Conversely, Neurospora possesses a gene with similarity to a tran-
scription factor necessary for hyphal growth in C. albicans® (Efgl).
This transcription factor is not required for pseudohyphal growth in
C. albicans, nor is the homologous protein in S. cerevisiae (Phd1p)>.
More study of the complex pathways underlying these modes of
growth is required. Nonetheless, these data clarify in part the
distinctions and similarities between the signalling pathways and
regulatory components of hyphal and pseudohyphal growth.

The macroconidiation pathway differs from that in A. nidulans
Macroconidia are asexual spores common to filamentous fungi but
absent from yeast™’. Components of the macroconidiation path-

GPCRs (10)

articles

way have been identified in both Neurospora and the filamentous
fungus A. nidulans, and known upstream signalling proteins seem
to be conserved in both species®®. In contrast, there is little
conservation of downstream components between the two fungi.
In Neurospora, the acon-2, acon-3, fld and fI genes are essential for
conidiation®, whereas in A. nidulans, the FIbC, FIbD, BrlA, AbaA
and WetA gene products are required. Our analysis of the genome
sequence revealed that Neurospora possesses no FIbC, BrlA or AbaA
homologues, and a protein with only very weak similarity to
approximately 100 amino acids at the carboxy terminus of WetA.
These data make clear that the molecular machinery underlying
macroconidiation in Neurospora differs significantly from that in
A. nidulans.

Secondary metabolism

The fungal kingdom produces a vast array of small, bioactive
compounds termed secondary metabolites that are best known
for their roles as pigments, antibiotics and mycotoxins. With the
exception of carotenoid and melanin pigment synthesis, Neurospora
has not been shown to possess secondary metabolism. It was thus
surprising that the Neurospora genome sequence revealed a number
of putative genes for secondary metabolite production.

Non-ribosomal peptide synthetases

Three predicted non-ribosomal peptide synthetase (NRPS) genes
and one NRPS-related gene were identified in the Neurospora
genome sequence (Fig. 6). By phylogenomic analysis, one NRPS
gene is orthologous to an Aureobasidium pullulans NRPS. The most
closely related NRPS of known function is sid2 of Ustilago maydis,
which is responsible for production of hydroxamate siderophores™.
The remaining two are of unknown function, although one is
orthologous to an NRPS in Magnaporthe grisea, and the other is

Aerial hyphae

New targets?

g

formation  Conidiophore
development
Thermotolerance
Pheromone responses
W Osmotic/oxidative stress X ]
5 Cell integrity Hyphal growth/branching 4
\ Conidiation Circadian clock 4
UV, Protoperithecial development? Conidial germination > &
el i, oAb, it

Figure 5 Overview of major intracellular signalling pathways in Neurospora. The numbers
identified for each gene are in parentheses. An asterisk indicates that the location in the
plasma membrane and/or organelle membranes is not determined. AC, adenylyl cyclase;
C, Ca?* channel protein; CaM, calmodulin; Ca®*/CaM-reg, calcium- and calmodulin-
regulated protein; CAP, cyclase-associated protein; DAG diacylglycerol; GPCR, G-protein-
coupled receptor; Got, G protein ci-subunit; GB, G protein 3-subunit; Gy, G protein

NATURE | VOL 422 | 24 APRIL 2003 | www.nature.com/nature

© 2003 Nature Publishing Group

~-subunit; HPT, histidine-containing phosphotransfer domain protein; MAPK, MAP
kinase; MAPKK, MAPK kinase; MAPKKK, MAPKK kinase; PKA-C, protein kinase A catalytic
subunit; PKA-R, protein kinase A regulatory subunit; PLC, phospholipase C; PKC, protein
kinase C; T, Ca®* transport protein (P-type Ca®* ATPase, H/Ca®* exchanger, or
Na*/Ca2* exchanger).
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orthologous to an NRPS found in all other filamentous ascomycetes
with genome sequence (see Methods). The NRPS-related gene
shares 66% amino acid identity with the CPSI gene product
that contributes to the virulence of Cochliobolus heterostrophus,
C. victoriae and Gibberella zeae®.

Polyketide synthases

Seven polyketide synthase (PKS) genes were identified in the
Neurospora genome, which could be classified into three groups
on the basis of domain structure (Fig. 6). The first class contains
genes similar to DHN-melanin PKS genes of the fungi Exophila
dermatitidis®', Colletotrichum lagenarium® and Alternaria alter-
nata®. Sequence identity to numerous expressed sequence tag
(EST) sequences from sexual and perithecial libraries suggest a
role in melanin pigment synthesis during sexual development®. The
genes in the second class are similar in structure to several fungal
PKSs, including the Aspergillus terreus lovF gene required for
lovastatin synthesis. The genes in the third class resemble other
fungal genes, including the A. terreus lovB gene, which is also
required for lovastatin synthesis.

Diterpene metabolism

Diterpenes comprise a diverse group of compounds, primarily in
plants and fungi, with roles in defence, pathogenicity and regulation
of plant growth. The genome sequence revealed several genes
associated with diterpene biosynthesis in other organisms, includ-
ing a terpene synthase, several genes related to gibberellin oxidases,
and a member of the cytochrome P450 mono-oxygenase gene
family. These genes include at least one member of each of the
three enzyme classes required for the biosynthesis of gibberellic
acid. Gibberellic acid, a normal growth regulator in plants, was
first identified as a metabolic product of the plant pathogen
Gibberella fujikuroi, a relative of Neurospora that causes ‘foolish
seedling’ disease in rice®. The presence of these genes in Neurospora
suggests that many components necessary for gibberellic
acid production were present in the ancestors of Neurospora and
G. fujikuroi.

Gene Structure Function

Non-ribosomal peptide synthetases

NCU07119 s m(imm s == s wim s Siderophore
NCU04531 I —— . — Unknown
NCU08441 - — Unknown
NCU00239  wm mm m s Unknown

Polyketide synthases

NCU03584  wemiilfis mmisinis Melanin synthesis
NCU04865 = == Unknown
NCU09638  @im mjm am Unknown
NCU08399 = u — Unknown
NCU02918  dilili= — Unknown
NCU06013  =iiiie - Unknown
NCU05011 B —— Unknown
Adenylylation @ Ketosynthase @ Methyltransferase Dehydratase
Thiolation Acyltransferase Enoyl reductase & Keto reductase

Condensation @ Transeliminase

Figure 6 Domain structures of predicted Neurospora non-ribosomal peptide synthetase
(NRPS) and polyketide synthase (PKS) genes. Domains were predicted using a
combination of PFAM searches using HMMER, protein alignments and manual inspection.
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We speculate that the secondary metabolism genes identified may
have roles in morphogenesis and chemotropism®, interspecies
communication and possibly even chemical defence. The identifi-
cation of these genes in Neurospora suggests that apparent major
differences in lifestyles among related fungi, such as pathogenicity,
may derive in part from minor modifications of gene function and
expression.

Plant pathogenicity and Neurospora

The ability to parasitize living plants is widespread throughout the
fungal kingdom. Although Neurospora is a saprotroph (that is, it
feeds on dead or decaying matter), the genome sequence contains
numerous genes similar to those required for plant pathogenesis
identified in fungal pathogens. In particular, a number of genes were
identified that have no known function in other organisms except in
pathogenesis (Supplementary S8). Neurospora also possesses a wide
range of extracellular enzymes capable of digesting plant cell wall
polymers, although there is no clear cutinase homologue. Cutin is
one of the main layers protecting the epidermis of the leaves of
plants, and many, but not all, plant pathogens have cutinase activity.
Neurospora has a wide range of cytochrome P450 enzymes that are
important in some host—pathogen systems for detoxification of
plant anti-fungal compounds. In addition, a large number of
identified ABC (ATP-binding cassette) and MFS drug efflux systems
could have a role in combating toxic plant compounds. The
capability to form secondary metabolite members of the PKS,
NRPS and terpenoid families, as described above, is present. Also,
Neurospora contains all signal transduction components implicated
in ascomycete pathogenesis that have been described so far. Thus,
although Neurospora is not known to be a pathogen, the genome
sequence has revealed many genes with similarity to those required
for pathogenesis.

Discussion

Although Neurospora has been studied intensely for over 70 years,
the analysis of the genome sequence has provided many new
insights into a variety of cellular processes, including cell signalling,
growth and differentiation, secondary metabolism and genome
defence. The analysis has also uncovered surprising similarities
between the saprotrophic Neurospora and pathogenic fungi, pro-
viding a new perspective on the molecular underpinnings of these
lifestyles. Finally, the genome sequence has revealed the remarkable
impact of RIP on the evolution of genes in Neurospora. Recent
reports indicating the apparent presence of RIP in other fungi®”*®
broaden the implications of our findings. The apparent lack of
functional gene duplication in Neurospora provides a unique
opportunity to study other modes of evolution in this experimen-
tally tractable organism.

The genome sequence of Neurospora provides only a first glimpse
into the genomic basis of the biological diversity of the filamentous
fungi. Fungal genome sequences from the many ongoing® and
planned” projects will expand this view as well as provide extra-
ordinary opportunities for comparative analyses. This new era in
fungal biology promises to yield insight into this important group
of organisms, as well as to provide a deeper understanding of the
fundamental cellular processes common to all eukaryotes. O

Methods

Strain and growth conditions

Twenty 5-ml cultures of N. crassa wild-type strain N150 (74-OR23-1VA; Fungal Genetics
Stock Center 2489) were grown on a shaker in Vogel’s minimal medium® for 3 days at
32°C. Tissues were collected, freeze-dried overnight and DNA was extracted as previously
described”’. DNA from the 20 samples was mixed and used for library construction.

Sequencing and assembly

The genome was sequenced by the WGS method. Plasmid (4-kb inserts) and fosmid
(40-kb inserts) libraries were generated as described at http://www-genome.wi.mit.edu/.
Jumping clone (subclone) libraries with 50-kb inserts were generated as described
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elsewhere”. Neurospora cosmid and BAC clones were obtained from previously
constructed libraries'"”'. Sequencing methods for all clone types are described at http://
www-genome.wi.mit.edu/. All inserts were sequenced from both ends to generate paired
reads. The sequence coverage generated is shown in Supplementary Information. The
sequence was assembled using Arachne®. Finished sequence from linkage groups IT and V
was provided by MIPS and is available at http://mips.gsf.de/proj/meurospora/.

Annotation and analysis

We annotated the Neurospora genome using the Calhoun annotation system. The genome
sequence was searched against the public protein databases using BLASTX with a
threshold value of E =< 107°. Genes were predicted using a combination of FGENESH,
FGENESH+ and Genewise (Supplementary Information). The gene calling programs
were validated against a test set of 191 previously characterized Neurospora proteins.
Predicted genes were validated against ESTs aligned to the genome using SIM4. All
predicted genes were searched against the PFAM set of hidden Markov models using the
HMMER program and the public protein databases using BLASTP. Transfer RNAs were
identified using the tRNAScan-SE program. Multigene families were constructed by
searching each annotated gene against every other gene using BLASTP, requiring matches
with E < 10 over 60% of the longer gene length, and clustering genes based on single
linkage transitive closure. Repeat sequences were detected by searching the genome
sequence against itself using CrossMatch, filtering for alignments longer than 200 bp in
length, and clustering pairs based on region overlap. Relics of RIP-mutated mobile
elements were annotated by manual inspection.

The tree of MFS sugar transporters was created by aligning amino acid sequences using
ClustalW, manually trimming to remove ambiguously aligned regions, and applying a
neighbour-joining algorithm using PAUP*. RIP-mutated regions were detected by
calculating one or both of two different dinucleotide ratios for sequence regions'”. Regions
with TpA/ApT > 2 or (CpA + TpG)/(ApC + GpT) < 0.7 were predicted as RIP-mutated.
Prediction of RIP sequence across the genome used only the TpA/ApT ratio, whereas the
analysis of coding sequences used both (with a positive prediction by either measure taken
as a prediction of RIP). RIP simulations were implemented in Matlab and were based on
parameters derived from Table 2 of ref. 16. The simulation code is available on request.
During each round of simulated RIP, every cytosine-containing dinucleotide on one
strand (selected with equal probabilities) was mutated according to the probabilities:
(CA =0.3,CT = 0.05, CG = 0.01, CC = 0.009). DNA methylation was predicted by
calculating the proportion of plasmid reads overlapping 1-kb windows from both the
methylation-tolerant and methylation-intolerant libraries. Regions with greater than 70%
of reads derived from the methylation-tolerant library were predicted to be methylated.
Specificity was estimated as described in the text. Methylation was experimentally assessed
using Southern analyses as described elsewhere™. Sensitivity was estimated by testing 19
repetitive and RIP-mutated 1-kb regions that were not predicted to be methylated. Of the
19 regions, 14 were in fact methylated. Thus the data provide good specificity but poor
sensitivity.

Predicted RNA-silencing genes were aligned with homologues from plants, animals
and other fungi using T-Coffee v1.37. C-terminal and amino-terminal regions of low
homology were removed and the sequences realigned until alignments started and stopped
at regions of unambiguous similarity. Both neighbour-joining trees, using ClustalX, and
maximum posterior probability trees, using MrBayes 2.01, were generated and analysed.

Analysis of predicted non-ribosomal peptide synthetases and polyketide synthases
made use of genome data for C. heterostrophus, Botryotinia fuckeliana, G. verticillioides and
G. zeae provided by the Torrey Mesa Research Institute/Syngenta. Additional details,
analysis results and the genome sequence are available at http://www-genome.wi.mit.edu/.
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