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Abstract
In eukaryotes, the highly conserved U3 small nucleolar RNA (snoRNA) base-pairs to multi-

ple sites in the pre-ribosomal RNA (pre-rRNA) to promote early cleavage and folding

events. Binding of the U3 box A region to the pre-rRNA is mutually exclusive with folding of

the central pseudoknot (CPK), a universally conserved rRNA structure of the small ribosom-

al subunit essential for protein synthesis. Here, we report that the DEAH-box helicase Dhr1

(Ecm16) is responsible for displacing U3. An active site mutant of Dhr1 blocked release of

U3 from the pre-ribosome, thereby trapping a pre-40S particle. This particle had not yet

achieved its mature structure because it contained U3, pre-rRNA, and a number of early-

acting ribosome synthesis factors but noticeably lacked ribosomal proteins (r-proteins) that

surround the CPK. Dhr1 was cross-linked in vivo to the pre-rRNA and to U3 sequences

flanking regions that base-pair to the pre-rRNA including those that form the CPK. Point mu-

tations in the box A region of U3 suppressed a cold-sensitive mutation of Dhr1, strongly indi-

cating that U3 is an in vivo substrate of Dhr1. To support the conclusions derived from in
vivo analysis we showed that Dhr1 unwinds U3-18S duplexes in vitro by using a mechanism

reminiscent of DEAD box proteins.

Author Summary

Ribosomes are intricate assemblies of RNA and protein that are responsible for decoding a
cell’s genetic information. Their assembly is a very rapid and dynamic process, requiring
many ancillary factors in eukaryotic cells. One critical factor is the U3 snoRNA, which
binds to the immature ribosomal RNA to direct early processing and folding of the RNA
of the small subunit. Although U3 is essential to promote assembly, it must be actively
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removed to allow completion of RNA folding. Such RNA dynamics are often driven by
RNA helicases, and here we use a broad range of experimental approaches to identify the
RNA helicase Dhr1 as the enzyme responsible for removing U3 in yeast. A combination of
techniques allows us to assess what goes wrong when Dhr1 is mutated, which parts of the
RNA molecules the enzyme binds to, and how Dhr1 unwinds its substrates.

Introduction
Ribosome biogenesis is fundamental to cellular growth. In bacteria that have undergone ex-
treme genome reduction, ribosomes are apparently assembled without the use of specialized as-
sembly factors [1], indicating that the information needed for the correct rRNA folding and
protein assembly is intrinsic to the ribosomal components themselves. Similarly, functional
bacterial ribosomes can be assembled from purified components in vitro [2,3]. Despite their
general conservation of structure, eukaryotic ribosomes require a large number of protein and
RNA trans-acting factors that assist in their assembly [4,5]. A central outstanding question in
the field is how RNA-RNA and RNA-protein structural rearrangements, which mark the tran-
sition from one step to the next, are directed and regulated.

Pre-ribosomal particles initially assemble on the nascent pre-ribosomal RNA (pre-rRNA)
transcript, which undergoes cleavage to separate the pre-40S and pre-60S complexes. This criti-
cal event in ribosome biogenesis requires the U3 small nucleolar RNA (snoRNA). U3 is highly
conserved among eukaryotes and base-pairs with multiple sites of the pre-rRNA to coordinate
early folding and cleavage events [6–10]. The U3-associated proteins Imp3 and Imp4 promote
the U3-pre-rRNA interactions in vitro [11–13], and are thought to serve a similar role in vivo.
U3 binding to the 50-external transcribed spacer (50-ETS) and 18S regions of the pre-rRNA is
required for the cleavage events at sites A0 within the 50-ETS, at A1 that generates the mature
50 end of 18S and at site A2, within internal transcribed spacer 1 (ITS1), which separates the
earliest pre-40S and pre-60S particles [14,15]. Within the 18S rRNA, U3 binds to the sequence
close to the 50 end of the 18S rRNA that will form the 50 side of the central pseudoknot (CPK),
a long range interaction that is a key architectural feature of the small ribosomal subunit (SSU)
in all domains of life [15]. U3 also has the potential to base-pair to the sequence that will form
the 30 side of the CPK and is located more than 1 Kb away in the 18S rRNA (Fig. 1), although
this interaction has not been experimentally verified. These U3 interactions are believed to
both facilitate formation of the CPK and control the timing of this key maturation step. How-
ever, U3 must be unwound from the pre-rRNA for CPK formation to occur. Furthermore, in
vivo and in vitro studies indicate that the spontaneous dissociation rate of U3–18S interactions
in the absence of accessory factors is too slow to support the rates of ribosome assembly ob-
served in vivo [12,13,16], suggesting that a helicase is needed.

Nineteen RNA helicases are involved in ribosome biogenesis in yeast, 17 of which are essen-
tial [17–19]. These helicases are classified as either DEAD or DEAH/RHA enzymes based on
conserved sequence motifs. DEAD box proteins do not unwind duplexes in a processive fash-
ion. Rather, ATP-dependent binding to short duplex regions results in duplex destabilization
and strand separation. Thus, ATP hydrolysis is not needed for duplex unwinding, but it is re-
quired for rapid product release to recycle the enzyme for multiple substrate turnovers. Proces-
sivity has also not been observed in DEAH/RHA enzymes but they have been less studied in
mechanistic detail [20,21]. Identifying in vivo substrates for the RNA helicases has generally
been challenging, and specific substrates have not yet been identified for most of the pre-ribo-
somal helicases. Previous analyses suggested two candidate helicases for the removal of U3
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snoRNA from the CPK region. The DEAH helicase Dhr1 (Ecm16) was reported to be associat-
ed with U3 [22], whereas depletion of the DEAD enzyme Has1 leads to retention of snoRNAs,
including U3, in pre-ribosomal particles [23]. Here, we provide genetic, in vivo cross-linking
and biochemical evidence that Dhr1 is the helicase that directly displaces U3 from the pre-
rRNA to permit formation of the CPK.

Results

Dhr1K420A Accumulates a Novel*45S Particle Containing SSU
Components
In a previous analysis of RNA helicases involved in SSU biogenesis in yeast, conserved motifs
were systematically mutated to generate mutants defective in ATP binding and/or hydrolysis
[18]. Over-expression of Dhr1 with a Lys420 to Ala mutation (Dhr1K420A) in the Walker A
motif gave a dominant negative lethal phenotype, and inhibited pre-rRNA processing, primari-
ly at sites A1 and A2 [18]. The dominant negative phenotype implies that this mutant efficient-
ly competes with wild-type (WT) protein, possibly by binding unproductively to its substrate,
but no specific RNA substrate was identified. We hypothesized that Dhr1 is involved in

Fig 1. The transition from the pre-ribosome to the pre-40S.U3 binds to the pre-rRNA cotranscriptionally.
Binding to the 50-end of 18S and the downstream element (nts 1139–1142) brings together the elements of
the CPK. Following cleavage at A0 and A1, U3 is displaced to allow folding of the CPK and cleavage at A2 to
liberate the pre-40S. Watson-Crick base pairs (|), non-Watson base pairs (*).

doi:10.1371/journal.pbio.1002083.g001
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dissociation of U3 from the pre-rRNA and that the Dhr1K420A mutant might block dissociation
of the U3 complex.

To test this hypothesis, we ectopically expressed c-myc epitope-tagged, WT Dhr1 and the
Dhr1K420A mutant proteins in cells in which genomic DHR1 gene was under control of the
GAL1 promoter and could be rapidly depleted by growth in glucose. This PGAL1 HA-DHR1
strain was unable to grow on glucose-containing medium (S1A Fig.) and HA-tagged Dhr1 was
depleted to levels below detection within 6 h of repression by glucose (S1B Fig.). DHR1–13myc
fully complemented loss of DHR1, whereas dhr1K420A-13myc was unable to support growth
(S2A Fig.).

To identify the function of Dhr1, extracts from cells expressing Dhr1–13myc or Dhr1K420A-
13myc were fractionated by sedimentation through sucrose density gradients. A strong 40S
biogenesis defect in the mutant polysomes profile was evident from the loss of free 40S subunits
and reciprocal increase in free 60S subunits in the dhr1K420A mutant compared to WT (Fig. 2A
and 2B). This reduction in free 40S was also evident from loss of Rps8 (eS8) from the 40S frac-
tion in the dhr1K420A gradient compared to WT (Fig. 2C and 2D). Western blotting for Dhr1
revealed that WT Dhr1 was almost entirely at the top of the gradient (Fig. 2C, lanes 2 and 3),
indicating that the interaction of Dhr1 with pre-ribosomes is either very transient or unstable
following cell lysis. In contrast, Dhr1K420A sedimented at*45S (Fig. 2D, lane 7), indicative of
stable association with pre-40S particles. The sedimentation at*45S was unexpected because
Dhr1 was previously characterized as a factor that acts in the context of the 90S processome
[15]. The altered Dhr1 sedimentation was accompanied by changes in the sedimentation of U3
(Fig. 2E, lanes 8–10 in WT and lane 6 in mutant) and its associated proteins Mpp10 and Imp4,
with a significant fraction of these small nucleolar ribonucleoprotein (snoRNP) components
co-sedimenting with Dhr1K420A (compare Fig. 2C lanes 9–11 with Fig. 2D, lane 7).

Comparison of pre-rRNAs present in the strains expressing Dhr1 and Dhr1K420A (Fig. 3A,
lanes 1–4) revealed the loss of the 27SA2 pre-rRNA, accompanied by accumulation of an aber-
rant 21S species. The 50 end of 27SA2 is generated by cleavage at site A2, whereas 21S is gener-
ated by cleavage at sites A1 and A3 in the absence of A2 cleavage. Notably, there was little
accumulation of the 23S RNA, which is generated by A3 cleavage in the absence of cleavage at
sites A0, A1, and A2, and is commonly seen in 40S subunit biogenesis mutants. These findings
show that expression of Dhr1K420A specifically impairs pre-rRNA cleavage at site A2. A re-
duced level of 20S pre-rRNA was detected in the mutant (Fig. 3A, lanes 3 and 4), showing that
inhibition of A2 cleavage was not complete.

Pre-RNA species present in particles associated with Dhr1–13myc and Dhr1K420A-13myc
were compared by immunoprecipitation (Fig. 3A, lanes 5–8). The mutant particle contained
low levels of 35S and 32S pre-rRNAs, and was enriched for 21S and 20S pre-rRNAs (Fig. 3A).
21S RNA represented 36% and 20S represented the remaining 64% of the combined 21S +
20S signal.

We used mass spectrometry (MS) for a comprehensive analysis of the protein composition
of the Dhr1K420A particle (Fig. 3B; S1 Table). Epitope tagged (13xmyc) and untagged
Dhr1K420A particles were immunoprecipitated, digested with trypsin, and subjected to MS. The
U3 snoRNA is specifically associated with the Mpp10 complex (Mpp10, Imp3, and Imp4) and
Rrp9, as well the common box C/D snoRNA binding proteins Nop1, Nop56, Nop58, and
Snu13. All were detected with the exception of Snu13, which is very small. Among the early
binding factors, independently assembled complexes have been defined and termed the UtpA,
B, and C complexes and Rrp5. The MS analysis detected seven of the eight subunits of Utp-A
complex, all six components of the Utp-B complex, two Utp-C components, Rrp5, and 19 of
the 33 SSU ribosomal proteins (r-proteins). Notably absent were the late assembling r-proteins,
including Rps2 (uS5), Rps3 (uS3), and Rps23 (uS12). The absence of Rps2, Rps3, and
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enrichment of Imp4 and Mpp10 were confirmed by Western blotting (S3 Fig.). Numerous ad-
ditional 40S biogenesis factors, including the GTPase Bms1 and the putative A2 endonuclease
Rcl1 [24] were also present, but late biogenesis factors, such as Ltv1, were not detected. Surpris-
ingly, nine of the 11 subunits of the nuclear exosome were identified together with its cofactor,
the RNA helicase Mtr4 [25]. The presence of the nuclear exosome could reflect its activity in re-
moving the cleaved fragments of the 50-ETS or recognition of the particle as defective by the
nuclear surveillance machinery. The protein and RNA composition of this particle indicates
that it is arrested at an early stage in pre-40S assembly, in which U3 and the SSU-processome
complex remain associated with the pre-rRNA [26].

Fig 2. Dhr1K420A accumulates a novel*45S particle containing SSU components. (A–D) Whole cell extracts were prepared from cycloheximide-treated
cells expressingWT Dhr1–13myc (pAJ2311) (upper panels) or dhr1-K420A (pAJ3081) (lower panels) in yeast strain AJY3711 (PGAL-3xHA-DHR1) shifted to
glucose media for 6 h to deplete genomically expressed 3xHA-Dhr1. (A, B) Extracts were subjected to sucrose density gradient ultracentrifugation and
absorbance at 254 nm was monitored continuously throughout the gradients. Additional supporting data are provided in S1 Data. (C, D) Proteins were
precipitated from fractions and subjected to SDS-PAGE followed byWestern blotting. Dhr1–13myc, Mpp10, Imp4, Rps8, and Rpl8 were detected using anti-
myc, anti-Mpp10, anti-Imp4, anti-Rps8, and anti-Rpl8 antibodies, respectively. The positions of 40S, 60S, and 80S, determined by monitoring absorbance at
254 nm, are indicated. (E) RNA was prepared from gradients as described for (A, B) and separated by agarose/formaldehyde gel electrophoresis. U3 was
detected by Northern blotting using oligo AJO1686.

doi:10.1371/journal.pbio.1002083.g002
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Fig 3. Dhr1K420A co-immunoprecipitates U3 and associated proteins and 20S and 21S pre-rRNAs. (A) Cultures of AJY3711 (PGAL-3xHA-DHR1)
expressing untaggedWT Dhr1 (pAJ3082), WT Dhr1–13myc (pAJ2311), or dhr1K420A-13myc (pAJ3081) were shifted to glucose media for 6 h to deplete
3xHA-Dhr1. RNA was prepared from whole cell extracts (Input) or immunoprecipitated samples (IP) and separated by electrophoresis through agarose/
formaldehyde gels or denaturing polyacrylamide gels for the A0-A1 fragment and U3. RNAs were detected by Northern blotting using probes specific to
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Mapping the r-proteins present in the Dhr1K420A particle to the mature 40S structure re-
vealed a remarkable absence of r-proteins surrounding the CPK (Fig. 3C). In particular, Rps2,
the primary r-protein that binds to the CPK, and Rps23 were absent from this particle. Com-
parison with the bacterial in vivo assembly map [27] revealed that almost all of the primary
and secondary binding r-proteins were present but tertiary binding proteins were absent. We
propose that the absence of proteins surrounding the CPK allows flexibility in the ribosomal
RNA structure to enable access of assembly factors, including Dhr1 and the U3 snoRNA, to the
CPK.

U3 Remains Base-Paired with 18S in a dhr1Mutant
If Dhr1 is responsible for displacing the U3 from the pre-18S, then U3 should remain base-
paired with 18S in the*45S particle that accumulates in Dhr1K420A expressing cells. To
examine this possibility, we used chemical modification with dimethyl sulfate (DMS), which
modifies N1 of adenines and N3 of cytosines, and primer extension. When the pre-18S is base-
paired with U3, A1139 is predicted to be in a standard Watson-Crick A-U base pair and thus
protected from DMS (Fig. 4A top) [7]. In contrast, in the mature CPK A1139 is involved in a
non-Watson-Crick base triple [28] and N1 is susceptible to DMS modification (Fig. 4A, bot-
tom) [29]. Thus, the DMS susceptibility of A1139 is diagnostic for whether the CPK has
formed or remains base-paired with U3.

Extracts from cells expressing Dhr1 or Dhr1K420A were fractionated by sucrose density gra-
dient sedimentation, and fractions corresponding to*45S were collected. We anticipated that
in WT cells this fraction would primarily contain mature 40S particles whereas in the mutant,
the limited pool of 40S would rapidly recycle into translating ribosomes and the stalled inter-
mediate containing Dhr1K420A would accumulate. Pooled fractions were treated with DMS or
mock and purified mature 40S subunits were treated for a control. Modification of A1139 was
readily detected in mature 40S subunits (Fig. 4B, compare lane 5, no DMS, with lanes 6–8) and
in 45S fractions from the WT gradient (Fig. 4B, lanes 9–11). However, A1139 modification was
substantially reduced in the mutant (Fig. 4B, lanes 12–14). The particularly strong signal for
A1139 in mature subunits probably reflects the hypersensitivity of this position to DMS, as re-
ported for A915 of the bacterial ribosome (analogous to yeast A1139) [30]. The relative de-
crease of A1139 modification was quantified and normalized to intensities of nearby peaks that
were relatively constant between WT and mutant (Fig. 4B, lane quantification, far right). Reac-
tivity of A1139 to DMS was reduced 80% in the mutant compared to WT. This low reactivity
indicates that A1139 remains base-paired with U3 in the Dhr1K420A particle.

Dhr1 Directly Binds U3 snoRNA Elements Required for Base-Pairing
with Pre-rRNA
To identify direct RNA binding sites of Dhr1, we performed UV cross-linking and analysis of
cDNA (CRAC) experiments on strains expressing Dhr1 with a tripartite C-terminal tag, con-
sisting of His6—tobacco etch virus protease (TEV) cleavage site—protein A (Dhr1-HTP), and
untagged Dhr1 as a negative control [31] (Fig. 5). UV cross-linking of Dhr1 in vivo yielded a
strong RNA cross-linked species for Dhr1-HTP but not for the control (Fig. 5A). As other
RNA helicases have been shown to be required for the release of snoRNAs from the pre-rRNA,

A2-A3 (AJO603), D-A2 (AJO130), A0-A1 (AJO1850), and U3 (AJO1686). (B) Table of proteins identified by MS in the Dhr1K420A particle. Only proteins with at
least three peptide-spectrum matches are listed. (C) The CPK (red), 18S rRNA (cyan), and r-proteins identified in the Dhr1K420A particle (3B) are shown in
orange in the structure of the mature S. cerevisiae 40S subunit (left). For comparison the proteins missing from the Dhr1K420A particle are shown in yellow on
the right. The Dhr1K420A particle likely adopts a more open conformation in the absence of r-proteins.

doi:10.1371/journal.pbio.1002083.g003
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we compared the read density of Dhr1 across all snoRNAs in yeast. The snoRNAs have been
divided into two large groups termed box C/D and box H/ACA (Fig. 5B and 5C), on the basis
of conserved sequence elements and common proteins. Dhr1 had a strong preference for
cross-linking only to the box C/D U3 (encoded by U3A and U3B, Fig. 5B); no other snoRNA
was significantly enriched. Within U3 most of the reads overlapped within the box A motif in
the 50 end of the RNA, with smaller numbers of hits at the 30 terminal stem and box D

Fig 4. U3 remains base-paired with 18S rRNA in a dhr1mutant. (A) Cartoon showing expected U3–18S rRNA base-pairing and the same region of 18S
rRNA in the CPK of the mature 40S subunit, based on crystal structure (PDB 3U5B). (B) DMS was used to probe accessibility of A1139. Extracts were
prepared from cells expressingWT Dhr1 or Dhr1K420A, as described in the legend to Fig. 2 and fractionated on sucrose density gradients. The 45S regions of
the gradients were harvested and treated with DMS as indicated. DMSmodification was detected by primer extension using radiolabeled primer AJO1849.
Peak areas were quantified using ImageJ (NIH). Purified mature 40S subunits were used as a control and a sequencing ladder was generated using a DNA
template containing the 18S rDNA gene.

doi:10.1371/journal.pbio.1002083.g004
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Fig 5. Dhr1 cross-links to U3. (A) The parental and a Dhr1-HTP tagged strain were subjected to the CRAC protocol (see Materials and Methods), cross-
linked RNA was partially digested, radioactively labeled, ligated to linkers, and after nickel purification resolved on a 4%–12%NuPAGE gel. Protein-RNA
complex was transferred to nitrocellulose and RNA was extracted from the regions indicated by a red dashed box. (B) Dhr1 preferentially cross-links to U3.
Reads from Dhr1 (n = 2) and a negative control CRAC experiment were mapped to the 2008 S. cerevisiae genomic reference sequence and mapped reads
were assigned to genomic features. The histogram shows the average percentage of all mapped reads that contained box C/D and (C) box H/ACA snoRNA
sequences. Note that only a very small fraction of the reads from the control experiment mapped to snoRNAs. (D) Dhr1 preferentially cross-links to the 50 end
of the U3. Plotted is the average read distribution frequency over the U3A (snR17A) gene generated from two Dhr1 CRAC datasets. A schematic
representation of the U3 gene and functional sequence elements are indicated below the plot. (E) Same as in (D) but for nucleotide substitutions. The
secondary structure of the U3 was adopted from Granneman and colleagues [31] and generated using VARNA (http://varna.lri.fr). The coloring indicates the
frequency by which the nucleotide was substituted. Additional supporting data are provided in S2 Data.

doi:10.1371/journal.pbio.1002083.g005
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(Fig. 5D). In CRAC analyses, the locations of micro deletions or substitutions in the cDNAs in-
dicate the precise sites of protein-RNA cross-linking. These contact sites could be to the heli-
case active site itself or to other surfaces of the protein that bind to RNA. Deletions in the Dhr1
reads were rare but U29, C39, G47, and A48 were frequently substituted (Fig. 5E), indicating
that Dhr1 directly contacts these nucleotides in U3. Notably, U29 is located in the box A motif
directly downstream of the predicted U3 interaction with the 30 side of the CPK while C39,
G47, and A48 flank a U3 binding site for the 50-ETS (Figs 5E and 6C).

We also investigated Dhr1 cross-links to pre-rRNA. Dhr1 cross-linking was detectable at
many sites on pre-rRNA, but three peaks, in helices H11, H23, and H44 in the SSU, were repro-
ducibly identified as strong cross-linking sites in two independent experiments (S4A and S5
Figs). We mapped these sites onto the 18S rRNA based on the yeast ribosome crystal structure
[28]. The cross-linking sites are located near the decoding center of the SSU (at the conjunction
of H44, H45, and H11) and in the platform area (S4B Fig.), consistent with Dhr1 playing a role
in formation of the functional center of the 40S subunit. RNA isolated from a control CRAC
experiment with the parental strain yielded mainly 25S rRNA sequences that are common con-
taminants in many CRAC experiments (S4C Fig.) [32]. Collectively, the CRAC analysis posi-
tions Dhr1 on the U3-snoRNA adjacent to the U3–18S duplex with the pre-rRNA.

Mutations in U3 Suppress a Cold-Sensitive dhr1Mutant
We hypothesized that cold-sensitive mutations in Dhr1 might stall a reaction intermediate
containing the U3–18S duplex. If this duplex is indeed the target of Dhr1, then mutations in
U3 that destabilize the duplex might suppress the dhr1mutation. Cold-sensitive dhr1mutants
were therefore identified by screening cells expressing randomly mutagenized DHR1. Yeast
cells carrying dhr1-cs2 were strongly cold-sensitive (S6A Fig.), displayed a strong 40S biogene-
sis defect (S6B Fig.), and, like the K420A mutant, accumulated U3 at the position of*45S in a
sucrose density gradient (S6B Fig.). Sequencing dhr1-cs2 revealed multiple mutations: E330G,
K399E, T422A, A557G, T633A, and K892E. We then randomly mutagenized SNR17A

Fig 6. Mutations in the 50-end of U3 suppress a cold-sensitive dhr1 mutant. (A) Randommutations were introduced the entire coding region of U3
(SNR17A) by low fidelity PCR. The mutant PCR library was then recombined into an expression vector in vivo in AJY3752 (PGAL-DHR1 PGAL-SNR17A
snr17BΔ) expressing dhr1-cs2 (pAJ3095) and transformants were screened for improved growth at 20°C. Individual mutations from suppressing clones were
subcloned and their ability to suppress dhr1-cs2was compared by serial dilution assay. Top row, WT DHR1with WT U3; second row, dhr1-cs2with WT U3
as controls. Plates were incubated at 20°C for 7 days. (B) The positions of U3 mutations that suppress dhr1-cs2 and residues most frequently cross-linked to
Dhr1, identified by substitutions in the CRAC analysis, are mapped to the predicted U3–18S secondary structure.

doi:10.1371/journal.pbio.1002083.g006
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(encoding U3A) by highly mutagenic PCR. PCR product was recombined into a U3 expression
vector in vivo in a dhr1-cs2 and conditional U3 mutant strain and transformants were screened
for improved growth at low temperature. In cases where SNR17A contained multiple muta-
tions, these were separated by subcloning. This screen identified five single point mutations
that suppressed the cold-sensitivity of dhr1-cs2 (Fig. 6A). Notably, all of the suppressing muta-
tions mapped to the extreme 50-end of U3, from residues G1 to A28 (Fig. 6B), despite the fact
that the entire gene was mutagenized. A28G was the most frequently recovered mutation (pres-
ent in seven of 12 suppressing mutants), with the double mutation of G1A/A28G showing the
strongest growth suppression.

The position of these mutations was remarkably coincident with our CRAC data in which
Dhr1 most strongly protected residues 22 to 55 of U3 immediately downstream of the sup-
pressing mutations (Fig. 6B). Moreover, the residue most frequently substituted in cDNAs
from our CRAC analysis was U29, adjacent to A28, the residue most commonly mutated in
our suppressor screen. Such genetic suppression of a helicase mutant by mutations in an RNA
provides strong evidence that the RNA is an in vivo target of the helicase.

Dhr1 Has RNA-Dependent ATPase Activity
The above data indicated that Dhr1 directly dissociates U3 from the pre-rRNA in vivo. To test
this activity in vitro we expressed Dhr1 with a C-terminal His6 tag in Escherichia coli and puri-
fied the recombinant protein. DHR1-His6 fully complemented a dhr1 null mutant in yeast
(S2B Fig.), verifying that the tag did not interfere with its function. We first investigated wheth-
er Dhr1 shows RNA-stimulated ATPase activity, a hallmark of DEAH/RHA RNA helicases.
Dhr1 displayed weak ATPase activity in the absence of added RNA. Addition of single stranded
poly(A) RNA or U3 snoRNA stimulated this activity 6-fold and 5-fold, respectively (Fig. 7A).

To confirm that the observed activities could be ascribed to Dhr1 and not a copurifying con-
taminant, we generated two active site mutants. The Walker A Dhr1K420A mutant described
above is expected to disrupt ATP binding and thus inhibit ATP hydrolysis because the side
chain of this lysine is expected to contact the β phosphate of the ATP (Fig. 7B). In contrast, the
Dhr1D516A/E517A mutant is expected to disrupt ATP hydrolysis by removing the carboxylic
acids in motif II (Walker B box) that bind the catalytic metal ion and activate the nucleophilic
water molecule (Fig. 7B). RNA-dependent stimulation of ATPase activity was not observed in
either mutant (Fig. 7A). Steady state kinetic parameters were determined (Figs 7C and S7 and
Material and Methods) from the dependence of ATPase activity on input ATP concentration:
Km of 106 μM and Kcat of 13 min−1. As expected for a mutant whose main defect is in ATP
binding, the Km of Dhr1K420A increased by an order of magnitude, from 106 μM to 1 mM, but
kcat decreased by only 4-fold, from 13 to 3 min−1. As expected for the catalytic mutant
Dhr1D516A/E517A, the Km of the Dhr1D516A/E517A mutant remained almost unchanged, 106 μM
versus 136 μM, whereas kcat decreased by 7-fold, from 13 to 1.8 min−1.

Dhr1 Unwinds a U3-ETS2 Duplex In Vitro
We next tested the unwinding activity of Dhr1 on a U3-ETS2 duplex that mimics one of the
three genetically verified U3-pre-rRNA duplexes (Figs 8 and 9) [11–13]. The U3-ETS2 duplex
comprises the 30 hinge of U3 bound to nts 281 to 291 of the 50-ETS of the pre-rRNA (Fig. 8A).
This duplex is required for subsequent U3-pre-rRNA interactions in vivo [7] and forms spon-
taneously and is stable in vitro [13]. U3-ETS2 duplex unwinding reactions were performed
under pre-steady state conditions with an excess of enzyme over the duplex substrate. In addi-
tion, the duplex concentration was limiting to minimize duplex reformation after unwinding.
Under these conditions, the U3-ETS2 duplex was efficiently unwound by Dhr1 in the presence
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Fig 7. In vitroATPase activity of Dhr1. (A) Initial velocities of Pi released after addition of 1 mM ATP at
room temperature (RT) in the presence or absence of the indicated RNAwith eitherWTDhr1, Dhr1D516A/E517A,
Dhr1K420A, or mock. Activity of Dhr1 either in the presence or absence of Imp3 was also determined. (B)
Schematic of the putative ATP binding site of Dhr1 with expected contacts from K420 (motif I) and from D516
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of ATP but not in its absence or in the presence of ADP when the reaction was monitored at a
single (Fig. 8C, compare lanes 4, 5, and 6) or at multiple time points (Fig. 8D). These data illus-
trate that duplex unwinding is ATP dependent.

To examine whether ATP hydrolysis is required for unwinding, we carried out reactions
under the pre-steady state conditions described above using the ATP binding mutant
Dhr1K420A and the catalytically impaired mutant Dhr1D516A/E517A. In the presence of ATP, un-
winding activity of Dhr1D516A/E517A was indistinguishable from that of WT Dhr1 (Fig. 8C,
compare lanes 5 and 10, and Fig. 8D). In contrast, no unwinding activity was observed for
Dhr1K420A in the presence of ATP or with Dhr1D516A/E517A in the presence of ADP. These re-
sults indicate that ATP binding but not hydrolysis is needed for duplex unwinding activity.

To test whether product release requires ATP hydrolysis we measured duplex unwinding
activity under steady state conditions in which duplex substrate was present in excess over en-
zyme. To circumvent the problem of the labeled substrate re-annealing, we used excess unla-
beled ETS2 in a strand exchange regime [33]. Under these conditions, repeated release of
unwound product by Dhr1 is necessary for efficient unwinding. Unwinding by WT Dhr1 was
observed under steady state conditions in the presence of ATP. In contrast, neither mutant was
active under these conditions in the presence of ATP (Fig. 8F). Thus, two lines of evidence indi-
cate that ATP hydrolysis by Dhr1 is required for product release from the enzyme but not for
duplex unwinding. First, the catalytically impaired Dhr1D516A/E517A supported unwinding ac-
tivity in the presence of ATP under pre-steady state but not steady state conditions. Second,
Dhr1K420A, which is impaired in ATP binding, was inactive under both conditions. This re-
quirement of ATP hydrolysis by Dhr1 for efficient enzyme recycling but not duplex unwinding
suggests that Dhr1 shares a common mechanism with DEAD box proteins [34].

Dhr1 Unwinds a U3–18S Duplex In Vitro
We also tested the ability of Dhr1 to unwind a second duplex, U3–18S, composed of box A’/A
of U3 hybridized to nts 6–22 of 18S (Fig. 9A). We previously developed an in vitro assay for
formation of the U3–18S duplex [11–13] using a minimal system containing nts 4–50 of U3,
designated U3 MINI, and nts 6–22 of 18S rRNA to mimic the U3-18S duplex (Fig. 9A). This
duplex does not form spontaneously but forms rapidly in the presence of Imp3, which unfolds
stem-loop structures in the U3 and pre-rRNA to expose the sites of hybridization [12,13]. Our
genetic results indicate that the U3–18S duplex mimics a bona fide Dhr1 substrate.

As was observed with the U3-ETS2 duplex, unwinding of the U3–18S duplex was observed
in the presence of ATP under pre-steady state conditions, but was not observed either in the
absence of ATP or in the presence of ADP (Fig. 9C, lanes 5–7, and Fig. 9D). Moreover, un-
winding activity was observed for the Dhr1D516A/E517A mutant in the presence of ATP, but not
for Dhr1K420A with ATP (Fig. 9D). These data suggest that unwinding requires ATP binding
but is independent of ATP hydrolysis. Although we expect that rapid product release from the
U3–18S substrate requires ATP hydrolysis, we were unable to observe unwinding by Dhr1
under steady state conditions with this substrate. The extent of unwinding of the U3–18S du-
plex by Dhr1 was less than that observed for the U3-ETS2 duplex reaction, presumably because
unwinding by Dhr1 competes with strand annealing promoted by Imp3, which is present in ex-
cess. Imp3 does not appear to contribute to duplex unwinding, irrespective of the presence of
ATP in the reaction (Fig. 9C, lane 4). Moreover, Imp3 binding decreased the RNA-dependent
ATP hydrolysis by Dhr1 (Fig. 7A). Because the presence of Imp3 is necessary to maintain the

and E517 (motif II). (C) Determination of the ATP Kcat and Km for Dhr1 with the Michaelis-Menten plots shown
in S7 Fig. Additional supporting data are provided in S3 and S4 Data.

doi:10.1371/journal.pbio.1002083.g007
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Fig 8. U3-ETS2 duplex unwinding by Dhr1. (A) Cartoon of U3-ETS2 substrate used for unwinding assays.
Full length U3 snoRNA was used for the reactions in (B, C, and D). A truncated version of U3 snoRNA (nts
1–76) was used in the reactions in (E and F) to avoid non-specific interaction between Dhr1 and the 30 region
of U3 snoRNA. (B) Reaction scheme for the pre-steady state conditions ([E]> [duplex]) with results in (C and
D). (C) Representative unwinding reactions stopped after 20 min. Electrophoretic mobility shift assay (EMSA)
separated the 32P-labeled ETS2 free (unwound) from its duplex form. The RT reaction contained 500 nM
Dhr1, 1 mM ATP,�0.3 nM U3-ET2 duplex with other reagents described in Materials and Methods. (D)
Fraction unwound is plotted as a function of time: after addition of either ATP in the presence of either Dhr1
(purple circle), Dhr1D516A/E517A (blue square), Dhr1K420A (green diamond); after addition of ADP in the
presence of either Dhr1 (open purple circle) or Dhr1D516A/E517A (open blue square); or after addition of Dhr1
(circle with a cross). (E) Outline of the turnover of excess substrate reaction scheme under steady state
conditions ([duplex]> [E]) with results in (F). The reaction contained 100 nM Dhr1, 6 mM ATP, 500 nM U3-
ETS2 radiolabeled duplex, and 5 μM of unlabeled ETS2 with other reagents described in Materials and
Methods. (F) Fraction unwound is plotted as a function of time with symbols as in (D). Additional supporting
data are provided in S5 and S6 Data.

doi:10.1371/journal.pbio.1002083.g008
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U3–18S duplex [11], we have not been able to separate RNA unwinding from RNP remodeling
activity with this substrate. Thus, it is currently unclear whether the activity of Dhr1 removes
Imp3 directly, destabilizes the U3–18S duplex, or both.

Discussion
RNA helicases are required for many steps in RNA metabolism, including splicing, RNP as-
sembly, translation, and RNA degradation. However, there are few cases in which clear genetic
relationships between substrate and helicase or in vitro assays with a relevant substrate have
been established. Here, we have combined genetic, CRAC, and biochemical evidence to con-
clude that Dhr1 is the helicase that displaces U3 from the 50 end of the 18S RNA portion of the
pre-rRNA to allow formation of the CPK. Our data show that mutant Dhr1 traps a preribo-
some particle in which U3 remains base-paired with 18S rRNA. Dhr1 cross-links to U3 imme-
diately adjacent to the U3–18S duplex and mutations in U3 suppress a cold-sensitive mutation

Fig 9. U3–18S duplex unwinding by Dhr1. (A) Reaction schematic for annealing the U3–18S duplex by
Imp3 and duplex unwinding by Dhr1. (B) Reaction scheme for the pre-steady state conditions ([E]> [duplex])
with results shown in (C and D). (C) Representative RT unwinding single time point data after 60 min. From
EMSA showing 32P-labeled 18S free (unwound) or in duplex with U3 MINI in a complex with Imp3 using
500 nM Dhr1, 1 mM ATP,�1 nM U3–18S duplex and other reagents described in Materials and Methods. (D)
Time-dependent reactions with symbols as defined in Fig. 8D. Additional supporting data are provided in
S7 Data.

doi:10.1371/journal.pbio.1002083.g009
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in Dhr1. In vitro, ATP-dependent strand displacement activity is observed with substrates that
mimic U3-pre-rRNA interactions.

What Is the Nature of the Dhr1 Substrate In Vivo?
RNA helicases generally act on RNP complexes rather than on naked duplex RNA. This is also
likely to be the case for Dhr1, as formation of the U3–18S duplex requires additional proteins
[11–13] and occurs in the context of the SSU processome, a highly complex assemblage of
RNA and protein [35–37]. The genetic suppression of a dhr1 cold-sensitive mutant by muta-
tions in the region of U3 that base-pairs with the 18S portion of the pre-rRNA provides com-
pelling evidence that the U3–18S duplex is the in vivo substrate of Dhr1. However, several of
the suppressing mutations affect residues that are not predicted to be involved in base-paired
interactions. These include nucleotide G1, at the extreme 50-end of U3, C11, in the bulge be-
tween box A’ and box A in the U3–18S duplex, and A28, adjacent to the duplex predicted to
form between box A and nts 1139–1142 of 18S. We suggest that mutations at these positions
affect protein-RNA interactions within the pre-ribosome. Partial disruption of these interac-
tions by mutations in U3 may partially overcome defects of a dhr1mutant. Proteins that may
stabilize U3-pre-rRNA interactions include the U3-associated proteins Imp3 and Imp4. Imp3
is an RNA chaperone that unfolds the 50-stem loop of U3 to allow its hybridization with 18S in
vitro [11,13]. The specific function of Imp4 is not known, but it could work in concert with
Imp3 to stabilize the short duplex formed between U3 box A and nts 1139–1143 of 18S, on the
30 side of the CPK (Figs 1 and 6C). We noted that residues C11 and A28 of the U3 contribute
to the U3 box A/A’ stem structure that forms when this RNA is not engaged with the pre-
rRNA. We considered that Dhr1 might disrupt a competing intramolecular U3 stem-structure,
rather than the U3–18S duplex. However, mutation of CGU to UAC at position 36–38 in U3,
predicted to destabilize the base of the box A/A’ stem, did not suppress dhr1-csmutant (Fig
S8).

Do DEAH/RHA Box Helicases Use a DEAD Box-Like Mechanism?
We showed that Dhr1 in vitro unwinding activity depends on ATP binding but not hydrolysis
(Figs 8 and 9). In contrast, rapid product release and enzyme recycling requires ATP hydroly-
sis. This activity differs from the well-characterized viral DExH helicases that require ATP hy-
drolysis for processive strand displacement [20,38]. However, it is similar to the behavior of
DEAD box proteins that can destabilize and unwind short duplexes prior to ATP hydrolysis
[34]. To our knowledge Dhr1 is the first DEAH/RHA helicase for which the mechanistic steps
associated with ATP binding and hydrolysis have been identified. We think it is likely that
other DEAH/RHA enzymes utilize a similar mechanism with regards to ATP binding
and hydrolysis.

Dhr1 cross-linked to U3 at a position immediately 30 of the U3–18S duplex, identified in
our genetic analysis as an in vivo target of Dhr1. Because Dhr1 does not appear to be a proces-
sive helicase, this raises the question of how Dhr1 acts on the adjacent U3–18S duplex. It
should be noted that the CRAC cross-links are not restricted to active site residues within
Dhr1. Thus, Dhr1 could be tethered to U3 while disrupting a nearby duplex. Alternatively,
Dhr1 may be recruited to the complex by protein interactions that allow it to go through cycles
of binding, local duplex unwinding and dissociation, as is the case for DEAD box proteins.

Dhr1 Identifies an Intermediate of 40S Assembly
Using CRAC experiments, we identified Dhr1 binding sites in 18S rRNA with the highest den-
sity of reads in helix 11. Strong cross-linking signals at U319 and U320 indicate direct contact
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to those positions. Reads also mapped to helices 23 and 44 (Fig. 5G). In the fully folded mature
subunit, RNA elements of the platform as well as the top of helix 44 would appear to block ac-
cess of a bulky helicase to the region of the CPK. In support of this idea, the rRNA region sur-
rounding the CPK was devoid of r-proteins in the Dhr1K420A particle (Fig. 3C, left panel). In
particular, the tertiary binding proteins Rps23 (uS12) [27], which lies below the decoding cen-
ter in the mature subunit, and Rps2 (uS5), which coordinates the CPK, were absent (S1 Table).
We therefore envisage that in the U3-bound pre-ribosome, tertiary interactions have not yet
been established to allow remodeling of the functional center of the SSU. Notably, intermedi-
ates containing an unfolded CPK have also been identified in the bacterial assembly pathway
[39]. As Dhr1 acts in the context of the preribosome, perhaps one role of additional SSU pro-
cessome factors is to hold the rRNA structure in a more open conformation to allow access of
U3 snoRNA and enzymes including Dhr1.

Our CRAC data also revealed binding sites that for Dhr1 that are removed from the func-
tional center, the most notable being helix 23 in the platform. This site overlaps the binding
site for Rps14. However, Rps14 was present in the Dhr1K420A particle, indicating that its load-
ing was not blocked. Whether or not Dhr1 plays a role at sites other than in the region of the
CPK remains to be determined. In addition, while our results demonstrate that Dhr1 is re-
quired for U3 unwinding, they do not exclude the possibility that additional factors participate
in this process in vivo, potentially including another helicase, such as Has1.

Does Dhr1 Activity Trigger CPK Formation?
The pre-40S particles accumulated in the Dhr1K420A mutant strain retain U3 and the SSU pro-
cessome, but have largely undergone cleavage at sites A1 and A2. The appearance of high levels
of the 21S demonstrates cleavage at site A3 prior to A2 cleavage, strongly indicating delayed
A2 processing, and this is supported by the loss of the 27SA2 pre-rRNA in the mutant. We pre-
dict that release of U3 normally precedes (and very likely stimulates) pre-rRNA cleavage at site
A2. However, in the absence of U3 release some level of pre-rRNA cleavage still occurs. More
importantly, it seems clear that the loss of Dhr1 activity not only blocked release of U3, but
also of many r-protein factors of the SSU processome. The isolation of U3 suppressors of the
Dhr1 mutants suggests that U3 dissociation by Dhr1 is a key step in triggering release of core
components of the SSU Processome.

Materials and Methods

Plasmids and Strains
Strains and plasmids are listed in S2 and S3 Tables. AJY3324 was derived from the heterozy-
gous diploid deletion collection (Open Biosystems). AJY3335 and AJY3711 were made by inte-
grating the KanMX6- PGAL1–3HA cassette from pFA6a-KanMX6-PGAL1–3HA [40] into the
DHR1 locus of BY4742 and BY4741, respectively. AJY3583 was made by individually amplify-
ing the PGAL-SNR17A::URA3 and snr17bΔ::LEU2 loci from YKW100 and integrating them into
BY4741. AJY3752 was a haploid spore clone from crossing AJY3335 with AJY3583. pAJ2312
encoded Dhr1 with the C-terminal extension Leu-Glu-6xHis. Mutations in DHR1 were intro-
duced by site-specific mutagenesis.

Identification of Cold-Sensitive dhr1 Mutants
DHR1 was randomly mutagenized by amplification with Taq DNA polymerase using oligonu-
cleotides AJO1566 and AJO1567. The PCR product was co-transformed with MscI digested
pAJ2593 into AJY3711. The transformants were selected on synthetic media with galactose as
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the sole carbon source and lacking uracil. Transformants were screened by replica plating to
glucose-containing media lacking uracil at RT. Sequencing dhr1-cs2 revealed multiple muta-
tions: E330G, K399E, T422A, A557G, T633A and K892E.

Identification U3 Mutants
dhr1-cs2 was introduced into AJY3752 on a Clonat-resistance vector (pAJ3095). The entire in-
sert containing SNR17A in pAJ2587 was amplified by PCR using M13 forward and reverse
primers with Taq DNA polymerase in buffer containing MnCl2 and imbalanced nucleotides to
increase the rate of mutagenesis. The PCR product was cotransformed with pAJ2587, digested
with SalI and NcoI to remove the entire SNR17A gene, into AJY3752 bearing pAJ3095. Trans-
formants were screened for improved growth at 20°C.

Sucrose Density Gradient Sedimentation
Sucrose density gradient sedimentation was carried out as described previously [41]. Fractions
were precipitated with 10% TCA and proteins were separated on 8% SDS-PAGE gels, trans-
ferred to a nitrocellulose membrane and subjected to Western blot analysis.

Immunoprecipitation andWestern Blotting
For immunoprecipitations, 250 ml cultures were grown in leu- galactose media to an OD600 of
0.08 at 30°C, followed by the addition of 2% glucose and shifted to the appropriate temperature
for 6 h. Cells were resuspended in 500 μl of IP buffer (100 mMNaCl, 50 mM Tris-HCl [pH
7.5], 1.5 mMMgCl2, 0.15% NP40, 1 mM PMSF, 1 μg/ml leupeptin, 1 μg/ml pepstatin A), lysed
by vortexing with glass beads, and clarified by centrifugation at 15,000g at 4°C. Immunoprecip-
itation with the TAP tag was performed by incubating extracts with IgG-Sepharose beads
(Amersham IgG Sepharose 6 Fast Flow) for 2 h at 4°C, followed by TEV enzyme cleavage at
16°C for 2 h. The eluted proteins were precipitated by adding 10% TCA, resuspended in
Laemmli buffer and separated on an 8% SDS-PAGE gel. Immunoprecipitation for the 13myc
tag was performed by incubating extracts with monoclonal (9e10) anti-myc antibody (Cov-
ance) for 2 h at 4°C, followed by addition of Protein A-conjugated beads (Milipore) and an ad-
ditional incubation for 1 h at 4°C. The beads were washed three times and proteins were eluted
in Laemmli buffer. Western blotting was done using the indicated antibodies. Cross reaction of
anti-Rpl30 antibody was used to detect Rps2.

Northern Blotting
All RNAs were prepared and Northern blotting was carried out as described previously [41].
Oligonucleotide probes are listed in S4 Table.

RNAModification by DMS
Cultures of AJY3711 expressing WT Dhr1 (pAJ2311) or Dhr1K420A (pAJ3081) were grown at
30°C in selective medium containing galactose as the sole carbon source. Glucose was added to
repress expression of genomic DHR1 and after 6.5 h of growth (OD600*0.3), cycloheximide
was added to 100 μg/ml final concentration. After an additional 10 min at 30°C cultures were
poured over ice and harvested by centrifugation. Extracts were prepared in gradient buffer
(20 mMHEPES•KOH [pH 7.6], 50 mM KCL, and 10 mMMgCl2) containing 100 μg/ml cyclo-
heximide, 1 mM PMSF, and 1 μM each leupeptin and pepstatin by vortexing with glass beads.
Extracts were clarified by centrifugation at 15,000g and 25 A260 units were loaded onto 7%–

47% sucrose gradients prepared in gradient buffer. Samples were centrifuged for 195 min at
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40,000g in an SW40 rotor. Gradients were fractionated using an ISCOModel 640. Fractions
containing 40S were pooled (1.8 ml total). 300 μl aliquots were quickly warmed to RT and
12 μl of ethanol (no DMS control) or DMS diluted in ethanol to 8.3% or 4.2% (v/v) was added
(adapted from [42]). After 2 min reactions were quenched by the addition of 15 μl of BME and
RNA was precipitated by the addition of 12.5 μg tRNA and 2.5 volumes of ethanol. Pellets were
resuspended in LETS (100 mM LiCl, 10 mM EDTA, 10 mM Tris-HCl [pH 7.5], 0.2% SDS)
and extracted twice with phenol/CHCl3, once with CHCl3, and RNA was precipitated with
10% volume of 5 M LiCl and three volumes of ethanol. Pellets were washed with 80% ethanol
and RNA was resuspended in water. Reverse transcription was carried out as described [43]
using oligonucleotide AJO1849. pAJ2158 was used as a template for a DNA sequencing ladder.
Samples were analyzed on an 8% denaturing polyacrylamide gel and imaged by phosphoima-
ging on a Typhoon FLA 9500. Quantification was done using NIH ImageJ.

CRAC Experiments
CRAC was performed as previously described [31]. The sequencing data were processed using
pyCRAC [44]. Briefly, adapter sequences were removed using flexbar [45] and reads were col-
lapsed (pyFastqDuplicateRemover) to remove potential PCR duplicates. The resulting se-
quences were aligned to the yeast genome (ENSEMBL, version EF.59) using novoalign 2.07
(www.novocraft.com). Histograms were generated using pyReadCounters and pyPileup.

Protein Purification
Imp3 was purified as described [13]. WT and mutant Dhr1 proteins were expressed from
pAJ2312, pAJ2396, or pAJ3257 overnight at 15°C in BL21 Star (DE3) (Life Technologies) cells
supplemented with a vector, which coded for the rare tRNAArg, tRNAIle, and tRNALeu. Cells
were washed once and resuspended with extraction buffer (50 mM Tris-HCl [pH 8.0], 500 mM
NaCl, 10% [v/v] glycerol, 5 mM BME, 7 units/ml RNase A and 10 units/ml RNase I). The ex-
tensive RNase treatment ensured the removal of tightly bound RNA. French press was used to
lyse cells and cell extracts were clarified for 10 min at 10,000g followed by 30 min at 50,000g.
Supernatant was loaded on a Ni-NTA resin (Invitrogen) and washed once with extraction buff-
er without RNase. The resin was then resuspended with 3 column volumes (CV) of extraction
buffer and incubated 15 min. The resin was washed extensively with extraction buffer without
RNase and protein was eluted with extraction buffer in which NaCl was replaced with 250 mM
imidazole. Fractions containing Dhr1 were pooled, supplemented with 1 mMDTT, and ap-
plied to SP Hitrap column (GE Healthcare Life Sciences). The column was washed with Buffer
A (30 mM Tris [pH 8.0], 5% [v/v] glycerol, 5 mM sodium acetate, and 1 mM DTT). Protein
was eluted with a 21 CV gradient from 0% to 60% buffer B (buffer A plus 1 M NaCl). Dhr1
containing fractions were pooled, dialyzed (30 mM Tris [pH 8.0], 10% [v/v] glycerol, 5 mM so-
dium acetate, 150 mMNaCl, and 1 mMDTT), and concentrated to*5 μM. Aliquots were
flash frozen and stored at −80°C (S6 Fig.). Yield for WT and mutant Dhr1 was approximately
0.5 mg/liter.

Mass-Spectrometric Analysis of Dhr1K420A Particles
The yeast strain AJY3711 containing pAJ3090 (dhr1K420A-TEV-13myc LEU2 CEN) or
pAJ3100 (dhr1K420A LEU2 CEN) was grown in SD Leu- containing 2% glucose for 6 h to de-
plete endogenouse Dhr1. Extracts were prepared and immunoprecipitation was carried out as
described under “Immunoprecipitation and Western Blotting” except Protein-G magnetic
Beads (Pierce) were used. After binding for 2 h, beads were washed three times, resuspended
in 100 μl of the extraction buffer, and TEV was added. Samples were incubated for 2 h at 16°C
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with gentle rotation. The supernatants were layered onto 100 μl sucrose cushions (50 mM
Tris-HCl [pH 7.5], 100 mMNaCl, 1.5 mMMgCl2, 15% sucrose) and centrifuged in a TLA100
rotor (Beckman) for 15 min at 70,000 rpm at 4°C. The pellet was resuspended in 100 mM
Tris-HCl (pH8), 4% SDS. Samples were run into a 7%Mini-Protean TGX polyacrylamide gel
(BioRad) for 5 min 100 V and stained with Imperial Protein stain (Thermo Scientific). The
protein-containing band was diced and prepared for in-gel digestion essentially as in [46].
After standard acetonitrile elution of digested peptides, the gel pieces were swelled in 6 M urea
and eluted with 75% acetonitrile. The combined eluate volume was reduced by SpeedVac cen-
trifugation and digested peptides purified on HyperSep C-18 SpinTips (Thermo Scientific).

Proteomics Data Acquisition and Data Analysis
Peptides were separated on a reverse-phase Zorbax C18 column (Agilent) using a 5%–38% ace-
tonitrile gradient over 137 min and subjected to nanoelectrospray-ionization tandem mass
spectrometry on an LTQ-Orbitrap (Thermo Scientific) with parameters as in [47]. Resulting
spectra were searched against the UniProtKB YEAST Saccharomyces cerevisiae (strain ATCC
204508 / S288c) FASTA using Sequest HT in the Proteome Discoverer v1.4 software (Thermo
Scientific). High confidence peptide spectrum matches were filtered at<1% FDR using Perco-
lator. Significance parameters were as in [47].

In Vitro Assays
RNA substrates. All RNAs were as previously described [11–13] and were purified by gel elec-
trophoresis and refolded except for the ETS2 and 18S oligomers.

ATPase assay. All the reactions were performed at RT. Dhr1 was pre-incubated in reaction
buffer (20 mM Tris [pH 8.0], 40 mM KCl, 2 mMDTT), with either U3 snoRNA or poly(A) for
2 min and in some reactions Imp3 was added (0.5 μM final concentration). Reactions were ini-
tiated by rapid addition and mixing of equimolar mixture of ATP and MgCl2 with trace [γ-32P]
ATP. Final reaction conditions were 1 mM ATP, 1 mMMgCl2, 0.5 μMDhr1, 60 mM Tris (pH
8.0), 40 mM KCl, 15 mM NaCl, 4% (v/v) glycerol, 2 mM sodium acetate and 2.4 mM DTT. For
reaction with RNA, final concentration was either 60 μMU3 snoRNA or 4 mg/ml poly(A). Ali-
quots of the reaction mixtures were withdrawn at different time intervals and quenched by ad-
dition of 3 volumes of stop buffer (90% [v/v] formamide, 50 mM EDTA). To separate reaction
products 0.8 μl of quenched sample was spotted on thin layer chromatography (TLC) plates,
dried, and developed for 10 min with developing buffer (0.8 M acetic acid, 0.8 M LiCl). The
TLC plate was then exposed on a Fuji imaging plate (BAS 2024), scanned by a Typhoon 9400
(Amersham Biosciences, GE), and quantified using Image Quant TL 7.0 (GE Healthcase Life
Sciences). Normalized band intensity quantification was displayed using PRISM 6 (GraphPad,
Inc.). Kinetic parameters of Dhr1 were determined by fitting the initial ATPase hydrolysis ac-
tivity dependence on ATP concentration to the Michaelis–Menten equation using PRISM 6.

Unwinding reactions. All unwinding reactions were performed at RT. Pre-steady state U3–
18S reactions: to pre-form U3–18S duplex, U3 MINI was incubated with Imp3 for 10 min [12].
After addition of 32P-18S the reaction was further incubated for 30 min. The pre-formed U3–
18S duplex was then incubated with Dhr1 for 5 min. Reactions were initiated by rapid addition
and mixing of equimolar mixture of ATP and MgCl2. Final concentrations were 1 mM ATP,
1.5 mMMgCl2, 40 nM U3MINI,�1.2 nM 32P 18S, 1.2 μM Imp3, 0.5 μMDhr1, 60 mM Tris
(pH 8.0), 40 mM KCl, 15 mM NaCl, 4% (v/v) glycerol, 2 mM sodium acetate, 50 mM urea,
2.4 mM DTT, 0.2 mg/ml BSA and 0.8 units/μl RNasin. Aliquots were withdrawn at different
times and quenched on ice. Ice was used instead of a stop solution containing SDS because
this detergent removes Imp3, resulting in the release of 18S RNA.
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Pre-steady state U3-ETS2 reactions: to form the U3-ETS2 duplex, U3 was first incubated
with 32P-ETS2 for 10 min followed by 10 min with buffer supplemented with MgCl2. The pre-
formed U3-ETS2 duplex was incubated with Dhr1 for 5 min and reactions were initiated by
rapid addition of 1 mMmixture of ATP and MgCl2. The final concentrations were 1 mM ATP,
1.5 mMMgCl2, 1 nM U3 snoRNA,�0.3 nM 32P ETS2, 0.5 μMDhr1, 25 mM Tris (pH 8.0),
40 mM KCl, 15 mMNaCl, 7% (v/v) glycerol, 2.4 mM DTT, 0.8 units/μl RNasin, and 0.2 mg/ml
BSA. Reactions were sampled and quenched by addition of one-half volume of stop buffer
(150 mM Tris [pH 8.0], 0.3% [w/v] SDS, and 150 mM EDTA).

All unwinding reactions in the strand exchange regime were performed at RT. Steady state
U3-ETS2 reactions: the reaction procedure was essentially the same as for pre-steady state reac-
tions described above, but with several differences. Instead of using U3 snoRNA, 5 μMU3 (1–
76) was incubated with 0.5 μMETS2 with trace 32P-ETS2 to form the U3-ETS2 duplex. Activity
under these conditions was not observed with full length U3 snoRNA, presumably owing to
non-specific binding of Dhr1 to the 30 region of U3 that includes the K-turn motifs in box B/C
and box C/D. After pre-incubating the duplex with 0.1 μMDhr1, reactions were initiated by
rapid addition of 5 μM ETS2 and 6 mMmixture of ATP and MgCl2. The remaining buffer con-
ditions are the same as those in the pre-steady reactions. The amount of duplex and single
stranded RNA for both of the above helicase reactions were resolved by EMSAs [12].

Supporting Information
S1 Data. Supplemental data for Fig 2A and 2B. UV traces of sucrose gradients.
(XLSX)

S2 Data. Supplemental data for Fig. 5. CRAC reads.
(XLSX)

S3 Data. Supplemental data for Fig. 7A. Dhr1 ATPase activity.
(XLSX)

S4 Data. Supplemental data for Figs 7C and S7. Kinetic parameters.
(XLSX)

S5 Data. Supplemental data for Fig. 8D. U3-ETS2 Unwinding assay [E]> [duplex].
(XLSX)

S6 Data. Supplemental data for Fig. 8f. U3-ETS2 Unwinding assay [duplex]> [E].
(XLSX)

S7 Data. Supplemental data for Fig. 9D. U3–18S Unwinding assay.
(XLSX)

S1 Fig. Time course of Dhr1 depletion in glucose. (A) 10-fold serial dilutions of yeast strains
BY4741 (WT) and AJY3711 (PGAL1-HA-DHR1) were spotted onto YP-galactose (galactose)
and YPD (glucose) and incubated at 30°C for 2 days. (B) Strain AJY3711 was cultured in YP-
galactose. At time zero, glucose was added to 2% final concentration. Samples were taken at the
indicated times, proteins extracts were made from a constant number of cells and SDS-PAGE
andWestern blotting as done to detect HA-tagged Dhr1.
(TIF)

S2 Fig. Growth assays of Dhr1K420A-13myc and Dhr1–6His. (A) 10-fold serial dilutions of
yeast strain AJY3711 containing plasmid pAJ2311 (DHR1–13myc) or pAJ3081 (dhr1K420A-
13myc) were spotted onto SD Leu- galactose (galactose) and SD Leu- glucose (glucose) and in-
cubated at 30°C for 2 days. (B) 10-fold serial dilutions of yeast strain AJY3711 containing
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plasmids pRS315 (vector), pAJ3082 (DHR1 untagged), or pAJ3317 (DHR1–6His) were spotted
onto SD Leu- glucose and incubated at 30°C for 2 days.
(TIF)

S3 Fig. Dhr1-K420A co-immunoprecipitates U3-associated proteins. (A) Cultures of
AJY3711 (PGAL1–3xHA-DHR1) expressing untagged WT DHR1 (pAJ3082), WT DHR1–
13myc (pAJ2311), or dhr1K420A-13myc (pAJ3081) were shifted to glucose media for 6 h to de-
plete 3xHA-Dhr1. Proteins were immunoprecipitated from whole cell extracts with anti-myc
antibody and subjected to SDS-PAGE and Western blotting as described in the legend of Fig. 2.
(TIF)

S4 Fig. Dhr1 preferentially cross-links to helices (H) 11, 23, and 44 in the 18S rRNA. (A)
The reads from Dhr1-CRAC mapped to the rRNA are plotted. Read coverage indicates the
total number of reads that cover each nucleotide in the rRNA. A schematic representation of
an rDNA repeat is indicated below the plot. Helices H11, H23, and H44 that were recovered
from both experiments are indicated. Peaks that are frequently recovered in control samples
are indicated with an asterisk. (B) Read densities of efficiently cross-linked regions (helices 11,
23, and 44) in the crystal structure of the yeast 18S rRNA [28]. The colors indicate the read
density covering the rRNA region. Relevant rRNA helices and read densities are indicated. See
S5 Fig. for a complete overview of read distributions for each nucleotide in the 18S rRNA sec-
ondary structure. (C) The reads from the control experiment that mapped to the rRNA are
plotted as described in (A). Helices that are reproducibly recovered from CRAC control experi-
ments [32,48] are indicated with “H.” Additional supporting data are provided in S2 Data.
(TIF)

S5 Fig. Read distributions for each nucleotide in the 18S rRNA secondary structure. Shown
is a secondary structure model for the S. cerevisiae 18S rRNA (available at http://www.rna.
ccbb.utexas.edu). Colors indicate the average percentage of read coverage (n = 2) for each nu-
cleotide in the 18S rRNA. Helices where consistently high cross-linking signals were observed
are indicated with “H.” Additional supporting data are provided in S2 Data.
(TIF)

S6 Fig. U3 sedimentation in dhr1-cs2. (A) 10-fold serial dilutions of AJY3715 (dhr1Δ::
KanMX) containing pAJ2593 (DHR1-WT) or pAJ2388 (dhr1-cs2) were spotted onto Ura-me-
dium and incubated for 4 days at 20°C or 30°C. (B) Strain AJY3711 carrying plasmid pAJ2388
was cultured in SD Ura- galactose at 30°C. Glucose was added to 2% final concentration and
cells were cultured for an additional 6 h at 20°C. Extracts were prepared and fractionated
through 7%–47% sucrose gradients, RNA isolated, and Northern blotting for U3 were as de-
scribed for Fig. 2.
(TIF)

S7 Fig. Steady state kinetic data of ATPase activity catalyzed by Dhr1 and mutants. Initial
velocities of Pi released after addition of ATP at RT in the presence of poly(A). ATP
hydrolysis activity is plotted as a function of ATP concentration with either Dhr1 (purple),
Dhr1D516A/E517A (blue), or Dhr1K420A (green). Additional supporting data are provided in S3
and S4 Data.
(TIF)

S8 Fig. Mutation of U3 nt 36–38 (CGU to UAC) does not suppress the dhr1-cs2mutant.
Nucleotides CGU at position 36 to 38 of U3 were mutated to UAC in pAJ2587. WT and mu-
tant U3 were expressed in AJY3752 (PGAL-DHR1 PGAL-SNR17A snr17BΔ) containing pAJ3095
(dhr1-cs2) and the ability of mutant U3 to suppress the cold-sensitive growth of dhr1-cs2 was
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assayed by serial dilution on His- glucose medium. Plates were incubated at 20°C for 6 days.
(TIF)

S1 Table. Mass spectrometric analysis of Dhr1K420A particle.Mass spectrometric analysis
was carried out on affinity purified Dhr1K420A (TEV-13xmyc-tagged) and mock (untagged)
particles. Affinity purified particles were subjected to in-gel trypsin digestion and peptides
identified by mass spectrometry. The number of peptide spectral matches (S #PSM) and mo-
lecular weight (MW) are given. Hits are grouped into known complexes and color-coded. As a
rough proxy for abundance, PSM was divided by molecular mass and normalized to the value
for Dhr1 (PSM/MW).
(DOCX)

S2 Table. Strains used in this work.
(DOCX)

S3 Table. Plasmids used in this work.
(DOCX)

S4 Table. Oligonucleotides used in this work.
(DOCX)

Acknowledgments
We thank S. Baserga for anti-Mpp10 and anti-Imp4 and for strain YKW100, G. Dieci for anti-
Rps8, and J. Warner for anti-L30/Rps2.

Author Contributions
Conceived and designed the experiments: AWJ CCC SG DT RS. Performed the experiments:
RS XL SG JZ MG OP AWJ. Analyzed the data: RS XL SG OP EMMDT CCC AWJ. Wrote the
paper: RS SG DT CCC AWJ.

References
1. McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol

10: 13–26.

2. Traub P, Nomura M (1968) Structure and function of E. coli ribosomes. V. Reconstitution of functionally
active 30S ribosomal particles from RNA and proteins. Proc Natl Acad Sci U S A 59: 777–784. PMID:
4868216

3. Dohme F, Nierhaus KH (1976) Role of 5S RNA in assembly and function of the 50S subunit from
Escherichia coli. Proc Natl Acad Sci U S A 73: 2221–2225. PMID: 781671

4. Fromont-Racine M, Senger B, Saveanu C, Fasiolo F (2003) Ribosome assembly in eukaryotes. Gene
313: 17–42. PMID: 12957375

5. Woolford JL Jr., Baserga SJ (2013) Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Ge-
netics 195: 643–681. doi: 10.1534/genetics.113.153197 PMID: 24190922

6. Borovjagin AV, Gerbi SA (1999) U3 small nucleolar RNA is essential for cleavage at sites 1, 2 and 3 in
pre-rRNA and determines which rRNA processing pathway is taken in Xenopus oocytes. J Mol Biol
286: 1347–1363. PMID: 10064702

7. Dutca LM, Gallagher JE, Baserga SJ (2011) The initial U3 snoRNA:pre-rRNA base pairing interaction
required for pre-18S rRNA folding revealed by in vivo chemical probing. Nucleic Acids Res 39: 5164–
5180. doi: 10.1093/nar/gkr044 PMID: 21349877

8. Hughes JM (1996) Functional base-pairing interaction between highly conserved elements of U3 small
nucleolar RNA and the small ribosomal subunit RNA. J Mol Biol 259: 645–654. PMID: 8683571

9. Marmier-Gourrier N, Clery A, Schlotter F, Senty-Segault V, Branlant C (2011) A second base pair inter-
action between U3 small nucleolar RNA and the 50-ETS region is required for early cleavage of the

Dhr1 Dissociates U3

PLOS Biology | DOI:10.1371/journal.pbio.1002083 February 24, 2015 23 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pbio.1002083.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pbio.1002083.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pbio.1002083.s018
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pbio.1002083.s019
http://www.ncbi.nlm.nih.gov/pubmed/4868216
http://www.ncbi.nlm.nih.gov/pubmed/781671
http://www.ncbi.nlm.nih.gov/pubmed/12957375
http://dx.doi.org/10.1534/genetics.113.153197
http://www.ncbi.nlm.nih.gov/pubmed/24190922
http://www.ncbi.nlm.nih.gov/pubmed/10064702
http://dx.doi.org/10.1093/nar/gkr044
http://www.ncbi.nlm.nih.gov/pubmed/21349877
http://www.ncbi.nlm.nih.gov/pubmed/8683571


yeast pre-ribosomal RNA. Nucleic Acids Res 39: 9731–9745. doi: 10.1093/nar/gkr675 PMID:
21890904

10. Sharma K, Tollervey D (1999) Base pairing between U3 small nucleolar RNA and the 50 end of 18S
rRNA is required for pre-rRNA processing. Mol Cell Biol 19: 6012–6019. PMID: 10454548

11. Gerczei T, Correll CC (2004) Imp3p and Imp4p mediate formation of essential U3-precursor rRNA (pre-
rRNA) duplexes, possibly to recruit the small subunit processome to the pre-rRNA. Proc Natl Acad Sci
U S A 101: 15301–15306. PMID: 15489263

12. Gerczei T, Shah BN, Manzo AJ, Walter NG, Correll CC (2009) RNA chaperones stimulate formation
and yield of the U3 snoRNA-Pre-rRNA duplexes needed for eukaryotic ribosome biogenesis. J Mol Biol
390: 991–1006. doi: 10.1016/j.jmb.2009.05.072 PMID: 19482034

13. Shah BN, Liu X, Correll CC (2013) Imp3 unfolds stem structures in pre-rRNA and U3 snoRNA to form a
duplex essential for small subunit processing. RNA 19: 1372–1383. doi: 10.1261/rna.039511.113
PMID: 23980203

14. Venema J, Tollervey D (1999) Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet
33: 261–311. PMID: 10690410

15. Henras AK, Soudet J, Gerus M, Lebaron S, Caizergues-Ferrer M, et al. (2008) The post-transcriptional
steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 65: 2334–2359. doi: 10.1007/s00018-008-
8027-0 PMID: 18408888

16. Kos M, Tollervey D (2010) Yeast pre-rRNA processing and modification occur cotranscriptionally. Mol
Cell 37: 809–820. doi: 10.1016/j.molcel.2010.02.024 PMID: 20347423

17. Bernstein KA, Granneman S, Lee AV, Manickam S, Baserga SJ (2006) Comprehensive mutational
analysis of yeast DEXD/H box RNA helicases involved in large ribosomal subunit biogenesis. Mol Cell
Biol 26: 1195–1208. PMID: 16449635

18. Granneman S, Bernstein KA, Bleichert F, Baserga SJ (2006) Comprehensive mutational analysis of
yeast DEXD/H box RNA helicases required for small ribosomal subunit synthesis. Mol Cell Biol 26:
1183–1194. PMID: 16449634

19. Rodriguez-Galan O, Garcia-Gomez JJ, de la Cruz J (2013) Yeast and human RNA helicases involved
in ribosome biogenesis: current status and perspectives. Biochim Biophys Acta 1829: 775–790. doi:
10.1016/j.bbagrm.2013.01.007 PMID: 23357782

20. Jankowsky E (2011) RNA helicases at work: binding and rearranging. Trends Biochem Sci 36: 19–29.
doi: 10.1016/j.tibs.2010.07.008 PMID: 20813532

21. Pyle AM (2008) Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Bio-
phys 37: 317–336. doi: 10.1146/annurev.biophys.37.032807.125908 PMID: 18573084

22. Colley A, Beggs JD, Tollervey D, Lafontaine DL (2000) Dhr1p, a putative DEAH-box RNA helicase, is
associated with the box C+D snoRNP U3. Mol Cell Biol 20: 7238–7246. PMID: 10982841

23. Liang XH, Fournier MJ (2006) The helicase Has1p is required for snoRNA release from pre-rRNA. Mol
Cell Biol 26: 7437–7450. PMID: 16908538

24. Horn DM, Mason SL, Karbstein K (2011) Rcl1 protein, a novel nuclease for 18 S ribosomal RNA pro-
duction. J Biol Chem 286: 34082–34087. doi: 10.1074/jbc.M111.268649 PMID: 21849504

25. Januszyk K, Lima CD (2014) The eukaryotic RNA exosome. Curr Opin Struct Biol 24C: 132–140.

26. Perez-Fernandez J, Martin-Marcos P, Dosil M (2011) Elucidation of the assembly events required for
the recruitment of Utp20, Imp4 and Bms1 onto nascent pre-ribosomes. Nucleic Acids Res 39: 8105–
8121. doi: 10.1093/nar/gkr508 PMID: 21724601

27. Shajani Z, Sykes MT, Williamson JR (2011) Assembly of bacterial ribosomes. Annu Rev Biochem 80:
501–526. doi: 10.1146/annurev-biochem-062608-160432 PMID: 21529161

28. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, et al. (2011) The structure
of the eukaryotic ribosome at 3.0 A resolution. Science 334: 1524–1529. doi: 10.1126/science.
1212642 PMID: 22096102

29. Swiatkowska A, WlotzkaW, Tuck A, Barrass JD, Beggs JD, et al. (2012) Kinetic analysis of pre-ribo-
some structure in vivo. RNA 18: 2187–2200. doi: 10.1261/rna.034751.112 PMID: 23093724

30. Gregory ST, Dahlberg AE (2009) Genetic and structural analysis of base substitutions in the central
pseudoknot of Thermus thermophilus 16S ribosomal RNA. RNA 15: 215–223. doi: 10.1261/rna.
1374809 PMID: 19144908

31. Granneman S, Kudla G, Petfalski E, Tollervey D (2009) Identification of protein binding sites on U3
snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proc Natl Acad Sci
U S A 106: 9613–9618. doi: 10.1073/pnas.0901997106 PMID: 19482942

Dhr1 Dissociates U3

PLOS Biology | DOI:10.1371/journal.pbio.1002083 February 24, 2015 24 / 25

http://dx.doi.org/10.1093/nar/gkr675
http://www.ncbi.nlm.nih.gov/pubmed/21890904
http://www.ncbi.nlm.nih.gov/pubmed/10454548
http://www.ncbi.nlm.nih.gov/pubmed/15489263
http://dx.doi.org/10.1016/j.jmb.2009.05.072
http://www.ncbi.nlm.nih.gov/pubmed/19482034
http://dx.doi.org/10.1261/rna.039511.113
http://www.ncbi.nlm.nih.gov/pubmed/23980203
http://www.ncbi.nlm.nih.gov/pubmed/10690410
http://dx.doi.org/10.1007/s00018-008-8027-0
http://dx.doi.org/10.1007/s00018-008-8027-0
http://www.ncbi.nlm.nih.gov/pubmed/18408888
http://dx.doi.org/10.1016/j.molcel.2010.02.024
http://www.ncbi.nlm.nih.gov/pubmed/20347423
http://www.ncbi.nlm.nih.gov/pubmed/16449635
http://www.ncbi.nlm.nih.gov/pubmed/16449634
http://dx.doi.org/10.1016/j.bbagrm.2013.01.007
http://www.ncbi.nlm.nih.gov/pubmed/23357782
http://dx.doi.org/10.1016/j.tibs.2010.07.008
http://www.ncbi.nlm.nih.gov/pubmed/20813532
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125908
http://www.ncbi.nlm.nih.gov/pubmed/18573084
http://www.ncbi.nlm.nih.gov/pubmed/10982841
http://www.ncbi.nlm.nih.gov/pubmed/16908538
http://dx.doi.org/10.1074/jbc.M111.268649
http://www.ncbi.nlm.nih.gov/pubmed/21849504
http://dx.doi.org/10.1093/nar/gkr508
http://www.ncbi.nlm.nih.gov/pubmed/21724601
http://dx.doi.org/10.1146/annurev-biochem-062608-160432
http://www.ncbi.nlm.nih.gov/pubmed/21529161
http://dx.doi.org/10.1126/science.1212642
http://dx.doi.org/10.1126/science.1212642
http://www.ncbi.nlm.nih.gov/pubmed/22096102
http://dx.doi.org/10.1261/rna.034751.112
http://www.ncbi.nlm.nih.gov/pubmed/23093724
http://dx.doi.org/10.1261/rna.1374809
http://dx.doi.org/10.1261/rna.1374809
http://www.ncbi.nlm.nih.gov/pubmed/19144908
http://dx.doi.org/10.1073/pnas.0901997106
http://www.ncbi.nlm.nih.gov/pubmed/19482942


32. Granneman S, Petfalski E, Tollervey D (2011) A cluster of ribosome synthesis factors regulate pre-
rRNA folding and 5.8S rRNAmaturation by the Rat1 exonuclease. EMBO J 30: 4006–4019. doi: 10.
1038/emboj.2011.256 PMID: 21811236

33. Jankowsky E, Putnam A (2010) Duplex unwinding with DEAD-box proteins. Methods Mol Biol 587:
245–264. doi: 10.1007/978-1-60327-355-8_18 PMID: 20225155

34. Liu F, Putnam A, Jankowsky E (2008) ATP hydrolysis is required for DEAD-box protein recycling but
not for duplex unwinding. Proc Natl Acad Sci U S A 105: 20209–20214. doi: 10.1073/pnas.
0811115106 PMID: 19088201

35. Dragon F, Gallagher JE, Compagnone-Post PA, Mitchell BM, Porwancher KA, et al. (2002) A large nu-
cleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417: 967–970. PMID:
12068309

36. Grandi P, Rybin V, Bassler J, Petfalski E, Strauss D, et al. (2002) 90S pre-ribosomes include the 35S
pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis
factors. Mol Cell 10: 105–115. PMID: 12150911

37. Schafer T, Strauss D, Petfalski E, Tollervey D, Hurt E (2003) The path from nucleolar 90S to cyto-
plasmic 40S pre-ribosomes. EMBO J 22: 1370–1380. PMID: 12628929

38. Jankowsky E, Gross CH, Shuman S, Pyle AM (2000) The DExH protein NPH-II is a processive and di-
rectional motor for unwinding RNA. Nature 403: 447–451. PMID: 10667799

39. Clatterbuck Soper SF, Dator RP, Limbach PA, Woodson SA (2013) In vivo X-ray footprinting of pre-30S
ribosomes reveals chaperone-dependent remodeling of late assembly intermediates. Mol Cell 52:
506–516. doi: 10.1016/j.molcel.2013.09.020 PMID: 24207057

40. Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG,Wach A, et al. (1998) Additional modules for
versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae.
Yeast 14: 953–961. PMID: 9717241

41. Sardana R, White JP, Johnson AW (2013) The rRNAmethyltransferase Bud23 shows functional inter-
action with components of the SSU processome and RNase MRP. RNA 19: 828–840. doi: 10.1261/
rna.037671.112 PMID: 23604635

42. Tijerina P, Mohr S, Russell R (2007) DMS footprinting of structured RNAs and RNA-protein complexes.
Nat Protoc 2: 2608–2623. PMID: 17948004

43. Sengupta J, Bussiere C, Pallesen J, West M, Johnson AW, et al. (2010) Characterization of the nuclear
export adaptor protein Nmd3 in association with the 60S ribosomal subunit. J Cell Biol 189: 1079–
1086. doi: 10.1083/jcb.201001124 PMID: 20584915

44. Webb S, Hector RD, Kudla G, Granneman S (2014) PAR-CLIP data indicate that Nrd1-Nab3-depen-
dent transcription termination regulates expression of hundreds of protein coding genes in yeast. Ge-
nome Biol 15: R8. doi: 10.1186/gb-2014-15-1-r8 PMID: 24393166

45. Dodt M, Roehr JT, Ahmed R, Dieterich C (2012) Flexbar − flexible barcode and adapter processing for
next-generation sequencing platforms. MDPIBiology 1: 895–905.

46. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric
characterization of proteins and proteomes. Nat Protoc 1: 2856–2860. PMID: 17406544

47. Boutz DR, Collins PJ, Suresh U, Lu M, Ramirez CM, et al. (2011) Two-tiered approach identifies a net-
work of cancer and liver disease-related genes regulated by miR-122. J Biol Chem 286: 18066–18078.
doi: 10.1074/jbc.M110.196451 PMID: 21402708

48. Granneman S, Petfalski E, Swiatkowska A, Tollervey D (2010) Cracking pre-40S ribosomal subunit
structure by systematic analyses of RNA-protein cross-linking. EMBO J 29: 2026–2036. doi: 10.1038/
emboj.2010.86 PMID: 20453830

Dhr1 Dissociates U3

PLOS Biology | DOI:10.1371/journal.pbio.1002083 February 24, 2015 25 / 25

http://dx.doi.org/10.1038/emboj.2011.256
http://dx.doi.org/10.1038/emboj.2011.256
http://www.ncbi.nlm.nih.gov/pubmed/21811236
http://dx.doi.org/10.1007/978-1-60327-355-8_18
http://www.ncbi.nlm.nih.gov/pubmed/20225155
http://dx.doi.org/10.1073/pnas.0811115106
http://dx.doi.org/10.1073/pnas.0811115106
http://www.ncbi.nlm.nih.gov/pubmed/19088201
http://www.ncbi.nlm.nih.gov/pubmed/12068309
http://www.ncbi.nlm.nih.gov/pubmed/12150911
http://www.ncbi.nlm.nih.gov/pubmed/12628929
http://www.ncbi.nlm.nih.gov/pubmed/10667799
http://dx.doi.org/10.1016/j.molcel.2013.09.020
http://www.ncbi.nlm.nih.gov/pubmed/24207057
http://www.ncbi.nlm.nih.gov/pubmed/9717241
http://dx.doi.org/10.1261/rna.037671.112
http://dx.doi.org/10.1261/rna.037671.112
http://www.ncbi.nlm.nih.gov/pubmed/23604635
http://www.ncbi.nlm.nih.gov/pubmed/17948004
http://dx.doi.org/10.1083/jcb.201001124
http://www.ncbi.nlm.nih.gov/pubmed/20584915
http://dx.doi.org/10.1186/gb-2014-15-1-r8
http://www.ncbi.nlm.nih.gov/pubmed/24393166
http://www.ncbi.nlm.nih.gov/pubmed/17406544
http://dx.doi.org/10.1074/jbc.M110.196451
http://www.ncbi.nlm.nih.gov/pubmed/21402708
http://dx.doi.org/10.1038/emboj.2010.86
http://dx.doi.org/10.1038/emboj.2010.86
http://www.ncbi.nlm.nih.gov/pubmed/20453830


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


