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Abstract

Determining the three dimensional arrangement of proteins in a complex is highly beneficial

for uncovering mechanistic function and interpreting genetic variation in coding genes com-

prising protein complexes. There are several methods for determining co-complex interac-

tions between proteins, among them co-fractionation / mass spectrometry (CF-MS), but it

remains difficult to identify directly contacting subunits within a multi-protein complex. Corre-

lation analysis of CF-MS profiles shows promise in detecting protein complexes as a whole

but is limited in its ability to infer direct physical contacts among proteins in sub-complexes.

To identify direct protein-protein contacts within human protein complexes we learn a sparse

conditional dependency graph from approximately 3,000 CF-MS experiments on human cell

lines. We show substantial performance gains in estimating direct interactions compared to

correlation analysis on a benchmark of large protein complexes with solved three-dimen-

sional structures. We demonstrate the method’s value in determining the three dimensional

arrangement of proteins by making predictions for complexes without known structure (the

exocyst and tRNA multi-synthetase complex) and by establishing evidence for the structural

position of a recently discovered component of the core human EKC/KEOPS complex,

GON7/C14ORF142, providing a more complete 3D model of the complex. Direct contact

prediction provides easily calculable additional structural information for large-scale protein

complex mapping studies and should be broadly applicable across organisms as more CF-

MS datasets become available.

Author summary

Proteins physically associate into complexes in order to carry out the essential functions

of life. Knowing how proteins are physically arranged three dimensionally in these com-

plexes provides clues towards how they work. In principle, the associations between pro-

teins in large-scale proteomics datasets should often reflect direct physical contacts

between proteins in each complex. Here, we describe a statistical method to discover

which subunits within complexes directly contact each other based on their co-
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purification behavior in published co-fractionation mass spectrometry datasets. Within

our predictions, we recover many known protein-protein contacts, serving to validate our

method, as well as unknown contacts that can inform future studies of these complexes.

Specifically, we observe confident contacts between subunits within the exocyst and tRNA

multi-synthetase complexes, two complexes that have incomplete structural information.

Using our method, we further provide structural information for a previously missing

subunit of the EKC/KEOPS complex. We anticipate that this method and the associated

predictions will help to better inform our understanding of the functions and structures

of diverse protein complexes.

This is a PLOS Computational Biology Methods paper.

Introduction

Many proteins assemble into large macromolecular complexes with essential cellular func-

tions. The three dimensional arrangement of proteins in a complex is vital to the complex’s

function and knowledge of this arrangement would be highly valuable in understanding the

mechanism of function. Conserved protein complexes are estimated to number in the thou-

sands but the vast majority of these are structurally elusive by traditional structural biology

techniques. Advances in proteomics technologies have allowed for the high throughput identi-

fication of protein complexes across the tree of life including large-scale affinity purification

mass spectrometry (AP-MS) datasets [1–3] as well as high-throughput co-fractionation mass

spectrometry (CF-MS) datasets comprising thousands of experiments across human, meta-

zoan and prokaryotes [4–7].

In the CF-MS approach, cellular lysate is biochemically fractionated by multiple, non-dena-

turing chromatographic methods and then complexes are inferred bioinformatically in a

machine-learning framework using correlations of the resulting protein elution profiles as a

prominent feature. Although this approach has primarily been used to identify component

subunits of complexes, we previously observed that the correlation structure of the protein elu-

tion profiles also revealed structural information about the complexes [6]. This allowed for the

identification of sub-complexes, which were accurate when compared to known structural

models and when compared to known functions. However, correlation did not consistently

reveal the directly bound protein pairs that other experiments such as yeast two-hybrid [8, 9]

and chemical crosslinking [10–14] can reveal across large portions of the proteome. Other

computational approaches have been proposed to identify direct contacts by analyzing co-

occurrence of proteins in mass spectrometry experiments but they have only been applied to

AP-MS datasets [15].

Protein sub-complexes are valuable in understanding the three dimensional arrangement

of proteins in a complex but correlation often convolutes specific physical interactions

between proteins with indirect interactions and non-physical relationships. Removal of these

spurious interactions from the correlation network is crucial to identifying which specific pro-

teins directly contact each other. A classical statistical approach to remove such interactions

can be achieved with graphical models [16]. Graphical models represent the conditional

dependence structure of a set of random variables as a graph. Unfortunately, classical statistical

methods to estimate graphical models fail in scenarios where the number of variables (e.g.,

proteins) greatly exceeds the number of samples, such as the case with co-fractionation
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profiles. However, recent advances in the field of statistical analysis, specifically on the topic of

sparse high-dimensional statistical inference, have led to new methods for addressing these

underdetermined problems (see, e.g. [17] and references therein). In biology, these methods

enabled a number of successful applications of graphical modeling, such as estimating interac-

tions between genes from high-throughput expression profiles [18], predicting contacts

between amino acid residues from multiple sequence alignments [19], and inferring associa-

tions of microbes from environmental sequencing data [20], respectively.

Here, we apply a graphical model to identify direct protein interactions from one of the

largest proteomic interaction datasets to date consisting of approx. 3,000 published human

CF-MS experiments [6]. We make the assumption that conditional dependence is a proxy for

direct protein interactions, which is consistent with the biochemical chromatography methods

used in CF-MS experiments due to their separation of native complexes and sub-complexes.

We evaluated the performance of our predictions in a precision-recall framework on a bench-

mark of large protein complexes with known molecular structures and observe substantial

improvement over correlation alone. We also observe that the ranking of the learned condi-

tional dependencies is insensitive to particular choices of the regularization parameter λ which

balances model complexity and model fit. We additionally characterize our method’s perfor-

mance finding better predictions for well-observed complexes and validate our predictions

with a whole cell lysate crosslinking dataset where we observe enriched overlap. We therefore

believe, in principle, these measures of conditional dependence could also be applied to addi-

tional proteomic datasets such as AP-MS as well as used in conjunction with other features of

direct protein-protein contacts in supervised machine learning frameworks to further improve

predictive performance.

We highlight predictions made for the 26S proteasome complex and demonstrate agree-

ment with the true set of contacts. We show new predictions for complexes without known

structures, specifically the exocyst and tRNA multi-synthetase complex, to illustrate the utility

of our approach. Finally, in our predicted set of directly contacting proteins we show support

for direct contact of a recently identified component of the human EKC/KEOPS complex. Our

results suggest that our predicted direct protein interaction edges will be a valuable constraint

that can be used in structurally modeling the thousands of stable protein complexes in the

human proteome inaccessible to current structure determination techniques, as we demon-

strate with an improved 3D model of the EKC/KEOPS complex.

Methods

Calculation of conditionally dependent protein-protein interactions

In order to identify direct physical interactions between proteins, we first organized a large,

published dataset of human CF-MS experiments [6]. CF-MS experiments consist of two steps,

the first being to biochemically separate native protein complexes and sub-complexes along a

specified gradient (e.g., hydrodynamic radius, charge, etc.) using non-denaturing separation

techniques that preserve intact complexes. The second step is to identify and quantify the pro-

teins that elute at each time point, providing a characteristic elution profile for each protein

observed. The aim of our approach is to use these elution profiles to reconstruct the physical

interaction network of the proteins identified, and specifically find which proteins directly

contact each other within complexes.

The dataset comprises d = 15,964 protein elution profiles each consisting of a vector of

n = 2,989 protein abundance values. Each protein abundance value is derived from 28 fraction-

ation experiments using multiple, distinct biochemical separation techniques, including ion

exchange chromatography, isoelectric focusing and sucrose gradients, analyzing native protein

Direct contacts from proteomics datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005625 October 12, 2017 3 / 23

https://doi.org/10.1371/journal.pcbi.1005625


extracts isolated from HeLa cells (17 experiments), HEK293 cells (8), glioma stem cells (2) and

neural stem cells (1). Fractionation experiments consist of a series of collected fractions along

a biochemical gradient of the applied chromatography method. The number of fractions

ranges between ~10 to ~200 per experiment depending on the method. Each fraction of extract

is then subjected to proteomic analysis using mass spectrometry producing observed protein

abundances. We use the pipeline described in Wan et al. 2015 [6], where the proteomic con-

sensus identification tool, MSBlender [21] is used to identify proteins from mass spectra. For

peptide identifications, we use a false discovery rate of< 1%. Missing values that arise when a

protein is not identified in a given fraction are set to 0.0. This diverse set of experimental con-

ditions allows for the analysis of a large fraction of the proteome and thorough separation of

endogenous complexes. We denote the resulting CF-MS data matrix by X 2 Rd�n
0

. Each col-

umn Xi, i = 1,. . .,n represents relative protein abundance data (compositions) and is normal-

ized to sum up to 1.

We next introduce a sparse graphical model learning framework to infer direct (physical)

protein interactions from CF-MS data from the covariation pattern of the protein abundances.

Here, the nodes of the graph represent proteins and the edges approximate direct protein con-

tacts. We first note that components of the compositions Xi are not independent due to the

unit sum constraint. Thus, higher order statistics, such as covariance matrices of composi-

tional data exhibit negative bias due to closure. To alleviate this shortcoming we borrow a

transformation technique from compositional data analysis [22], the so-called centered log-

ratio (CLR) transformation. The CLR transformation is defined as CLR Xið Þ ¼ log Xi
gðXiÞ

, where

g(Xi) denotes the geometric mean. This transformation is particularly useful, as it is symmetric

and isometric with respect to the original composition. The CLR maps compositional data

from the d-dimensional simplex to a (d − 1)-hyperplane in d-dimensional Euclidean space. A

pseudo-count of 1 is added to all entries in X to ensure applicability of the transformation. We

denote the corresponding covariance matrix by Γ = cov(CLR(X)).

Recent work [23] has shown that, in the sparse high-dimensional setting and under certain

technical conditions, the covariance matrix Γ is a good estimator for the covariance matrix

S 2 Rd×d of the unknown absolute abundances. This observation is the basis for the proposed

graphical model inference framework. Following [20, 24], we propose to learn a sparse undi-

rected graph G 2 Rd�d representing node-node interactions via the following minimization

problem:

Ĝ lð Þ ¼ argminG2Rd�d ;Gjj¼0

1

2
tr G⊺

GG
� �

� tr G⊺
G

� �
þ lkGk1

for all j = 1,. . .,d where tr denotes the trace operator, k�k1 denotes the element-wise L1 norm,

and λ> 0 is the regularization parameter. Each of the d subproblems is equivalent to fitting a

linear regression model with L1 penalization (Lasso) [25] to each protein profile, using the

other profiles as predictors. To relax any distributional dependencies of the regression, we also

apply a non-paranormal (copula) transform to the data before the linear regression step [12].

To symmetrize the graph, derived from the described node-wise regression (or neighborhood

selection) algorithm, the OR rule is applied across all node neighborhoods, i.e., an edge in the

protein-protein graph is present if either node i is associated with node j or vice versa. It has

been shown in [24] that, under certain conditions, the non-zero entries Ĝ ij 6¼ 0 of this symme-

trized adjacency matrix are asymptotically identical to the non-zero elements Θij of the inverse

covariance (or precision) matrix Θ = S−1. This allows a clear statistical interpretation of the

edges in terms of partial correlation coefficients among the nodes [26]. Thus, the procedure is
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able to remove transitive correlations among nodes by approximately learning the full condi-

tional dependence among all nodes.

Model selection and interaction ranking

One of the key challenges in learning a sparse graphical model from data is the selection of the

regularization parameter λ> 0. In the unsupervised setting, several methods have been pro-

posed, including cross validation and information criteria [27, 28]. One state-of-the-art model

selection scheme is the Stability Approach to Regularization Selection (StARS) [29]. StARS

selects the minimum amount of regularization that results in a graph that is sparse and com-

prises a stable edge set under random subsampling of the data at a prescribed stability level 1 −
β [30, 31]. StARS typically selects N = 20 sub-samples of size bðnÞ ¼ b10

ffiffiffi
n
p
c and learns a

graphical model from each subsample across the entire λ-path (here, 30 values of λ are chosen

between 0 and λmax). StARS records for each edge in ĜðlÞ the empirical frequency of edge

presence Pij across the entire λ-path, stored in a list of matrices P(λ) 2 [0,1]d×d. Standard

StARS selects λ where the normalized sum of variances of the Pij in the corresponding P(λ)

drops below β = 0.1. It has been shown in [31] that this selection can lead to sub-optimal regu-

larization selection. In the present application, we thus opted for an alternative semi-super-

vised selection procedure. For all positive edges in the interaction graph, we interpreted the

edge frequencies as (protein) contact probabilities and ranked edges in order of decreasing

contact probability. We compared these ranked predictions to a benchmark of physically inter-

acting proteins determined from multi-protein complexes with known three-dimensional

structures and selected the λ that maximized the area under the precision recall (AUPR) curve.

The selected λ corresponds to a more conservative StARS variability threshold of β = 0.005.

We also note that, in our application, our introduced edge ranking based on the edge stability

was insensitive to the precise selection of λ.

Finally, we filtered our reported direct contact predictions by protein interactions that are

present in 896 complexes larger than 4 subunits from the human protein complex map, hu.

MAP [32]. This step was to ensure pairs of proteins are present in the same complex thereby

increasing the likelihood of direct contact.

All computation was performed in R using the Hotelling package [33] for CLR transforma-

tion and the Huge [34] package for graphical modeling.

Correlation analysis

For comparison purposes, correlation analysis was applied to each pair of protein co-elution

profiles in the human CF-MS dataset. Profiles were first normalized by the total number of

theoretical tryptic peptides for each protein and then a z-score was calculated for each value in

the matrix relative to its corresponding fraction (i.e., column-wise standardization). Pearson

correlation coefficients were then calculated for each pair of proteins.

Assembly of a multi-protein complex structural benchmark

In order to evaluate the predictive performance of our direct contact prediction method we

assembled a benchmark of 29 large non-redundant protein complexes with known structure

(S1 Table). Due to the ease at which direct contacts can be predicted at random for small com-

plexes, we restrict our benchmark to complexes having > 4 unique subunits. Note, subunits

from certain complexes may not be sampled in our data or have ambiguous ortholog mapping.

We process the reported biological assembly of each complex using the PISA tool [35], which

calculates macromolecular interface surface area. All pairs of proteins within each complex
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with interfacial areas (Å2)> 0.0 were considered physically contacting and marked a true

contact, comprising benchmark positive examples. Protein pairs with no interface area were

considered not contacting, comprising benchmark negative examples. Note that protein pairs

that spanned two complexes (e.g., protein 1 in complex 1 and protein 2 in complex 2) were

not considered. For complexes whose structure was determined in an organism other than

human, InParanoid [36] was used to identify human orthologs of the structurally solved sub-

unit. If no human ortholog could be found for a given subunit, interactions involving that sub-

unit were not considered. We split the benchmark into two sets, the first (10 complexes) to

evaluate λ selection and performance and the second (19 complexes) to evaluate generality of

the method. The complete protein pair benchmark is provided in S2 Table.

Overlap enrichment of inter-protein crosslinking dataset

We evaluated the overlap of our direct contact predictions with a set of identified inter-protein

crosslink interactions from Liu et al. [10]. Similar to the method described in [32] we collapsed

all crosslink interactions to one interaction per pair of proteins. We first generate a random

overlap distribution by selecting random pairs of proteins from the crosslinking dataset and

calculate the overlap with the direct contact predictions for 1000 repeated trials. We then cal-

culate a z-score for the overlap of the direct contact predictions and the reported crosslinking

interactions with regards to random distribution. We repeat the process for determining the

enrichment of complexes from hu.MAP and the crosslinking interactions.

Structural modeling of the EKC/KEOPS complex

To construct a structural model of the human EKC/KEOPS complex, we built structural mod-

els of human EKC/KEOPS proteins based on available template structures in the Protein Data

Bank (PDB) [37] and then aligned those models with existing co-complex structures. Specifi-

cally, we used HHPred [38] to build alignments of the query protein and PDB sequences and

then used MODELLER [39] to build homology models. Homology models of human proteins

were then structurally aligned to the homologous structures in yeast and archeal crystal struc-

tures [40–42] using DaliLite [43].

Results and discussion

Discovery of conditionally dependent protein interactions

Fig 1 shows a workflow of our direct contact prediction framework. Native complexes repre-

sented by the true physical interaction network are biochemically fractionated and their pro-

teins identified using mass spectrometry. In order to find pairwise relationships between

proteins in a given CF-MS dataset, prior work has relied on correlation analysis, which effec-

tively reconstructs the subunit composition of complexes (especially when used as features in a

supervised machine learning framework, a case we do not consider here), but only partially

indicates the direct binding relationships among those subunits [4, 6].

More specifically, using correlation to identify pairwise relationships results in a large frac-

tion of indirect interactions. For example, consider proteins A, B and C, where A directly

binds B, B directly binds C, but A does not directly bind C. In this scenario, a network based

on correlation would produce a spurious edge between proteins A and C due to the indirect

relationship mediated by protein B. To address this issue, the inverse covariance matrix can be

calculated, which represents a network of undirected edges between conditionally dependent

nodes. With respect to CF-MS data, the nodes represent proteins and the conditional depen-

dence edges represent direct physical contacts.

Direct contacts from proteomics datasets
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Fig 1. Overview of direct contact prediction between protein complex subunits. Co-fractionation / mass

spectrometry (CF-MS) aims to repeatedly separate mixtures of native protein complexes (True Network) by

non-denaturing chromatography. Protein elution profiles are generated by mass spectrometry identification of

proteins across all chromatography fractions collected. Correlation between proteins’ elution profiles (left

side) performs well for identifying the subunit composition of complexes [4, 6, 7], but suffers from indirect

associations among proteins that inhibit its ability to identify directly contacting subunits within each complex.

We predict direct contacts (right side) by effectively inverting the correlation matrix to discriminate between

conditionally dependent and conditionally independent associations, which correspond to direct and indirect

protein interactions respectively. Specifically, we incorporate pseudo-counts, scale and transform the

Direct contacts from proteomics datasets
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The construction of this network has many theoretical solutions due to the limited number

of samples and vast number of possible interactions, but methods are available to infer the

inverse covariance matrix when the resulting network is expected to be sparse. Sparsity is a

safe assumption with respect to protein interactions, as estimates of the total number of

expected human protein-protein interactions range between 150k – 650k, orders of magnitude

less than the roughly 200–300 million possible interactions [44–46].

As described in detail in the Methods, we analyzed a dataset of approx. 3,000 co-fraction-

ation / mass spectrometry experiments [4, 6], and restrict direct contact predictions to known

co-complex interactions. Specifically, we use complexes with structures in the PDB for evalua-

tion and a set of 896 protein complexes larger than 4 unique subunits derived from >9000

published mass spectrometry proteomics experiments [1, 3, 4, 6] in hu.MAP [32], for all other

predictions. In all, we identified 2,434 potential interactions (S3 Table).

Conditionally dependent interactions are more likely to represent directly

contacting subunits within complexes

To evaluate whether our direct contact prediction method accurately identifies true interac-

tions, we compared our predictions to a benchmark of physically interacting proteins deter-

mined from multi-protein complexes with known three-dimensional structures (S1 Table), as

described in the Methods. Fig 2A plots the precision recall curve of our direct contact predic-

tion method relative to the set of 10 complexes used to select λ. We observed high precision

for the most confidently predicted contacts. This performance is in contrast to correlation

analysis, also plotted in Fig 2A, which has limited accuracy for high correlation coefficients.

Plotting precision-recall curves for the 29 alternative λ values considered during λ selection

(Fig 2A, gray curves) confirmed that all predictions made with alternative λ values substan-

tially outperformed correlation alone, demonstrating that this parameter was highly stable

with regard to its selected value.

We further evaluated our direct contact predictions on an additional 19 complexes with

known structure (Fig 2B) and observe consistent behavior of our method in terms of precision

recall. Interestingly, while correlation performs poorly relative to our method including all λ
values on the first set of complexes, it performs substantially better on the second benchmark

almost equal to our method. The precision recall curve of the combined benchmark with both

direct contact probability and correlation threshold markers can be found in Fig 2C.

We next asked if the ability to predict direct contacts was consistent across all complexes or

if certain complexes performed better than others. We therefore calculated the area under the

precision recall curve (PR AUC) for each individual complex and plotted its distribution in

Fig 2D. For our direct contact predictions, we observe a large variance of PR AUC suggesting

our method performs well for certain complexes and is limited for others. We still find, how-

ever, direct contact predictions outperform correlation analysis and random predictions.

Direct contact predictions are made for well-observed complexes

To further understand what types of complexes for which our method is appropriate, we inves-

tigated how much of an impact the amount of experimental observation affected the degree to

correlation matrix, use a sparse graphical model learning framework to compute conditionally dependent

partial correlations, followed by StARS stability analysis [29] to re-score the resulting conditional dependency

matrix such that each entry corresponds to the frequency with which it is supported by subsample trials. We

retain non-zero scores between subunits within each pre-defined human protein complex [32] as our

prediction of direct contacts.

https://doi.org/10.1371/journal.pcbi.1005625.g001
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which high confident direct contact predictions were made. We first calculated the number of

nonzero protein abundance measurements (i.e. count of fractions) for each observed protein

and then computed the mean count for every complex in the structure benchmark. Fig 3A

shows the distribution of the mean counts for complexes that had at least one prediction with

a direct contact probability > = 0.5 and those complexes which did not. We observe a differ-

ence in the distributions suggesting that complexes that are well sampled in our dataset are

more likely to have high confident predictions. It is important to note that several complexes

Fig 2. Scoring protein interactions by their conditional dependence accurately recovers direct protein-protein contacts within multi-

subunit complexes. A. We compared the value of the pairwise Pearson correlation coefficients between protein elution profiles (red curve)

versus the derived conditionally dependent interactions (i.e., direct contact predictions) (black curve) for their ability to recapitulate true protein

contacts in 10 complexes with known 3D structures. High-scoring conditionally dependent interactions were strongly enriched for true contacts,

unlike the most highly correlated protein elution profiles. Additionally, we plot precision recall curves for predictions made with alternative λ
choices (gray curves) and observe improved performance over correlation alone suggesting performance is robust to the selection of this

parameter. The random line (dashed) represents the theoretical baseline for all true positives (TP) divided by the total number of possible

subunit pairs (TP:335 / Total:1583) B. Evaluation of conditionally dependent interactions on an additional 19 non-redundant complexes showing

consistent performance on a leave out set. Random = (TP:261 / Total:1575). C. Evaluation on combined 29 complexes used in A and B. Direct

contact probability thresholds and correlation coefficient thresholds are marked in black and red text, respectively. Random = (TP:596 /

Total:3158). D. Distributions of area under the precision recall curve (PR AUC) for the individual 29 complexes showing large variance across

complexes but showing direct contacts outperforming correlation and random. Precision = TP/(TP+FP); recall = TP/(TP+FN).

https://doi.org/10.1371/journal.pcbi.1005625.g002
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in our benchmark are not well sampled and our method errs on the side of false negatives so as

to limit making false predictions. We additionally plot all direct contact predictions in Fig 3B

to better understand the relationship between the direct contact probability score and amount

of experimental sampling. We see that pairs of proteins that have high confidence predictions

are more likely to have been well sampled suggesting that repeated observations of the proteins

Fig 3. The direct contact prediction method makes high confident predictions for well-sampled

complexes. A. Distribution of protein subunit sampling for complexes with a max direct contact probability > =

0.5 (blue) and complexes with a max probability < 0.5 (green). Sampling is measured for a complex by averaging

the number of fractions for which each protein in the complex is observed (i.e. nonzero fractions). Our method

performs better for well-sampled complexes and is limited for poorly sampled ones. B. Distribution of the mean

number of nonzero fractions for pairs of proteins predicted by the direct contact method. Pairs of proteins with

high probabilities are well sampled compared to those with lower probabilities.

https://doi.org/10.1371/journal.pcbi.1005625.g003
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across many experiments are important. This trend is likely due to our subsampling scoring

procedure which is robust to spurious co-elutions from a single experiment.

Fig 4 shows the relationship between correlation and direct contact probability for four

examples of complexes in our structural benchmark spanning a range of well observed to

poorly observed. Two of the complexes, the proteasome and spliceosome have high confidence

predictions made by our method, while the other two, mitochondrial ribosome and mitochon-

drial super-complex have high-ranking correlation analysis predictions but lack high ranking

predictions by our method. The proteasome (pdbid: 4CR2) is well observed with an average

nonzero fraction count of ~356. Fig 4A shows our method makes many high confident true

positive contact predictions for the proteasome (i.e. top 9/10 are correct) while protein pairs

Fig 4. Relationship between direct contact probability and correlation for four example complexes with known structure. A. Direct

contact predictions for the well-observed proteasome (pdbid: 4CR2) show good discrimination between true (blue circle) and false positives (red

x) compared to that of correlation. B. Direct contact predictions for the moderately observed spliceosome complex (pdbid: 5MQF) shows good

discrimination between true and false positives but with a limited number of total predictions. C. The direct contact method does not make high

confident predictions for the mitochondrial ribosome (pdbid: 4CE4) due to its limited sampling while correlation makes many high ranking false

positive predictions. D. Similar to C, the direct contact method does not make predictions for the mitochondrial super-complex (pdbid: 2YBB)

due to its limited sampling while correlation makes several high confident true positive predictions.

https://doi.org/10.1371/journal.pcbi.1005625.g004
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with high correlation coefficient have more of a mix of true positive and false positives. The

spliceosome (pdbid: 5MQF, Fig 4B) is moderately observed in the dataset with an average

nonzero fraction count of ~182 and still shows good relative discrimination between true and

false positive contacts (i.e. top 5/10 are correct). Most of the co-fractionation experiments were

focused on identifying soluble cytosolic complexes and therefore membrane bound complexes

as well as complexes in subcellular compartments have limited coverage. For example, two

mitochondrial complexes, the mitochondrial ribosome (pdbid: 4CE4, Fig 4C) and the mito-

chondrial super-complex (pdbid: 2YBB, Fig 4D) are identified in a limited number of frac-

tions, on average ~42 and ~105 nonzero fractions respectively. Our method makes very few

direct contact predictions for both complexes while correlation has a wide distribution of coef-

ficients, many receiving high scores. Interestingly, high correlation coefficients for the mito-

chondrial ribosome have a high false positive rate (i.e. top 10 are all false positives) while the

mitochondrial super-complex performs better with 7 out of the top 10 pairs being true posi-

tives. The poor performance on the mitochondrial ribosome by correlation analysis contrib-

utes to the substantial dip in performance seen in the precision recall curves (Fig 2A). These

examples further demonstrate the ability of the direct contact prediction method to balance

true and false positives and to accurately report contacts when sufficient data is available. As

more CF-MS experimental datasets are published, we anticipate an improvement in the cover-

age of moderately to lowly observed complexes.

Conditionally dependent interactions have high overlap with inter protein

crosslinks

To assess our direct contact predictions on an independent dataset different from protein

structures, we compared to a human cell lysate mass spectrometry crosslinking dataset [10].

The maximum Cα-Cα distance between cross-linked residues for the DSSO cross-linker

reagent used is 23.4 Å, making an identified cross-linked subunit pair a reasonable proxy for

directly contacting proteins. Since our direct contact predictions are limited to co-complex

subunits, we first compare the crosslinking dataset to the set of complexes with which we

restricted our predictions. Fig 5 shows that the overlap of complex edges and cross-linked sub-

units as well as the overlap of our conditionally dependent interactions and cross-linked sub-

units are both enriched compared to random pairs. Further, we see a much larger enrichment

in our conditionally dependent interactions as opposed to complex edges demonstrating the

direct contact predictions are highly enriched for physically close and contacting proteins

pairs in human cell lysate.

Evaluation of direct contacts within the 26S proteasome

We next highlight our method’s ability to identify direct physical contacts among proteins by

focusing on a specific protein complex with known structure. The 26S proteasome makes for a

clear example of the utility of conditional dependency inference over correlation analysis due

to the availability of known three-dimensional structures of this complex [47–50] and the pres-

ence of well-defined sub-complexes (e.g., the 20S core and 19S cap). Fig 6A shows the contacts

from the known proteasome structure in the upper right portion of the matrix. Interactions

are observed amongst the PSMA1 through PSMA7 subunits and PSMB1 through PSMB7 sub-

units, representing the core, as well as PSMC1 through PSMC6 and PSMD1 through PSMD14

subunits, representing the cap. Notably, not all subunits of the core contact each other, and

there are relatively few contacts made between core and cap subunits. These known contacts

can be compared with the case shown in the lower left portion of the matrix in Fig 6A, which

plots correlation scores from fractionation profiles. While the correlation data exhibit a clear
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block structure with respect to the core and cap, they do not exhibit the more detailed struc-

ture observed in the true contact matrix.

The conditionally dependent interactions for these same data are plotted in the lower left

portion of the matrix in Fig 6B, representing the method’s estimate of directly contacting sub-

units. In contrast to the full block structure exhibited by the raw correlations, the direct contact

predictions capture finer details of the true contact matrix. Notably, many of the spurious indi-

rect contacts predicted by the correlation matrix are successfully eliminated. For example, the

core subunit PSMA6 does not directly contact PSMA1, PSMA7 or PSMB1-5, but does directly

contact PSMA2-5 and PSMB6-7. This binding specificity is at least partly captured by the

direct contact predictions, but is completely missed by the correlation analysis. Specifically,

our method predicts no direct contacts between PSMA6 and PSMA7 or PSMB1-3 subunits,

while correlation analysis produces high correlation coefficients for all core subunits. This

example exposes the inability of correlation to identify specific direct physical contacts

amongst indirect contacts and demonstrates the capacity to remove spurious contacts based

on identification of conditional independence.

Several high confidence false positive predictions are biologically

meaningful

We looked further into cases were we predicted high confidence direct contacts that were

labeled as incorrect based on structure data. We noticed an incorrect but high confidence

direct contact prediction between two subunits of the spliceosome, SNRPD2 and SNRPD3

(direct contact prob = 1.0). The electron microscopy structure of the spliceosome (pdbid:

5MQF) shows these two subunits within ~17 Å of each other and between the two subunits is

an RNA molecule. CF-MS is primarily a proteomics technique and does not observe other

Fig 5. Direct contact predictions have highly enriched overlap with HeLa lysate crosslinking

interactions. We report the enriched overlap of direct contact predictions and crosslinking interactions (z-

score = 36, red triangle) relative to a distribution of random pairs of proteins in the crosslinking dataset (blue).

Since we restrict our direct contact predictions to co-complex interactions within hu.MAP complexes, we

additionally compare to the enriched overlap of co-complex edges and crosslinking interactions (z-score ~24,

red circle). This shows direct contact predictions have a highly enriched overlap with crosslinking interactions

above expected by co-complex edges alone.

https://doi.org/10.1371/journal.pcbi.1005625.g005

Direct contacts from proteomics datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005625 October 12, 2017 13 / 23

https://doi.org/10.1371/journal.pcbi.1005625.g005
https://doi.org/10.1371/journal.pcbi.1005625


molecules such as RNA. We therefore expect to have a degree of error with respect to com-

plexes with structural RNA present, as CF-MS will not show co-elution profiles that discrimi-

nate RNA—protein sub-assemblies. We do believe that when these data do become available,

the direct contact prediction method is robust enough to identify direct contacts between

Fig 6. Prediction of direct contacts between subunits of the 26S proteasome. A. Matrix of true contacts

(upper right, derived from PDB entry 4CR2 [47]) and correlation coefficients (lower left) for the 26S

proteasome. Correlation identifies general sub-complex structure but fails to discriminate between direct and

indirect interactions (6 out of top 10 predictions correct). B. Matrix of true contacts (upper right) and direct

contact predictions (lower left) for the 26S proteasome. The direct contact method identifies many true

contacts while strongly reducing the number of false positive predictions (9 out of top 10 predictions correct).

https://doi.org/10.1371/journal.pcbi.1005625.g006
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RNA and protein molecules. Thus, in this case, the high confidence prediction points to a

close biological relationship between the two subunits.

Additionally, we predict a high confidence direct contact (direct contact prob = 0.95)

between two subunits of the eIF3 complex, specifically eIF3e and eIF3h. The C-termini of

these subunits participate in an octameric helical bundle at the center of the complex but do

not directly contact in the structure used for evaluation (pdbid 5A5T) [51]. In contrast,

another structure of eIF3 (pdbid: 3J8B) [52] does have eIF3e and eIF3h directly contacting in

the helical bundle. Both structures have limited resolution and are not considered atomic-

models suggesting that our data can inform in this discrepancy between models.

Prediction of direct contacts within human protein complexes with

unknown structures

The prediction of direct contacts gives an opportunity to characterize the structural architec-

ture of complexes that do not yet have a solved structure. The exocyst complex, for example, is

a hetero-octamer involved in tethering vesicles to the plasma membrane and is not well under-

stood at the molecular level [53]. Recent studies by Heider et al. [54] and Picco et al. [55] have

attempted to resolve the yeast exocyst subunit connectivity map using co-purification and

nanometer precision fluorescence microscopy, respectively. Interestingly, Heider and col-

leagues identified two sub-complexes, sub-complex I consisting of Sec3/EXOC1 (denoting

yeast/human orthologs), Sec5/EXOC2, Sec6/EXOC3, Sec8/EXOC4 and sub-complex II con-

sisting of Sec15/EXOC6, Sec10/EXOC5, Exo84/EXOC8 and Exo70/EXOC7. Our direct con-

tact predictions, plotted in Fig 7A, support the presence of these two sub-complexes in

addition to identifying inter-sub-complex contacts between EXOC4—EXOC7, EXOC4—

EXOC5, and EXOC3—EXOC8. These contacts along with the highly confident direct contact

predicted between EXOC3—EXOC4 (also supported by the Heider et al. data) suggests that

EXOC3 and EXCO4 form the core subunits of sub-complex I and serve as a bridge to sub-

complex II. Likewise, the direct contacts predicted between EXOC5, EXOC7 and EXOC8 sug-

gest they form the core of sub-complex II and are reciprocally responsible for the bridge

between sub-complexes. In comparison to the correlation network shown in Fig 7B we

observe a much denser network with fewer discriminating edges that help to identify the sub-

complexes. We also see a range of correlation coefficients that, empirically, have lower preci-

sion then their corresponding direct contact probabilities when evaluated on our combined

structural benchmark (Fig 2C). For instance, the interaction EXOC3-EXOC4 has a direct con-

tact probability of 0.85 which is estimated to have a physical contact precision of ~70% while

the corresponding correlation coefficient of 0.8 has an empirical precision of ~45%. This

example illustrates the ability of our method to predict high confident physical interactions

that discriminate from other indirect interactions.

A second large complex that has thus far eluded structural characterization is the multi-

aminoacyl-tRNA synthetase (also known as MARS) complex, which is composed of 9 synthe-

tases and 3 structural subunits (AIMP1/p43, AIMP2/p38, and EEF1E1/p18/AIMP3) and is

estimated to be 1 to 1.5 MDa in size [56]. Individual synthetases within the MARS complex are

responsible for covalently attaching specific amino acids to their respective tRNAs and are

essential for life. However, the function of the conserved supra-molecular assembly remains

unclear. Structural studies, although limited, have identified a few trends in terms of overall

architecture of the MARS complex [57], including the presence of two sub-complexes medi-

ated by a core AIMP2/p38 subunit. As shown in Fig 7C, the direct contact predictions clearly

establish AIMP2 as central to the architecture of the MARS complex, and strongly link the two

larger structural subunits, AIMP1 with AIMP2. Yeast two-hybrid further supports the AIMP1
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and AIMP2 interaction as well as the AIMP2 –DARS interaction and AIMP2 –KARS interac-

tion [8]. Additionally, we see strong interactions between the isoleucyl tRNA synthetase IARS

and other members of the complex, including the LARS subunit which is supported by mass

spectrometry crosslinking data [11]. This suggests that IARS, in addition to AIMP1 and

AIMP2, plays a central role in the physical organization of the MARS complex.

We further compare the direct contact network to the correlation network for the MARS

complex (Fig 7D). Like the correlation network for the exocyst complex described above, the

correlation network for the MARS complex is substantially denser, with many more edges of

Fig 7. Prediction of direct contacts within human protein complexes of unknown structure. Direct contacts and correlation coefficients

were calculated between 8 members of the human exocyst complex (A: direct contacts, B: correlation) and 10 members of the tRNA multi-

synthetase complex (C: direct contacts, D: correlation). Contact predictions are visualized here by drawing each direct contact prediction or

correlation prediction as an edge connecting the relevant subunits. Each predicted direct contact is associated with its prediction score, which

indicates the stability support for that interaction. In both complexes, certain direct interactions are strongly supported, suggesting key contacts

formed in the three-dimensional organization of these complexes, neither of which has yet been resolved. Figs 1–8 are acceptable for publication.

The comparison between direct contact predictions and correlation predictions indicates that the graphical model removes edges considered

conditionally independent from the direct contact network providing high confidence predictions. For A and B, colors (blue and green) represent

known sub-complexes from Heider et al. [54]. For C and D, red represents structural subunits and purple represents synthetases.

https://doi.org/10.1371/journal.pcbi.1005625.g007
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similar coefficients connecting subunits. Interestingly, we find high correlation edges between

subunits DARS and MARS, which do not have an edge in the direct contact network (Fig 7C).

Since our method attempts to remove spurious conditionally independent edges, this suggests

that the correlation coefficient observed between the DARS and MARS subunits can be ex-

plained by their mutual interaction with IARS. We see a similar pattern of a high correlation

edge absent in the direct contact network including MARS-RARS, MARS-QARS, QARS-

RARS, LARS-DARS as well as others. Many of these subunits also interact with the IARS sub-

unit, again suggesting it is the central organizing subunit of the complex. This example demon-

strates the utility of direct contact predictions to potentially remove spurious edges from a

physical interaction graph.

Conditional dependency supports a 3D structural model of the human

EKC/KEOPS complex

We observed multiple conditionally dependent interactions among a conserved human multi-

protein complex with a recently discovered missing subunit. The Endopeptidase-like and

Kinase associated to transcribed Chromatin (EKC)/Kinase, Endopeptidase and Other Proteins

of small Size (KEOPS) complex is a highly conserved protein complex known to introduce an

essential modification to tRNAs across the tree of life [58–60]. The N6-threonylcarbamoylade-

nosine (t6A) modification is required for normal cell growth and accurate protein translation

in bacteria, archaea, and eukaryotes. While the bacterial and lower eukaryotic components of

the EKC/KEOPS complex are known, some of the human subunits are substantially diverged

and have only recently been discovered [61, 62].

In yeast, the complex consists of five proteins, visualized in Fig 8A: the atypical TP53 recep-

tor kinase/ATPase (Bud32), the Kinase-Associated Endopeptidase (Kae1), and three small pro-

teins, Cgi121, Pcc1, and Gon7 [58, 60]]. Clear orthologs of four of these occur in humans and

have previously been confirmed to participate in the EKC/KEOPS complex: TP53RK (the

ortholog of Bud32, known to partially complement a Bud32 mutant [63]), TPRKB (the ortho-

log of Cgi121), LAGE3 (the ortholog of Pcc1), and OSGEP (the ortholog of Kae1). The yeast

Gon7 has generally been thought to be fungi-specific [59, 61], and has no clear mammalian

ortholog in major ortholog databases [36, 64].

We found that the conditionally dependent interactions (plotted in Fig 8B) strongly sup-

ported direct binding of human TP53RK with TPRKB, consistent with expectation from the

yeast and archeal crystal structures [40, 41]. Direct binding was also indicated between LAGE3

and OSGEP, again consistent with structural data from archeal homologues [42]. We next

observed strong evidence supporting direct binding of OSGEP and LAGE3 with human pro-

tein, C14ORF142. Using profile-profile matching, we observe distant but significant homology

between C14ORF142 and Gon7 (16% sequence identity and probability score of 92.0), as

measured by HHpred [38], which identified Gon7 as the top hit for C14ORF142 from the full

non-redundant (reduced to 70% identity) PDB database. This distant sequence similarity

strongly supported the observed conditionally dependent protein-protein interactions and

suggested that C14ORF142 was indeed likely to substitute for Gon7 within the human com-

plex. Recently, C14ORF142 has been identified as the likely Gon7 ortholog by co-purification

with known EKC/KEOPS members [62]. Additionally, the EKC/KEOPS complex was recon-

stituted in vitro and GST-C14ORF142 was shown to bind directly to the OSGEP-LAGE3 sub-

complex validating our prediction.

Taking advantage of our predicted direct contacts of C14ORF142 with OSGEP and LAGE3,

we constructed a 3D model of the human EKC/KEOPS complex by homology modeling the

human proteins onto their yeast orthologs of known 3D structure, including modeling
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C14ORF142 on the known Gon7 structure (Fig 8C). The resulting 3D model accounts for most

of the OSGEP, TP53RK, and TPRKB amino acid sequences, but leaves the C-terminal region of

C14ORF142 and the N-terminal region of LAGE3 unmodeled, pointing to additional aspects of

this complex still yet to be described. Importantly, the model faithfully recapitulates the known

functional and interaction data from the literature, the direct contact predictions from the co-

fractionation / mass spectrometry datasets, and the newly recognized C14ORF142/Gon7 struc-

tural homology, and thus serves to integrate a large body of data into a single model to help

guide future mechanistic studies of this ancient human protein complex.

Fig 8. Identification of direct contacts between C14ORF142 and the human EKC/KEOPS tRNA

modification complex. A. Highly conserved across both prokaryotes and eukaryotes, the EKC/KEOPS

complex is thought to consist of 5 proteins, visualized here for the yeast complex based on a combination of

modeling and crystal structures (PDB entries 4WX8, 5JMV, 3EN9 and 4WW5). B. Conditionally dependent

interactions among subunits of the human protein complex highlight specific contacts that match closely to

those observed between the yeast proteins, and additionally implicate the human protein C14ORF142 as

directly bound to OSGEP and LAGE3. C. Using the yeast structure as a homology template, a 3D model was

built of the 4 known human subunits and C14ORF142, taking advantage of C14ORF142’s distant similarity to

the yeast Gon7 subunit.

https://doi.org/10.1371/journal.pcbi.1005625.g008
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Conclusion

Knowledge of the three dimensional architecture of a protein complex is highly beneficial to

understanding its mechanistic function, but thousands of complexes have thus far proved elu-

sive to traditional structural biology techniques. We present an orthogonal approach in deter-

mining aspects of the three dimensional architecture of complexes by analyzing large scale

CF-MS datasets. Using our method, we predicted thousands of direct contacts between com-

plex subunits. We expect this resource can be used as a valuable constraint for structurally

modeling the many stable protein complexes in the human proteome using available modeling

tools [65, 66]. The method should easily extend to new organisms as additional large-scale

CF-MS datasets become available. Code and input elution profiles file can be found at https://

github.com/marcottelab/direct_contact.
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24. Meinshausen N, Bühlmann P. High Dimensional Graphs and Variable Selection with the Lasso. The

Annals of Statistics. 2006; 34(3):1436–62.

25. Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Statist Soc B. 1996; 58(1):267–

88.

26. Pourahmadi M. Covariance Estimation: The GLM and Regularization Perspectives. Statistical Science.

2011; 26(3):369–87.

27. Yuan M, Lin Y. Model selection and estimation in the Gaussian graphical model. Biometrika. 2007; 94

(1):19–35.

28. Foygel R, Drton M. Extended Bayesian Information Criteria for Gaussian Graphical Models. In: Lafferty

J, Williams C, Shawe-taylor J, Zemel RS, Culotta A, editors. Advances in Neural Information Processing

Systems 232010. p. 604–12.

29. Liu H, Roeder K, Wasserman L. Stability Approach to Regularization Selection (StARS) for High Dimen-

sional Graphical Models. Adv Neural Inf Process Syst. 2010; 24(2):1432–40. PMID: 25152607

30. Zhao T, Liu H, Roeder K. The huge package for high-dimensional undirected graph estimation in r. The

Journal of Machine Learning Research. 2012; 13:1059–62. PMID: 26834510

31. Müller CL, Bonneau R, Kurtz Z. Generalized Stability Approach for Regularized Graphical Models.

arXiv. 2016:1605.07072.

32. Drew K, Lee C, Huizar RL, Tu F, Borgeson B, McWhite CD, et al. Integration of over 9,000 mass spec-

trometry experiments builds a global map of human protein complexes. Mol Syst Biol. 2017; 13:932.

https://doi.org/10.15252/msb.20167490 PMID: 28596423

33. Curran JM. Hotelling: Hotelling’s T-squared test and variants. 2013.

34. Zhao T, Liu H, Roeder K, Lafferty J, Wasserman L. The huge Package for High-dimensional Undirected

Graph Estimation in R. J Mach Learn Res. 2012; 13:1059–62. PMID: 26834510

35. Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;

372(3):774–97. https://doi.org/10.1016/j.jmb.2007.05.022 PMID: 17681537

36. O’Brien KP, Remm M, Sonnhammer EL. Inparanoid: a comprehensive database of eukaryotic ortho-

logs. Nucleic Acids Res. 2005; 33(Database issue):D476–80. https://doi.org/10.1093/nar/gki107 PMID:

15608241

37. Rose PW, Prlic A, Altunkaya A, Bi C, Bradley AR, Christie CH, et al. The RCSB protein data bank: inte-

grative view of protein, gene and 3D structural information. Nucleic Acids Res. 2017; 45(D1):D271–

D81. https://doi.org/10.1093/nar/gkw1000 PMID: 27794042

38. Soding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and struc-

ture prediction. Nucleic Acids Res. 2005; 33(Web Server issue):W244–8. https://doi.org/10.1093/nar/

gki408 PMID: 15980461

39. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;

234(3):779–815. https://doi.org/10.1006/jmbi.1993.1626 PMID: 8254673

40. Zhang W, Collinet B, Graille M, Daugeron MC, Lazar N, Libri D, et al. Crystal structures of the Gon7/

Pcc1 and Bud32/Cgi121 complexes provide a model for the complete yeast KEOPS complex. Nucleic

Acids Res. 2015; 43(6):3358–72. https://doi.org/10.1093/nar/gkv155 PMID: 25735745

41. Mao DY, Neculai D, Downey M, Orlicky S, Haffani YZ, Ceccarelli DF, et al. Atomic structure of the

KEOPS complex: an ancient protein kinase-containing molecular machine. Mol Cell. 2008; 32(2):259–

75. https://doi.org/10.1016/j.molcel.2008.10.002 PMID: 18951093

42. Wan LC, Pillon MC, Thevakumaran N, Sun Y, Chakrabartty A, Guarne A, et al. Structural and functional

characterization of KEOPS dimerization by Pcc1 and its role in t6A biosynthesis. Nucleic Acids Res.

2016; 44(14):6971–80. https://doi.org/10.1093/nar/gkw542 PMID: 27302132

43. Hasegawa H, Holm L. Advances and pitfalls of protein structural alignment. Curr Opin Struct Biol. 2009;

19(3):341–8. https://doi.org/10.1016/j.sbi.2009.04.003 PMID: 19481444

Direct contacts from proteomics datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005625 October 12, 2017 21 / 23

https://doi.org/10.1371/journal.pcbi.1004226
https://doi.org/10.1371/journal.pcbi.1004226
http://www.ncbi.nlm.nih.gov/pubmed/25950956
https://doi.org/10.1021/pr2002116
http://www.ncbi.nlm.nih.gov/pubmed/21488652
http://www.ncbi.nlm.nih.gov/pubmed/25152607
http://www.ncbi.nlm.nih.gov/pubmed/26834510
https://doi.org/10.15252/msb.20167490
http://www.ncbi.nlm.nih.gov/pubmed/28596423
http://www.ncbi.nlm.nih.gov/pubmed/26834510
https://doi.org/10.1016/j.jmb.2007.05.022
http://www.ncbi.nlm.nih.gov/pubmed/17681537
https://doi.org/10.1093/nar/gki107
http://www.ncbi.nlm.nih.gov/pubmed/15608241
https://doi.org/10.1093/nar/gkw1000
http://www.ncbi.nlm.nih.gov/pubmed/27794042
https://doi.org/10.1093/nar/gki408
https://doi.org/10.1093/nar/gki408
http://www.ncbi.nlm.nih.gov/pubmed/15980461
https://doi.org/10.1006/jmbi.1993.1626
http://www.ncbi.nlm.nih.gov/pubmed/8254673
https://doi.org/10.1093/nar/gkv155
http://www.ncbi.nlm.nih.gov/pubmed/25735745
https://doi.org/10.1016/j.molcel.2008.10.002
http://www.ncbi.nlm.nih.gov/pubmed/18951093
https://doi.org/10.1093/nar/gkw542
http://www.ncbi.nlm.nih.gov/pubmed/27302132
https://doi.org/10.1016/j.sbi.2009.04.003
http://www.ncbi.nlm.nih.gov/pubmed/19481444
https://doi.org/10.1371/journal.pcbi.1005625


44. Hart GT, Ramani AK, Marcotte EM. How complete are current yeast and human protein-interaction net-

works? Genome Biol. 2006; 7(11):120. https://doi.org/10.1186/gb-2006-7-11-120 PMID: 17147767

45. Venkatesan K, Rual JF, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, et al. An empirical

framework for binary interactome mapping. Nat Methods. 2009; 6(1):83–90. https://doi.org/10.1038/

nmeth.1280 PMID: 19060904

46. Stumpf MP, Thorne T, de Silva E, Stewart R, An HJ, Lappe M, et al. Estimating the size of the human

interactome. Proc Natl Acad Sci U S A. 2008; 105(19):6959–64. https://doi.org/10.1073/pnas.

0708078105 PMID: 18474861

47. Unverdorben P, Beck F, Sledz P, Schweitzer A, Pfeifer G, Plitzko JM, et al. Deep classification of a

large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad

Sci U S A. 2014; 111(15):5544–9. https://doi.org/10.1073/pnas.1403409111 PMID: 24706844

48. Huang X, Luan B, Wu J, Shi Y. An atomic structure of the human 26S proteasome. Nat Struct Mol Biol.

2016; 23(9):778–85. https://doi.org/10.1038/nsmb.3273 PMID: 27428775

49. Schweitzer A, Aufderheide A, Rudack T, Beck F, Pfeifer G, Plitzko JM, et al. Structure of the human

26S proteasome at a resolution of 3.9 A. Proc Natl Acad Sci U S A. 2016; 113(28):7816–21. https://doi.

org/10.1073/pnas.1608050113 PMID: 27342858

50. Chen S, Wu J, Lu Y, Ma YB, Lee BH, Yu Z, et al. Structural basis for dynamic regulation of the human

26S proteasome. Proc Natl Acad Sci U S A. 2016; 113(46):12991–6. https://doi.org/10.1073/pnas.

1614614113 PMID: 27791164

51. des Georges A, Dhote V, Kuhn L, Hellen CU, Pestova TV, Frank J, et al. Structure of mammalian eIF3

in the context of the 43S preinitiation complex. Nature. 2015; 525(7570):491–5. https://doi.org/10.1038/

nature14891 PMID: 26344199

52. Erzberger JP, Stengel F, Pellarin R, Zhang S, Schaefer T, Aylett CH, et al. Molecular architecture of the

40SeIF1eIF3 translation initiation complex. Cell. 2014; 158(5):1123–35. https://doi.org/10.1016/j.cell.

2014.07.044 PMID: 25171412

53. Wu B, Guo W. The Exocyst at a Glance. J Cell Sci. 2015; 128(16):2957–64. https://doi.org/10.1242/jcs.

156398 PMID: 26240175

54. Heider MR, Gu M, Duffy CM, Mirza AM, Marcotte LL, Walls AC, et al. Subunit connectivity, assembly

determinants and architecture of the yeast exocyst complex. Nat Struct Mol Biol. 2016; 23(1):59–66.

https://doi.org/10.1038/nsmb.3146 PMID: 26656853

55. Picco A, Irastorza-Azcarate I, Specht T, Boke D, Pazos I, Rivier-Cordey AS, et al. The In Vivo Architec-

ture of the Exocyst Provides Structural Basis for Exocytosis. Cell. 2017; 168(3):400–12 e18. https://doi.

org/10.1016/j.cell.2017.01.004 PMID: 28129539

56. Dias J, Renault L, Perez J, Mirande M. Small-angle X-ray solution scattering study of the multi-aminoa-

cyl-tRNA synthetase complex reveals an elongated and multi-armed particle. J Biol Chem. 2013; 288

(33):23979–89. https://doi.org/10.1074/jbc.M113.489922 PMID: 23836901

57. Havrylenko S, Mirande M. Aminoacyl-tRNA synthetase complexes in evolution. Int J Mol Sci. 2015; 16

(3):6571–94. https://doi.org/10.3390/ijms16036571 PMID: 25807264

58. Downey M, Houlsworth R, Maringele L, Rollie A, Brehme M, Galicia S, et al. A genome-wide screen

identifies the evolutionarily conserved KEOPS complex as a telomere regulator. Cell. 2006; 124

(6):1155–68. https://doi.org/10.1016/j.cell.2005.12.044 PMID: 16564010

59. Kisseleva-Romanova E, Lopreiato R, Baudin-Baillieu A, Rousselle JC, Ilan L, Hofmann K, et al. Yeast

homolog of a cancer-testis antigen defines a new transcription complex. EMBO J. 2006; 25(15):3576–

85. https://doi.org/10.1038/sj.emboj.7601235 PMID: 16874308

60. Srinivasan M, Mehta P, Yu Y, Prugar E, Koonin EV, Karzai AW, et al. The highly conserved KEOPS/

EKC complex is essential for a universal tRNA modification, t6A. EMBO J. 2011; 30(5):873–81. https://

doi.org/10.1038/emboj.2010.343 PMID: 21183954

61. Costessi A, Mahrour N, Sharma V, Stunnenberg R, Stoel MA, Tijchon E, et al. The human EKC/KEOPS

complex is recruited to Cullin2 ubiquitin ligases by the human tumour antigen PRAME. PLoS One.

2012; 7(8):e42822. https://doi.org/10.1371/journal.pone.0042822 PMID: 22912744

62. Wan LC, Maisonneuve P, Szilard RK, Lambert JP, Ng TF, Manczyk N, et al. Proteomic analysis of the

human KEOPS complex identifies C14ORF142 as a core subunit homologous to yeast Gon7. Nucleic

Acids Res. 2017; 45(2):805–17. https://doi.org/10.1093/nar/gkw1181 PMID: 27903914

63. Facchin S, Lopreiato R, Ruzzene M, Marin O, Sartori G, Gotz C, et al. Functional homology between

yeast piD261/Bud32 and human PRPK: both phosphorylate p53 and PRPK partially complements

piD261/Bud32 deficiency. FEBS Lett. 2003; 549(1–3):63–6. PMID: 12914926

64. Heinicke S, Livstone MS, Lu C, Oughtred R, Kang F, Angiuoli SV, et al. The Princeton Protein Orthology

Database (P-POD): a comparative genomics analysis tool for biologists. PLoS One. 2007; 2(8):e766.

https://doi.org/10.1371/journal.pone.0000766 PMID: 17712414

Direct contacts from proteomics datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005625 October 12, 2017 22 / 23

https://doi.org/10.1186/gb-2006-7-11-120
http://www.ncbi.nlm.nih.gov/pubmed/17147767
https://doi.org/10.1038/nmeth.1280
https://doi.org/10.1038/nmeth.1280
http://www.ncbi.nlm.nih.gov/pubmed/19060904
https://doi.org/10.1073/pnas.0708078105
https://doi.org/10.1073/pnas.0708078105
http://www.ncbi.nlm.nih.gov/pubmed/18474861
https://doi.org/10.1073/pnas.1403409111
http://www.ncbi.nlm.nih.gov/pubmed/24706844
https://doi.org/10.1038/nsmb.3273
http://www.ncbi.nlm.nih.gov/pubmed/27428775
https://doi.org/10.1073/pnas.1608050113
https://doi.org/10.1073/pnas.1608050113
http://www.ncbi.nlm.nih.gov/pubmed/27342858
https://doi.org/10.1073/pnas.1614614113
https://doi.org/10.1073/pnas.1614614113
http://www.ncbi.nlm.nih.gov/pubmed/27791164
https://doi.org/10.1038/nature14891
https://doi.org/10.1038/nature14891
http://www.ncbi.nlm.nih.gov/pubmed/26344199
https://doi.org/10.1016/j.cell.2014.07.044
https://doi.org/10.1016/j.cell.2014.07.044
http://www.ncbi.nlm.nih.gov/pubmed/25171412
https://doi.org/10.1242/jcs.156398
https://doi.org/10.1242/jcs.156398
http://www.ncbi.nlm.nih.gov/pubmed/26240175
https://doi.org/10.1038/nsmb.3146
http://www.ncbi.nlm.nih.gov/pubmed/26656853
https://doi.org/10.1016/j.cell.2017.01.004
https://doi.org/10.1016/j.cell.2017.01.004
http://www.ncbi.nlm.nih.gov/pubmed/28129539
https://doi.org/10.1074/jbc.M113.489922
http://www.ncbi.nlm.nih.gov/pubmed/23836901
https://doi.org/10.3390/ijms16036571
http://www.ncbi.nlm.nih.gov/pubmed/25807264
https://doi.org/10.1016/j.cell.2005.12.044
http://www.ncbi.nlm.nih.gov/pubmed/16564010
https://doi.org/10.1038/sj.emboj.7601235
http://www.ncbi.nlm.nih.gov/pubmed/16874308
https://doi.org/10.1038/emboj.2010.343
https://doi.org/10.1038/emboj.2010.343
http://www.ncbi.nlm.nih.gov/pubmed/21183954
https://doi.org/10.1371/journal.pone.0042822
http://www.ncbi.nlm.nih.gov/pubmed/22912744
https://doi.org/10.1093/nar/gkw1181
http://www.ncbi.nlm.nih.gov/pubmed/27903914
http://www.ncbi.nlm.nih.gov/pubmed/12914926
https://doi.org/10.1371/journal.pone.0000766
http://www.ncbi.nlm.nih.gov/pubmed/17712414
https://doi.org/10.1371/journal.pcbi.1005625


65. Webb B, Lasker K, Velazquez-Muriel J, Schneidman-Duhovny D, Pellarin R, Bonomi M, et al. Modeling

of proteins and their assemblies with the Integrative Modeling Platform. Methods Mol Biol. 2014;

1091:277–95. https://doi.org/10.1007/978-1-62703-691-7_20 PMID: 24203340

66. Dominguez C, Boelens R, Bonvin AM. HADDOCK: a protein-protein docking approach based on bio-

chemical or biophysical information. J Am Chem Soc. 2003; 125(7):1731–7. https://doi.org/10.1021/

ja026939x PMID: 12580598

Direct contacts from proteomics datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005625 October 12, 2017 23 / 23

https://doi.org/10.1007/978-1-62703-691-7_20
http://www.ncbi.nlm.nih.gov/pubmed/24203340
https://doi.org/10.1021/ja026939x
https://doi.org/10.1021/ja026939x
http://www.ncbi.nlm.nih.gov/pubmed/12580598
https://doi.org/10.1371/journal.pcbi.1005625

