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Abstract

Proteins interact in complex protein–protein interaction (PPI) networks whose topological properties—such as scale-free
topology, hierarchical modularity, and dissortativity—have suggested models of network evolution. Currently preferred
models invoke preferential attachment or gene duplication and divergence to produce networks whose topology matches
that observed for real PPIs, thus supporting these as likely models for network evolution. Here, we show that the interaction
density and homodimeric frequency are highly protein age–dependent in real PPI networks in a manner which does not
agree with these canonical models. In light of these results, we propose an alternative stochastic model, which adds each
protein sequentially to a growing network in a manner analogous to protein crystal growth (CG) in solution. The key ideas
are (1) interaction probability increases with availability of unoccupied interaction surface, thus following an anti-
preferential attachment rule, (2) as a network grows, highly connected sub-networks emerge into protein modules or
complexes, and (3) once a new protein is committed to a module, further connections tend to be localized within that
module. The CG model produces PPI networks consistent in both topology and age distributions with real PPI networks and
is well supported by the spatial arrangement of protein complexes of known 3-D structure, suggesting a plausible physical
mechanism for network evolution.
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Introduction

Life is highly organized at all levels of molecules, cells, tissues,

and organisms, and such relationships among biological entities

are often represented as networks, with vertices representing e.g.

genes or proteins, and edges representing e.g. physical protein

interactions, transcriptional regulation, or metabolic reactions.

The topology of biological networks shows many interesting

characteristics, such as scale-free topology (power-law or broad

degree distribution) and hierarchical modularity (reviewed in [1]).

These properties are believed to be the basis of functional

modularity, error-tolerance, and stability [2–5] characteristic of

many biological networks.

One important question is thus how these important network

architectures originate, and what driving forces underlie the

observed networks. It has not been clear whether network

architecture results from the mosaic sum of each gene or protein’s

inherent properties, such as stickiness or interactive promiscuity [6,7], or

from a stochastic mechanism underlying network evolution, in

which the trajectory of network evolution is conditioned on the

previous state of the network [8]. This problem has been of wide

interest because it raises fundamental questions about design

principles of molecular networks and the role of natural selection

in the evolution of network structure [9].

Initially, Barabási and Albert proposed a preferential attach-

ment rule as a general mechanism to generate scale-free networks

[8]. In this model, a newly introduced node is more likely to be

attached to highly connected nodes, resulting in a power-law

degree distribution. In a network of protein-protein interactions

(PPI), gene duplication and divergence (DD) is most popularly

thought of as the origin of the scale-free topology of protein

interaction networks [10–15]. In the DD model, the degree of a

node increases mainly by having duplicate genes as its neighbors.

Therefore, the preferential attachment rule is achieved implicitly,

with highly connected nodes having more chance to have

duplicate genes as their neighbors [1]. The DD model is also

shown to generate hierarchically modular networks under certain

conditions [16].

Although the DD model generates scale-free and modular

networks, it has drawbacks that must be noted if it is to be

considered a main mechanism for PPI network evolution.

Primarily, only a small fraction of duplicate genes effectively

contribute to the overall network topology. The key feature of the

DD model originates from the fact that duplicate genes share a

certain number of interaction partners. However, the interaction

patterns of duplicate genes diverge rapidly [17], and the vast

majority of gene duplicates are shown to share no interaction

partners [18–20]. Some duplicates, in fact, may have diverged so

extensively that they can no longer be detected by sequence

homology. These distant duplicates would share even fewer

interaction partners, and thus they are essentially indistinguishable

from non-duplicate pairs in terms of interaction patterns.
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To better understand the evolution of PPI networks, we analyzed

a non-topological property—the age of each protein as estimated

based upon the taxonomic distribution of its constituent domains

[21,22]—and observe that yeast PPI networks show a unique

interaction density pattern between different protein age groups.

The density pattern of the yeast PPI network was compared with

those generated by canonical network evolution models—prefer-

ential attachment (the Barabási-Albert model), duplication-diver-

gence (DD), and anti-preferential attachment (AP). Each model

generates a unique interaction density pattern between the age

groups; thus, the validity of the models could be effectively

discriminated. Using this test, we observe that none of the canonical

models are consistent with real yeast PPI networks. The age-

dependent interaction density pattern nonetheless suggests growth

by a stochastic process. We therefore propose an alternative model

called the crystal growth (CG) model, which is based upon known

physical and chemical principles and shows good agreement with

real PPI networks in both topological and age properties as well as

the 3-D subunit configurations of protein complexes.

Results

Interaction Density Patterns between Protein Age
Groups

First, we introduce the basic attachment rules of protein-protein

interactions. The interaction densities, Dm,n, between two protein

age groups (m,n) show unique patterns depending upon the

attachment rule. Three basic rules are considered—random

attachment (RA), preferential attachment (PA) by Barabási and

Albert [8,23], and anti-preferential attachment (AP). Here, we

consider three protein age groups (G1, G2, and G3, from oldest to

youngest), and assume a fixed number of new connections (DE) are

made between a newly introduced node and the existing nodes as

a network grows.

In the RA model, a new node is randomly connected to existing

nodes with equal probabilities. Initially, at time t = 1, the first age

group, G1, makes only intra-group connections. Then a new

group, G2, is introduced and connected randomly either to G1

(inter-group) or within G2 (intra-group). In the RA model, the

expected interaction density, D, is the same between D1,2 and

D2,2. Similarly, G3 connects to G1, G2, and within G3, showing

the pattern of D1,3 = D2,3 = D3,3. More generally, the RA model

shows a pattern of Dm,n = Dm+1,n (m,n) (Figure 1A). In the PA

mode, new proteins are preferentially connected to highly

connected nodes. Thus, G2 proteins are more likely to be linked

to G1 than G2 because G1 proteins have previously made

connections and have a higher average degree. Likewise, G3

proteins are more likely to be connected to older groups, showing

D1,3.D2,3.D3,3. Thus the typical pattern of the PA model is

Dm,n.Dm+1,n (m,n) (Figure 1B). The AP model shows an inverse

pattern to the PA model, Dm,n,Dm+1,n (m,n), because new nodes

prefer to connect to less-connected nodes (Figure 1C).

As a measure of age-dependency of interaction density, DD is

defined as the average value of Dm+1,n - Dm,n (m,n) (see

Methods). A positive DD indicates that protein interactions are

more likely between similar age groups. The sign of DD effectively

discriminates each model—it is positive in PA, negative in AP, and

near zero in the RA model.

Figure 1. Interaction density (D) patterns depend upon the
attachment rule. The protein age groups G1, G2, and G3 emerge at
times t = 1, 2, and 3, respectively. In all cases, the first age group, G1,
makes intra-group connections at t = 1. (A) In the random attachment
(RA) model, G2 makes connections to G1 and within G2 with an equal
probability at t = 2, showing that D1,1 = D1,2. Similarly, G3 makes
connections to G1, G2, and within G3 (D1,3 = D2,3 = D3,3). The interaction
densities between protein age groups are shown in the right panel. (B)
In the preferential attachment (PA) model, G2 attaches more frequently
to G1 than within G2 because, on average, G1 is more connected
(D1,2.D2,2). At t = 3, G3 is preferentially connected to older groups in
the order of G1.G2.G3 (D1,3.D2,3.D3,3). (C) In anti-preferential
attachment (AP), the interaction density shows the reverse pattern to
PA. Because a new node prefers less-connected nodes or younger
groups, the density pattern shows D1,2,D2,2 and D1,3,D2,3,D3,3.
Therefore, the interaction density (D) decreases in AP but increases in
PA from top to bottom in the right panel.
doi:10.1371/journal.pcbi.1000232.g001

Author Summary

Proteins function together forming stable protein com-
plexes or transient interactions in various cellular process-
es, such as gene regulation and signaling. Here, we
address the basic question of how these networks of
interacting proteins evolve. This is an important problem,
as the structures of such networks underlie important
features of biological systems, such as functional modu-
larity, error-tolerance, and stability. It is not yet known how
these network architectures originate or what driving
forces underlie the observed network structure. Several
models have been proposed over the past decade—in
particular, a ‘‘rich get richer’’ model (preferential attach-
ment) and a model based upon gene duplication and
divergence—often based only on network topologies.
Here, we show that real yeast protein interaction networks
show a unique age distribution among interacting
proteins, which rules out these canonical models. In light
of these results, we developed a simple, alternative model
based on well-established physical principles, analogous to
the process of growing protein crystals in solution. The
model better explains many features of real PPI networks,
including the network topologies, their characteristic age
distributions, and the spatial distribution of subunits of
differing ages within protein complexes, suggesting a
plausible physical mechanism of network evolution.

Evolution of Protein-Protein Interaction Networks
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Characterization of the Yeast PPI Network
We collected two independent sets of yeast PPIs - literature

curated (LC) and high-throughput (HTP) PPIs, using the method

of Batada et al. [23,24] (Dataset S1 and Dataset S2) and inspected

both the network topology and the age-dependency of interaction

density. The number of nodes, N (proteins) and edges, E

(interactions) in the LC and HTP networks are NLC = 3268,

ELC = 12058 and NHTP = 2488, EHTP = 6766 respectively. The

union (LC+HTP) of the two networks has 3780 nodes and 16505

edges. As HTP and LC+HTP show highly similar characteristics

(Figure S2) as well as the original set by Batada et al. [23,24], we

mainly discuss the LC data set as the yeast PPI network (PPIyeast)

here. The recently compiled set (Y2H-union) by Vidal and

colleagues [25] from large-scale yeast two-hybrid experiments

showed the same trend (Figure S2).

The PPIyeast recapitulates known topological features such as a

scale-free degree distribution, hierarchical modularity, and degree-

dissortative mixing property [8,26–28], which were characterized

by the various network property indices shown in the first column

(PPI) in Figure 2 (summarized in Table S1). The probability of a

node having degree k shows a scale-free or power-law degree

distribution in P(k) , k2c plot (the row I in Figure 2). The PPIyeast

is shown to be highly modular, with a high degree of clustering

coefficient, C and modularity index, Q defined by Newman [29].

In particular, the PPIyeast has a scaling property in C(k) , k2b plot

(b.0), suggesting hierarchical modularity [27] (the row II in

Figure 2). In a dissortative network, high-degree nodes (hubs) tend

to connect with low-degree nodes and hub-hub interactions are

suppressed, as called the Maslov-Sneppen rule [30]. The degree-

dissortativity was characterized by a negative correlation in

,knn.(k) , kd (d,0) plot (the row III in Figure 2), where

,knn.(k) is the average degree of the nearest neighbors of the

nodes with degree k.

Surprisingly, the interaction density of PPIyeast is also highly age-

dependent. Yeast proteins were assigned to one of the age groups

ABE, AE/BE, E and F depending on the taxonomic distribution of

constituent domains among archaea (A), bacteria (B), eukaryote (E)

and fungi (F) (see Methods, Figure S1). We measured the

Figure 2. The network properties of the yeast PPI network are compared with the different models for network evolution. None of
the canonical models (PA, DD, and AP) were compatible with the real PPIyeast in terms of both topology and the age-dependency of interaction
density. Only the CG model shows similar characteristics to the PPIyeast for all the network properties tested. The plots in each row, I-IV, indicate (I) the
degree distribution P(k), (II) the clustering coefficient C(k), (III) the average degree of nearest neighbors ,knn.(k), and (IV) the interaction density
pattern (DD) between protein age groups. In the yeast PPI, the network shows a scale-free degree distribution, hierarchical modularity, and
dissortative mixing properties (negative correlation in rows I-III, respectively). In row IV, the interaction density tends to be dense within the same
group (diagonal) and sparse between different age groups (off-diagonal) in each column with positive DD, similar in pattern to the anti-preferential
attachment (AP) in Figure 1C. In the PA model, the resulting network is scale-free (I) and slightly dissortative (III), similar to the PPIyeast. However, it is
not hierarchically modular (II) and shows an inverse pattern of negative DD. In the DD model, the resulting network is scale-free (I), dissortative (III),
and also hierarchically modular but not as highly as the PPIyeast (II). It shows an inverse pattern of negative DD as the PA model. In the AP model, the
resulting network is highly different from the PPIyeast, showing non scale-free, non hierarchically modular, and non dissortative structure (I-III),
although the interaction density pattern (DD.0) is similar (IV). In the CG model, the network shows highly similar network characteristics to PPIyeast in
both topology (I-III) and interaction density (IV). The number of nodes is N = 3,000 in all cases. The average degree is ,k. = 8 in the PA, AP, and CG
models, and in the DD model the parameters are set as p = 0.1 and q = 0.6, where the resulting average degree is ,k.<4.
doi:10.1371/journal.pcbi.1000232.g002

Evolution of Protein-Protein Interaction Networks
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interaction density between the age groups and observe a positive

DD similar to AP model (the row IV in Figure 2). The pattern of

positive DD is highly robust regardless of the sources of data (LC,

HTP and LC+HTP) and the random addition or deletion of

edges, e.g. by 50%. It suggests that the positive DD is a genuine

feature of PPIyeast.

Simulation of Canonical Network Growth Models
We next simulated PPI network evolution using the three

canonical models—PA (preferential attachment), DD (duplication

and divergence), and AP (anti-preferential attachment) and tested

compatibility with PPIyeast in terms of both topology and age-

dependency. In all three models, the network starts from a small

number, N0 = 4 of seed nodes and a new node is added until the

total number of nodes reaches N = 3,000, which is comparable to

the PPIyeast (LC) with 3,268 nodes and 12,058 edges. In the PA

and AP models, a fixed number of edges (DE = 4) are added for

each new node, which makes the final network size similar to the

PPIyeast. The link probability (P) is proportional to the degree in

the PA model (P , k) and inversely proportional in the AP model

(P , k21). For the DD model, we employ one of the simplest

models by Vázquez et al. [12]: One node (i) is duplicated

randomly, the new node (i’) is connected to all of the neighbors of

i, and then the duplicates (i and i’) are linked with a small

probability p. For each neighbor (j) of the duplicates, one of the

two links (i,j and i’,j) is chosen randomly and deleted with the

divergence probability q. Because this model may generate orphan

nodes that are not connected to any other nodes, orphan nodes

were removed in each duplication step.

Surprisingly, none of the three models satisfied all of the

characteristics of PPIyeast (the 2nd, 3rd and 4th columns in Figure 2

for the PA, DD and AP model respectively). The PA and DD

models generate scale-free networks and show degree-dissortativity

and the DD model also shows some degree of hierarchical

modularity. However, both the PA and DD models show an

inverse interaction density pattern with negative DD. In contrast,

although the AP model shows positive DD similar to PPIyeast, it

deviates greatly in terms of topological characteristics. That is, the

PPIyeast seem to show mixed characteristics, with the network

topology resembling that of the DD (PA) model but with the

interaction density similar to the AP model. Also, all three models

generally show much lower levels of modularity than the PPIyeast

(the row II in Figure 2). We further examined two more variants of

DD models, where the divergence of edges between the duplicates

is asymmetric (DDasym) by Ispolatov et al. [14] and allow rewiring

as well as asymmetric (DDasym-rw) by Pastor-Satorras et al. [11].

None of the tested DD variants were in good agreement with

PPIyeast, showing negative DD and lower clustering coefficient. In

yeast, whole genome duplication (WGD) occurred relatively

recently after speciation of Kluyveromyces waltii and Saccharomyces

cerevisiae [31]. Simulation of WGD at the last stage of DD model

did not improve the model either (data not shown). As a global

topological index, the shortest path length was also examined but

provided little discrimination among the tested models due to high

variability depending on model parameters (DD model) and the

choice of yeast PPI data set. Each model was simulated 100 times

and the summary of the network properties is given in Table S2.

While additional variants of each model might be considered

[13,20,32], the critical characteristics of each model are largely

captured by these canonical models, e.g. the DD model has no

mechanism to generate positive DD. The inconsistency of these

models with the interaction age density of real PPI networks clearly

suggest that none of these canonical models is sufficient in itself to

qualify as a valid model for the evolution of the yeast PPI network.

A Crystal Growth Model
To better address both topological and age properties of real

networks, we developed an alternative model for PPI network

evolution called the crystal growth model (CG), in which we view

the growth of a PPI network as analogous to incorporating new

proteins into crystals grown in solution (Figure 3A). The two key

ideas are as follows. First, the connection probability increases with

the availability of unoccupied surface, and thus the model follows

anti-preferential attachment rule (AP rule). Second, the connec-

tions of a new node tend to be limited within a network module, as

observed in growing crystals and here termed as localized connection.

The procedure of the CG model is illustrated in Figure 3B. As in

the PA and AP models, the CG model starts with a few seed nodes

(N0 = 4), and a new node makes a fixed number of connections (here,

DE = 4) to existing nodes. For each new node added, network

modules are redefined as local dense regions in the network. As

modules emerge as a result of network growth and are not pre-

defined artificially, the number of modules (M) is not fixed but may

increase or decrease in each step. With a small probability Pnew, a new

node becomes a new module by itself and makes connections DE

times to other nodes in accordance with the AP rule. Otherwise, an

existing module is selected randomly, and the new node is committed

to the module by making connections exclusively within the selected

module. The connection takes two steps, dubbed ‘‘anchoring and

extension’’. In the anchoring step, the new node connects to an anchor

node in the module in accordance with the AP rule, and then, in the

extension step, the new node further connects only to the neighbors of

Figure 3. A schematic diagram (A) and a flowchart (B) show the
process of network growth by the CG model. (A) The CG model
mimics sequential incorporation of new proteins to crystals grown in
solution. In stage I, the initial set of proteins (red) form seeds of new
crystals. In stage II, a new protein is added, which either forms a new
seed crystal (n) or attaches to an existing crystal (e). In the latter case,
the protein e attaches to one protein in the crystal (solid arrow) and
then further interacts with nearby proteins (dotted arrow). In stages III
and IV, the second- (orange) and third- (yellow) generation proteins
repeat the process of stage II, with the result that the early generation
tends to be located at the core of each crystal and the late generation
at the periphery. (B) Similarly, the CG model starts with a small number
of seed nodes (N0). In each cycle, modules are defined and a new node
is added that makes a fixed number of connections (DE). A new node
creates a new module at a probability Pnew and makes connections to
any other node in accordance with the AP rule. Otherwise, one module
(crystal) is randomly selected and the new node is connected
exclusively to the nodes in the selected module. After DE connections
are made, modules are redefined and the cycle is repeated.
doi:10.1371/journal.pcbi.1000232.g003
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the anchor node in the module. Connections are created randomly to

neighboring nodes until DE connections are made. The anchoring

and extension steps are analogous to the node e in Figure 3A (stage II).

Therefore, the CG model is inherently highly module-oriented. In

case that the neighbors of the anchor node are fewer than DE in the

chosen module, the module selection and connection step is repeated

until DE connections are made and the new node becomes connected

to multiple modules.

The CG model introduces two parameters, how to define the

network modules and how frequently a new module is created

(Pnew). A network module is generally defined as a densely

connected sub-network, and there are various ways to partition a

network into modules. Most stringently, modules can be defined as

complete subgraphs or cliques, and more loosely they can be

defined as k-cores, triangularly connected components (TCC) and

so on. We tested two different module definitions, one by Newman

[33] and the other by TCC. We mainly discuss the results by the

Newman definition, but results using TCC were highly similar

(Figure S3). Also, Pnew was assigned as M21 because the chance of

creating a new module generally decreases with the number of

existing modules (M). Setting a small, fixed value of Pnew also show

a similar result (data not shown).

Networks generated by the CG model show a remarkable

similarity to real PPI networks for all tested network properties. A

typical result of the CG model is shown in the 5th column in

Figure 2. The topology of the CG model shows a scale-free, a

hierarchical modular, and a degree-dissortative characteristic.

Interestingly, both the magnitude and the shape of clustering

coefficient was similar to the PPIyeast in the C(k) , k plot (the row II

in Figure 2). The CG model also shows a similar pattern of degree-

dissortativity and interaction density with a positive DD (the row III

and IV in Figure 2). These characteristics were robust with varying

network sizes, e.g., N = 1,000 and N = 5,000 (data not shown).

Comparison of the Network Properties between Network
Growth Models and Yeast PPI Network

The canonical models were shown to significantly deviate from

the PPIyeast, but the CG model shows a good agreement not only

qualitatively but also quantitatively (Figure 4). For objective

comparison of the models, various indices were used to summarize

the network characteristics, including power-law degree distribu-

tion (c), hierarchical modularity (Q, C, C(k) , k curve shape and

triangle density, T), dissortativity (d), and the age-dependency of

interaction density (DD).

DD and PA show an inverse age-dependency of PPIyeast and

much less modularity in terms of clustering coefficient and triangle

density although they show scale-free degree distributions

(Figure 4B and 4C). The AP model was not able to generate a

scale-free network and significantly deviates from the PPIyeast for

all the network indices tested except DD (Figure 4B). Only the CG

model was comparable to the PPIyeast in terms of all the network

indices tested, including both scale-freeness (c) and age-depen-

dency (DD) (Figure 4D). In particular, only the CG model shows

an extremely high degree of modularity comparable to the PPIyeast

in terms of both clustering coefficient and triangle density due to

its inherently module-oriented mechanism. The mixing exponent

(d) is intermediate between LC and HTP. Therefore, of all models

considered, the CG model agrees best with both topological and

age-dependencies of the actual yeast PPI network. In Table S2, the

network property indices are summarized for all the models tested

after 100 simulations of each model.

Age-Dependency of Homodimeric Frequency in CG
Model

In the CG model, homodimers would be more frequent in older

groups because there are simply fewer proteins with which to make

connections in earlier stages. The age distribution of homodimeric

Figure 4. The comparison of network property indices between the yeast PPI networks and the models tested. (A) PPIyeast, (B) the PA
and AP models, (C) the DD model at p = 0.1, q = 0.5,0.7, and (D) the CG model. In (B), the scale-free index, c, of the AP model is not shown because
the resulting network is not scale-free. The properties of the CG model are more similar to PPIyeast than those of the PA, AP, and DD models. Index
values are normalized so that the average indexes of LC and HTP are zero, calculated as Inorm = (Iraw2Iyeast)/Irange, where Inorm is the normalized index
and Iraw is the index value of each model. Iyeast is the average index between LC and HTP except for ,k., where Iyeast is set to the average degree of
LC because ,k.LC is similar to ,k. = 8.0 in the PA, AP, and CG models. The denominator Irange is set to max(Iraw) observed in LC, HTP, and the
models, except for d and DD showing both negative and positive values. In the case of DD and –d, the denominator Irange is set to max(Iraw)2min(Iraw)
because these indexes range from negative to positive values in LC, HTP, and the models. The sign of d is reversed to 2d to give the index positive
values for LC and HTP.
doi:10.1371/journal.pcbi.1000232.g004

Evolution of Protein-Protein Interaction Networks
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interactions was exactly in the order of ABE.AE/BE.E.Fu

among the 166 homodimeric yeast proteins collected from

UniProt [34] and the literature (Figure 5, Dataset S4). This result

is also consistent with previous studies from protein 3-D structures,

in which ancient proteins were shown to be highly enriched with

homodimeric or paralogous interactions [35,36]. Although the PA

and AP would also generate a similar trend, the resulting topology

and/or interaction density greatly deviate from PPIyeast to be

considered as a realistic model. In the DD model, a fixed

interaction probability, p is set for interactions between duplicates

(paralogs), therefore implicitly predicts homodimeric formation is

age-independent because most paralogous interactions originate

from homodimeric interactions and were not created de novo

[37,38]. Thus, the age-dependency of homodimeric frequencies is

a good support for the CG model, which has not previously been

applied as a criterion for valid network evolution models.

Sub-Networks and Spatial Arrangement of Complex
Subunits

Within the sub-networks of known complexes from MIPS, protein

subunits tend to be either more likely to be connected among similar

age groups in agreement with the general tendency of positive DD in

the full yeast PPI networks (Figures S4A and S4B) or consist mostly of

the same age group, reflecting the creation of a new protein module at

a certain evolutionary lineage e.g. actin-associated proteins (Figure

S4E). Other complexes form densely connected sub-networks, where

age-dependency was not evident, e.g. RNA polymerase I and III

(Figures S4C and S4D).

We further validated the CG model by inspecting the 3-D subunit

arrangement of protein complexes according to age. Obviously, a

protein subunit of a stable complex interacts mostly with the

subunits of its participating complex. When a subunit is in contact

with multiple other subunits in a protein complex, it is most likely

that the partner subunits are spatially close, often interacting among

themselves as well. For transient interactions, the member proteins

can interact with fewer spatial constraints but the interactions are

much denser within each biological module, e.g. as for a MAP

kinase signaling pathway or transcription initiation complex.

Therefore, a protein tends to interact in a highly ‘‘localized’’

manner within the biological modules it belongs to. None of the

canonical models has such a module-oriented mechanism as the CG

model. In the CG model, older subunits of protein complexes would

tend to be more centrally located than younger ones because each

protein is attached in the order of its age. Therefore, it is more likely

that older subunits are aggregated centrally and younger subunits

are scattered at the periphery in a protein complex.

To examine this trend among known protein complexes, we

collected protein complexes from the Protein Databank (PDB)

which consisted of at least 3 protein chains, with at least 2 age

groups represented; these are stringent criteria that strongly limit

the number of available complexes. After removing inappropriate

complexes, such as non-protein structures, viral proteins, antibod-

ies and small peptides, a non-redundant set of 12 multi-protein

complexes was collected that met these criteria (detailed

descriptions are in Methods).

In general, older subunits tend to be aggregated centrally (red

tone), while younger ones are separated peripherally (green and blue)

(Figure 6). In Figure 6A, older subunits form trimeric aggregates but

younger ones were separated. There were four linear complexes and

no younger subunit intervened between the older ones (Figure 6B–

6E). That is, the contacts were always in e.g. the ABE-ABE-AE

configuration but not the ABE-AE-ABE, as predicted by the CG

model, in which ABE-ABE is connected first and ABE-AE later. The

other three complexes contain trans-membrane helix bundles, where

the younger helix chain is located at the periphery (Figure 6F–6H). Of

the remaining four complexes, two had all subunits contacting each

other and were thus non-informative (Figure 6I–6J), and two had

ambiguous age assignments for subunits, although the putatively

younger subunits were spatially separated (Figure 6K–6L). Consid-

ering the eight informative complexes (Figure 6A–6H), the observed

subunit arrangements significantly support the CG model at

P = 0.019, based on random permutations of chain arrangements

within the asymmetric unit of each complex.

It is notable that the total degree of PPIyeast is underestimated

relative to the actual degree due to homomeric interactions and

subunit stoichiometry. For example, the APRIL-TACI complex

(Figure 6A) was the form A3B3 with the degree kA = 3 (two

homomeric, one heteromeric) and kB = 1 (one heteromeric). In

contrast, only one interaction (A–B) would be counted for each

subunit in PPIyeast.

Discussion

The validity of network evolution models have been measured

mainly by the resulting network topology, such as a power-law

degree distribution, hierarchical modularity and dissortativity as

observed in real PPI networks. Accordingly, the DD model has

Figure 5. The frequencies of homodimers are age-dependent. The ratio between the observed (Obs.) and the expected (Exp.) number of
homodimers is plotted for each age group, calculating for each age group the fraction of homodimeric proteins divided by the fraction of total yeast
proteins accounted for by that age group.
doi:10.1371/journal.pcbi.1000232.g005

Evolution of Protein-Protein Interaction Networks

PLoS Computational Biology | www.ploscompbiol.org 6 November 2008 | Volume 4 | Issue 11 | e1000232



been thought of as the principal mechanism for PPI network

evolution. Here, we dissect the history of PPI network evolution by

inspecting several protein age-dependent patterns such as

interaction density, homodimeric frequency, and the 3-D spatial

arrangement of subunits within multiprotein complexes. The age-

dependencies are shown to be very effective in discriminating the

validity of different models as summarized in Table 1. The tested

aspects of age-dependency were independent of topologies as well

as of each other, and are thus highly useful as orthogonal criteria

for valid models. Importantly, the age-dependent interaction

patterns provided insights on PPI evolution, suggesting evidence

against the DD model as the dominant mode of PPI network

evolution, instead supporting an alternative model, the CG model.

In the CG model, we view the PPI network as sparse and

dynamic protein crystals per se. The CG model mimics the process

of growing protein crystals in solution by sequentially adding each

protein. Despite the huge differences in time scale and heteroge-

neous composition, PPI network evolution likely obeys similar

constraints on growing protein crystals. In the CG model, a

protein complex or a tightly linked module is analogous to

individual crystals, and the number and membership of modules

are not pre-defined but rather emerge naturally in each growing

step. Crystals grow around multiple nuclei just as protein networks

consist of multiple modules/complexes. New modules are

generated as the genome size increases and novel function evolves

in higher organisms, in a manner similar to how a new crystal

forms occasionally through new nucleation events.

The CG model exploits two keys ideas, the first being that the

chance of new connection is proportional to the availability of free

surface, which is a feature readily recognized by a new protein

molecule; this results in an anti-preferential attachment (AP) rule.

Although the same surface of a protein can be involved in multiple

interactions with different partners through spatial and temporal

differentiation, such a factor uniformly increases the capacity of

interactions in any protein. Therefore, the connection probability

is still positively correlated with the available surface area. These

results agree with those of Kim et al. [39], which show that the

evolutionary rate is anti-correlated with available surface area.

There, multi-interface hubs were nearly four times more frequent

than single-interface hubs, reflecting the dominant connection

mode of the AP rule. The second key idea is that once an initial

connection is made, the subsequent connections are localized to

the neighbors of the initial partner within the same module. This

localized connection enforces high modularity, similar to that

observed in real PPI networks.

At the basis of the crystal growth model is the notion that new

interactions form preferentially within existing physical complexes

(enforcing modularity), and thus are limited by available protein

surface area (the AP rule). Thus modularity & the AP rule both arise

due to simple physical constraints of which proteins are most

Figure 6. The spatial subunit arrangement of known multi-protein complexes is consistent with the CG model. Subunits of all 12
known multi-protein complexes with at least three proteins and two-age groups are colored according to their age groups: The most ancient group,
ABE, is colored in red tones (yellow, pink, magenta, orange, red). The AB, AE, or BE groups are in green tone, and the most recent A, B, and E groups
are in blue. For visual clarity, the older group(s) is presented in cartoon models and the youngest group in space-filling models in each complex. The
age group assignments in (K) and (L) were ambiguous because the chains assigned AE could be assigned to ABE if the BLAST hit cut-off was slightly
relaxed to 25% instead of 30% sequence identity (the ‘‘twilight zone’’ for homology detection). Therefore, (K) and (L) may, in fact, consist of the
subunits of the ABE group only. The subunits are in various configurations. In (A) and (L), the younger subunits are spatially separated, but the older
subunits are aggregated. In (B–E), two old subunits (three in (E)) and one young subunit are linearly connected. In all four cases, the older subunits are
all connected without insertion of the younger subunit in the middle. In (F–H), the subunits form a trans-membrane helix bundle, where young
subunits are always located at the periphery while old subunits are at the center. In (I) and (J), all the subunits are in contact with each other. In the
case of (K), there are two modules—the clamp (upper homo-trimeric ring) and the clamp loader (lower hetero-pentameric ring). Considering the
clamp loader alone, both younger and older subunits are separated. (A) APRIL and TACI (TNF receptor) complex (Protein databank code 1xu2). (B)
Urokinase receptor, urokinase, and vitronectin complex (3bt1). (C) Factor Xa/NAP5 complex (2p3f). (D) Thrombin-PAR4 complex (2pv9). (E)
Complexin/SNARE complex. (F) Cytochrome b6f complex (2e76). (G) Cyanobacterial photosystem I (1jb0). (H) Photosynthetic Oxygen-Evolving Center.
A cross-section of the trans-membrane helix bundle is shown (1s5l). (I) APPBP1-UBA3-NEDD8 complex (1r4m). (J) Cytochrome ba3 Oxidase (1xme). (K)
DNA clamp–clamp loader complex (1sxj). (L) Cythochrome bc complex (1ezv).
doi:10.1371/journal.pcbi.1000232.g006
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accessible to each other. Recently, Levy and colleagues has shown

that the successive steps of homo-oligomeric assembly mimics the

evolutionary pathway [38]. The CG model expands this idea, where

crystal growth reproduces the evolution of the entire PPI network.

Given that the CG model follows an AP rule, how does it

generate scale-freeness or ‘‘the rich get richer’’ connectivity? In the

CG model, the network grows by anchoring and extension, where a

node increases its degree either by becoming an anchor node

(anchoring) or by being the neighbor of the anchor node

(extension). Therefore, the highly connected nodes have greater

chances to increase their degree within each module because they

have more opportunities to have anchors as their neighbors.

Therefore, the CG model implicitly implements the preferential

attachment (PA) rule within each module in a manner similar to

the DD model, where the nodes increase their degree by having

duplicating genes as their neighbors.

Our result suggests that the CG model is a more plausible

mechanism for PPI network evolution than the DD model. First, all

the age-dependent aspects tested agree well with the CG model but

disagree with the DD model. Second, the CG model is more

comprehensive than the DD model in that the CG model can

accommodate both gene duplication and horizontal gene transfer as

the origins of new nodes (genes). Practically, the DD model may be

applicable only to ,20% of the yeast proteome having identifiable

duplicates [40]. The CG model also embodies the rapid divergence of

gene duplicates [17] by the AP rule, which avoids competition for the

same interface on common partners and connects to new partners

with less occupied surfaces. Finally, the CG model is more robust

than the DD model. The DD model shows a highly variable degree

distribution depending upon parameters and network sizes [14,41].

In contrast, the CG model shows stable characteristics regardless of

network size or different module definition methods. Taken together,

these strongly suggest that the DD model is unlikely to be the

principal, and strongly unlikely to be the sole, mechanism of PPI

network evolution.

The age-dependency of interaction density also sheds light on a

more fundamental question regarding the mechanism of PPI

network evolution. It has been hypothesized that inherent features

of proteins, such as stickiness and hydrophobicity are dominant

factors in shaping the global network structure [6]. However, the

observed age-dependency is inconsistent with such a hypothesis

and suggests that a stochastic process played a major role. For

example, the yeast PPI network shows the patterns of both

DABE,AE/BE.DABE,E and DAE/BE,Fu,DE,Fu (the row IV in

Figure 2). The connection probability cannot depend solely upon

a feature such as protein length or surface hydrophobicity because

no single feature (F) can satisfy FAE/BE.FE (with common FABE)

and FAE/BE,FE (with common FFu) simultaneously.

Power-law distributions have been commonly observed in

various types of networks, such as the Internet, social networks,

and biological networks. However, the growth of a PPI network

poses unique constraints compared to other types of networks. For

example, in an airline or railroad network, each new connection is

made by considering the context of global network topology (e.g.,

to minimize average path length), which seems intuitively unlikely

to be the case in PPI networks. The CG model follows two simple

constraints of available free surface and localized connection,

which are physically plausible and depend only on local context

but not global topology. With these minimal assumptions

analogous to growing protein crystals, the CG model recapitulates

remarkably well the age-dependencies as well as the network

topologies of the yeast PPI networks.

Methods

Yeast Protein Interaction Data
Two independent sets of yeast protein-protein interaction data

were collected using a method essentially identical to that described

by Batada et al. [23,24], only differing in that the HTP set was

collected from the original publications instead of from BioGrid

[42]. We compiled the HTP set from Uetz et al. [43], Ito et al. [44],

the merged set of Gavin et al. [45,46], Ho et al. [47], and Krogan et

al. [48], and then filtered out the interactions supported by only a

single experiment. Repeated and reciprocal assays were considered

as independent experiments even if they were performed in the

same publication. The LC data set was collected from the latest

release of BioGrid, excluding high-throughput data. Ribosomal

proteins were removed from both LC and HTP data sets. All

protein-RNA interactions and interactions supported only by co-

localization or co-fractionation were removed. We further removed

interactions supported only by Ptacek et al. [49], Grandi [50],

Collins et al. [51], or Fields et al. [52].

Table 1. Properties of yeast PPI networks and the tested network evolution models.

PPI PA DD* AP CG

Scale-free Yes Yes Yes No Yes

Modularity Yes No Yes No Yes

Q High Low High Low High

C(k) High Low Medium Low High

C(k) , k shape - Different Similar Different Similar

Triangle density High Low Low,Medium** Low High

Dissortativity (d) Yes Yes Yes/No** No Yes

Age-dependency

Interaction density (DD) Yes No No Yes Yes

Homodimeric frequency Yes Yes No Yes Yes

3-D subunit arrangement in protein
complexes

- Not explicitly
modeled

Non-supportive Not explicitly
modeled

Supportive

*Results for the DD model were collected at typical values (p = 0.1, q = 0.6). Results for scale-freeness and age-dependency are robust to changes in these parameters.
However, aspects of modularity and dissortativity of the DD model vary with these parameters and the specific choice of DD model, indicated with **.

doi:10.1371/journal.pcbi.1000232.t001
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Yeast Protein Age Groups
Pfam domains were assigned for yeast proteins using BioMart

(http://www.biomart.org). The taxonomic distributions of Pfam

domains were obtained for archaea (A), bacteria (B), eukaryotes

(E), and fungi (F) (http://www.sanger.ac.uk/Software/Pfam).

According to these distributions, each Pfam domain was assigned

to one of the age groups ABE, AE/BE, E, and F. The group ABE

includes the oldest proteins common to all three kingdoms, while

group F is the youngest, being specific to fungi. As yeast is a

eukaryote, groups A, B, and AB do not occur. A protein’s age

group was assigned as the youngest age of its constituent Pfam

domains—e.g., E for a protein with domains from ABE and E

(Dataset S3, Figure S1).

Interaction Density and DD
Interaction density Dm,n measures the normalized interaction

density between two age groups m, n (m,n). DD measures the

interaction preference of a new node by the age differences. A

positive value of DD indicates that a new node makes connections

more frequently with close age groups than with distant ones.

First, the normalized interaction density Dm,n between two age

groups m,n (m,n) is calculated as

Dm,n~ log2

lm,n=Em,n

2L= N N{1ð Þð Þ

Em,n~Nm Nn{1ð Þ=2 m~nð Þ

Em,n~Nm|Nn m=nð Þ

where lm,n is the number of edges between the two age groups m

and n, and Em,n is the number of all possible interactions between

the two groups. Nm and Nn are the number of nodes in the age

groups m and n, respectively, L is the total number of edges, and N

is the total number of nodes in the network. Then the average

interaction density gradient, DD, of a network is defined as

DD~

PG
n~2

P
mvn

Dmz1,n{Dm,nð Þ

G G{1ð Þ=2
1ƒmvnƒGð Þ

where G (G$2) is the number of age groups.

Measure of Modularity
The modularity of a network is measured by the modularity

index Q by Newman [29] after its modules are defined using the

method described in [33]:

Q~
XM
s~1

ls

L
{

ds

2L

� �2
" #

where M = the total number of modules, L = the number of total

edges in the network, ls = the number of edges within the module s,

and ds = the sum of the degrees of the module s. The modularity

index Q measures the difference between the intra-module

interaction density and the expected interaction density at random

for a given partition, where Q<0 for a random network and Q = 1

for a completely modular network [53].

Protein 3-D Complexes Data
The list of PDB entries and 3-D coordinates were obtained from

PQS (Protein Quaternary Structure Server, ftp://ftp.ebi.ac.uk/

pub/databases/msd/pqs). First, we took the PDB entries having

three or more protein chains. The PDB entries annotated as

crystal packing interfaces by PQS or from non X-ray crystallo-

graphic method were excluded.

The protein chain clusters at 30% sequence identity cut-off were

downloaded from PDB (Protein Data Bank, ftp://ftp.wwpdb.org).

PDB entries consisting of the same set of NR30 clusters were

grouped together regardless of the number of chains and one

representative PDB entry was selected in each group as NR30

entries.

For NR30 entries, the age group of each PDB chain was

assigned using BLAST against NR90 set of archaea, bacteria and

eukaryote sequences from UNIPROT (ftp://ftp.uniprot.org/pub/

databases/uniprot) using .30% identity and .30 alignment

length as criteria. We took only the PDB entries consisting of two

or more protein age groups and further applied a number of filters

manually, excluding the entries with DNAs, RNAs, viral proteins,

small peptides (,30 amino acids) and immunoproteins such as

antibodies and MHCs with antigens. Where available, ambiguous

quaternary structures were removed by comparing the data from

PQS, PDB biological units and 3D complex databases [54].

Supporting Information

Dataset S1 LC dataset

Found at: doi:10.1371/journal.pcbi1000232.s001 (0.20 MB TDS)

Dataset S2 HTP dataset

Found at: doi:doi:10.1371/journal.pcbi1000232.s002 (0.11 MB

TDS)

Dataset S3 The age group assignment of yeast genes

Found at: doi:10.1371/journal.pcbi1000232.s003 (0.08 MB TDS)

Dataset S4 The list of homodimeric proteins and their age

group assignment

Found at: doi:10.1371/journal.pcbi1000232.s004 (0.01 MB TDS)

Figure S1 The protein ratio of different age groups in yeast PPI

networks. LC: literature-curated, HTP: high-throughput,

LC+HTP: the union of LC and HTP.

Found at: doi:10.1371/journal.pcbi.1000232.s005 (0.08 MB PDF)

Figure S2 The network properties of the HTP, LC+HTP, and

Y2H-union dataset. The plots in each row, I-IV, indicate (I) The

degree distribution P(k), (II) the clustering coefficient C(k), (III) the

average degree of nearest neighbors ,knn.(k), and (IV) the

interaction density pattern (DD) between protein age groups.

HTP, LC+HTP, and Y2H-union set show similar characteristics

as LC dataset.

Found at: doi:10.1371/journal.pcbi.1000232.s006 (0.29 MB PDF)

Figure S3 The network properties by the CG model, where the

network modules were defined by TCC (triangularly connected

components) instead of the Newman’s method. The network

structure is still similar to the yeast PPI networks, showing scale-

free, hierarchical modular, degree-dissortative characteristics and

an interaction density pattern of DD.0. (A) The degree

distribution P(k), (B) the clustering coefficient C(k), (C) the average

degree of nearest neighbors ,knn.(k), (D) the interaction density

pattern between protein age groups.

Found at: doi:10.1371/journal.pcbi.1000232.s007 (0.09 MB PDF)

Figure S4 Age-dependent interaction patterns of several MIPS

complexes in the LC+HTP set. In mRNA splicing (A) and

replication (B) complexes, the subunits of the same age group are

more likely to be connected. In RNA polymerase I & III (C and

D), most subunits are densely connected to each other, therefore
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age-dependency is not evident. In the case of actin-associated

proteins, most subunits are of the same age group (E), reflecting a

relatively recently emerged module.

Found at: doi:10.1371/journal.pcbi.1000232.s008 (0.52 MB PDF)

Table S1 The network characteristics of the yeast PPI data.

Found at: doi:10.1371/journal.pcbi.1000232.s009 (0.06 MB PDF)

Table S2 The network characteristics of the network growth

models

Found at: doi:10.1371/journal.pcbi.1000232.s010 (0.13 MB PDF)
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