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Abstract

Here we describe human spotted cell chips, a technology for determining cellular state across arrays of cells subjected to
chemical or genetic perturbation. Cells are grown and treated under standard tissue culture conditions before being fixed
and printed onto replicate glass slides, effectively decoupling the experimental conditions from the assay technique. Each
slide is then probed using immunofluorescence or other optical reporter and assayed by automated microscopy. We show
potential applications of the cell chip by assaying HeLa and A549 samples for changes in target protein abundance (of the
dsRNA-activated protein kinase PKR), subcellular localization (nuclear translocation of NFkB) and activation state
(phosphorylation of STAT1 and of the p38 and JNK stress kinases) in response to treatment by several chemical effectors
(anisomycin, TNFa, and interferon), and we demonstrate scalability by printing a chip with ,4,700 discrete samples of HeLa
cells. Coupling this technology to high-throughput methods for culturing and treating cell lines could enable researchers to
examine the impact of exogenous effectors on the same population of experimentally treated cells across multiple reporter
targets potentially representing a variety of molecular systems, thus producing a highly multiplexed dataset with minimized
experimental variance and at reduced reagent cost compared to alternative techniques. The ability to prepare and store
chips also allows researchers to follow up on observations gleaned from initial screens with maximal repeatability.
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Introduction

Despite enormous progress in the postgenomic era, large-scale

characterization of mammalian genes remains a daunting

challenge. Classical perturbation experiments have been enabled

by the creation of RNAi and chemical libraries, but there exist few

platforms able to conduct cell-based experiments on the scale of

mammalian genomes, especially when multiple reporters are

required [1,2]. Plate-based assays can be used for high-content

screening of cell populations [3] or to capture detailed cell

morphology and state information [4] – in fact a number of

dedicated commercial platforms are on the market [5] – but these

latter applications come at a high reagent cost relative to

miniaturized assays. High-throughput flow cytometry probing

immunolabeled phosphoproteins [6,7] allows multiparameter

sampling of protein activation state across a large cell population,

but requires serial analysis of samples, hence performing sequential

assays of every experimental condition or timepoint – a key

limitation when performing genome-scale screens. Transfected cell

microarrays [8–11], where cells are grown over a glass slide

printed with transfection constructs, allows screening of expression

[11] or RNA interference libraries [9] for functional genomics or

drug screening [8,10], and the technology allows multiple

conditions to be tested on replicate slides. Transfected cell arrays

have been applied to identifying genes involved in chromosome

maintenance [12], measuring response of neural precursor cells to

a variety of extracellular matrix components [13], finding

ubiquitin targets [14], and even detecting protein-protein

interactions [15]. For transfection-based screens, however, the

technique is limited to cell lines compatible with the transfection

technique used, although Sabatini and colleagues created arrays

based on lentiviral infection constructs to circumvent this problem

[16]. Tissue microarray (TMA) technology has enabled the

multiplexed immunohistochemical analysis of tissue samples on a

single array but thus far has been limited to tens or hundreds of

samples per array [17]. Complementary technologies include cell

lysate microarrays, in which the protein repertoire of a number of

cell populations are spotted in parallel on a slide and assayed for

reporters of cellular state [18,19], although all data are population

averages rather than per-cell readouts. Thus, there is a clear role

for a platform that enables analysis of multiple cell types and/or

treatment conditions in a manner that scales to thousands of

samples, while minimizing reagent cost and experimental

variance.

Here we describe the application of spotted cell microarrays to

the study of human cell lines. Spotted cell microarrays, hereafter

referred to as ‘‘cell chips,’’ are constructed by growing and treating

cells under normal tissue culture conditions, formaldehyde fixing,

and printing microsamples of each culture onto replicate glass

slides. Each slide is then assayed by immunofluorescence against a
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specific target and imaged by high-throughput microscopy. Entire

collections of cells comprising hundreds to thousands of discrete

samples can be assayed onto replicate slides. Each slide is probed

with a single reporter in a single assay, reducing experimental

variance compared to multiwell plate assays where each well is

effectively an independent experiment. Reagent cost is similarly

reduced, with less than 100 uL of diluted antibody sufficient to

probe a slide, 10–100 fold less than that required for a single 96-

well plate assay. Importantly, cells from a wide variety of cell types

(including both suspension and adherent cells), growth conditions,

and treatments, can be arrayed on a single slide. Replicate slides

allow researchers to conduct multiple assays against samples

drawn from the same collection of treated cells, and to probe

multiple pathways elements from the same sample of cells. Finally,

slides can be stored after printing to facilitate generating replicates

and following up on observations gleaned from initial screens with

subsequent assays against samples drawn from the same original

population of cells.

Materials and Methods

Cell culture
A549, HEK293, HeLa, DG-75, and Jurkat cell lines were

acquired from ATCC. HeLa and HEK293 cells were maintained

in DMEM medium, A549 in F12-K, and DG-75 and Jurkat in

RPMI, each supplemented with 10% FBS (Gibco/Invitrogen).

Cells were treated in culture flasks with staurosporine (Sigma),

TNF-alpha (Sigma), or anisomycin (Sigma) as described.

Printing cell arrays
To prepare cells for printing, adherent cell lines were washed

with PBS, trypsinized (0.25% Trypsin in EDTA, Invitrogen) until

detached (typically 2–5 min), and resuspended in PBS. Adherent

and suspension cells were fixed in J vol 10% fresh paraformal-

dehyde (Sigma) (2% final concentration) for 10 min, then washed

in fresh PBS and transferred to a 1.5 ml Eppendorf tube for ease

of handling.

After fixation, cells were treated with biotinylated wheat germ

agglutinin (WGA-biotin; Biomeda) at 4 mg/ml final concentration

for 159, then washed 3x in PBS. Finally, cells were pelleted, media

was removed, and cells were resuspended in 100% methanol at

220uC. Cells were incubated at least 109, and can be stored at this

stage for at least several weeks at 220uC.

Immediately prior to printing, cells were pelleted, MeOH was

removed, and cells were resuspended in a minimum volume of

PBS. A 20–50 ml of high-density cell suspension was transferred to

a 384-well plate. Cells were allowed to settle to the bottom of the

well, forming a loose pellet, before printing was initiated. Cells

were printed on streptavidin-coated slides (TeleChem) with a

custom-built DNA microarray printing robot [20] using blunt-

tipped, slotted steel custom microarray pins (Majer Precision, part

no. 11077-3 with a custom .0030 slot width). Printed slides were

assayed immediately or stored at 4u or 220uC for several weeks.

Assaying printed slides
Immunofluorescence labeling of target proteins was performed

using antibodies against cleaved caspase 3, phospho-STAT1,

phospho-JNK, phospho-p38, cleaved PARP, phospho-p65 (RelA)

(Cell Signaling Technologies), p65/RelA, and histone H3 (Santa

Cruz Biotechnology). First, a 16-well rubber gasket (Grace

Biosystems) was trimmed to provide a single large reservoir on

the slide around the array. The cells were blocked in 5% goat

serum (Sigma) in PBS (309, RT), washed once with PBS, and

incubated 2 h (RT) or overnight (4u) with primary antibody

diluted to manufacturer’s specification in PBS +0.2% Triton X-

100. Slides were washed in PBS 3x for 59 ea in coplin staining jars,

then incubated with goat anti-rabbit (or anti-mouse, as necessary)

IgG conjugated with Alexa Fluor 594 (Invitrogen; diluted 1:1000)

for 609 at RT in the dark. Slides were washed again 3x in PBS,

with the final wash containing a 1:10,000 dilution of Hoechst

33342 (Invitrogen). Slides were air-dried, mounted with ProLong

Gold mounting medium and coverslipped before imaging.

Imaging was performed on a Nikon TE2000 microscope with

motorized XY stage and Z objective and a Photometrics Cascade

II 16-bit CCD camera. Using the NIS Elements controller

software, we generated a script that would automatically visit each

spot, autofocus (in DIC), and capture fluorescent images for

Hoechst 33342 (nuclear) and immunostained labels. Imaging was

performed using a 40x (0.95 NA) dry objective, and exposure times

were selected to minimize the occurrence of saturated pixels under

normal assay conditions.

Quantitation was carried out using Matlab and the Image

Processing Toolkit. For each spot, depending on the region of

interest (nuclear or whole-cell) for the given probe, either the

image of the nuclear label or the one of the immunolabel was

background corrected and converted to a binary pixel mask. The

mean signal intensity in the immunofluorescence channel of all

pixels within the mask is calculated and recorded for each spot,

along with the number of pixels in the mask.

We discovered a pronounced linear bias in average pixel intensity

that correlated with the number of pixels in the mask – which itself

reflects the number of cells deposited in the spot. A correction for

the size bias was applied by normalizing signal to that found with

wildtype (untreated) cells. A linear regression is applied to signal

derived from wildtype cells, and the signal of a given spot is then

measured as a distance from the regression line at the same mask

size of that spot. This method is effective as long as the range of

wildtype mask sizes meets or exceeds the range of mask sizes for

treated cells; this was true for all cases discussed here.

The bias-corrected mean signal intensity was determined for

each spot of treated cells. These were compared to spots of

untreated cells of the same type on that slide, yielding a distinct set

of data for each cell type, even where multiple cell types are

arrayed on a slide (bias-corrected mean signal intensity data are

shown in Table S1). Treated and untreated spots were compared

by unpaired one-tailed T-test for samples with different variances.

By definition, the bias-corrected mean sample intensity of control

spots is zero.

Results

Spotted cell microarrays were first developed and applied to

functional genomic screens in Saccharomyces cerevisiae [21] and

bacteria [22]. To print yeast cell chips, we used a contact

microarray printing robot to draw a microsample from a

suspension of fixed cells in a 96-well microplate (the ‘‘source

plate’’) and deposit it on a poly-L-lysine coated glass slide. To print

human cell lines, we used custom microarray pins with blunt tips

and wide slots, and after experimenting with other adhesion

protocols, we determined that printing biotin-decorated cells on

streptavidin-coated glass slides ensured cell adhesion and repro-

ducibility. An overview of the process is shown in Figure 1a. To

demonstrate achievable array densities, we printed eight replicate

HeLa cultures repeatedly onto a slide. A total of 4,608 spots were

successfully printed on a single slide (Figure 1b), using eight

spotting pins and a spot pitch of 400 mm. Chips of much higher

density, exceeding 8,000 spots per slide, could be achieved by

decreasing spot pitch ,10% and increasing to 12 spotting pins.

Human Cell Chips
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Contact microarray technology, typically used to print DNA

oligonucleotides or cDNA sequences for use in RNA hybridization

assays, is optimized around printing the smallest spots that can be

consistently delivered. During the development of the yeast spotted

cell microarray technique it was observed that better performance

was achieved using microarray pins that had been ‘‘blunted’’ by

repeated use in printing cDNA arrays. The blunted pins gave a

larger spot size, a greater volume of medium deposited and,

typically, a larger number of cells in the spot. However, the degree

of blunting and therefore the quality of spots delivered varied

widely among these well-used pins.

To adapt cell chips to human cells, we initially used the same

microarray pins as in the yeast cell chip, and printed on poly-L-

lysine (poly-K) coated slides. Early testing was conducted using the

Jurkat T-cell leukemia cell line, as these cells are easy to grow in

large quantities and a successful cell chip would provide a new

platform for assaying suspension cells. We immediately observed

that the larger human cells – which are typically spheroids 10–

20 mm in diameter, many times larger than ovoid yeast cells that

measure 3–8 mm on the long axis – did not print consistently onto

poly-K coated slides, and that the inconsistency was in part

attributable to how deformed the microarray pins were. To address

this issue in a more systematic manner we acquired microarray pins

with sharp or blunt tips in three sizes (Majer Precision MicroQuill

2000, part nos. 11077-1, 11077-2, and 11077-3). The 11077-1 pins

were sharp and yielded spots ,100 um in diameter, while the -3

pins had the largest blunt area and gave spots ,200 um across.

Quantity of cell deposition was further improved by using custom

pins, based on the 11077-3 form factor, but with a slot width of

0.0300 (76 mm) vs. the standard 0.0150 (38 mm). The smaller slot is

only 2–3 cell diameters in width and may have induced shear effects

and clumping as cells were loaded and deposited by the pins; these

effects appear to have been largely mitigated by using the wider

slots. The custom 11077-3 pin with 0.030 slot width consistently

delivers a spot ,200 mm in diameter and was used for all

subsequent human cell chip prints.

Although we achieved regularity in spot sizes by selecting the

appropriate microarray pins, the number of spots delivered was

Figure 1. Overview of spotted cell chip process. (A) Cells are grown and treated under normal cell culture conditions. Our recommended
protocol (less successful early protocols are discussed in the text and in Fig. 2) involves trypsinizing adherent cells and fixing with formaldehyde,
decorating with WGA-biotin, and permeabilizing in 220uC methanol. Cells can be stored for several weeks in this state before resuspending in PBS
and transferring to source plate for printing. Using a robotic microarray spotting device, cells are printed onto streptavidin-coated slides. To assay,
each slide is probed by immunofluorescence against the target of choice and imaged by automated microscopy. (B) A high-density cell chip. An 8-pin
print of 4,608 replicate spots, each containing a microsample of HeLa cells, is shown by imaging with a microarray scanner (left; green signal is light
scattering in the fluorescent channel off freshly printed spots) and by stitching together multiple 10x microscope images (center and right).
doi:10.1371/journal.pone.0007088.g001

Human Cell Chips
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found to be highly dependent on the concentration of cells in the

384-well source plate. Depositing 50 cells in a spot ,1 nl in

volume implies a concentration of ,50,000 cells/ml, or 106 cells in

20 ml suspension in each well of the source plate. However, during

the time required to print ,100 samples onto each of 10–20 slides

– roughly 30 minutes – the cell suspension settles into a loose pellet

at the bottom of the well. In an effort to maintain the cells in

suspension during printing, we increased the viscosity of print

media using glycerol (15–50%) and sucrose (30–50%).

We tested the cell chip’s ability to detect cellular state by

inducing apoptosis in Jurkat cells. We grew the cells under normal

tissue culture conditions. Separate cultures were treated with

staurosporine, a potent inhibitor of protein kinase C and other

essential cellular kinases, and fixed with formaldehyde after 1, 2, or

4 hours. Treated and untreated cells were collected in several wells

of a 384-well plate at a concentration of .105 cells/ml and printed

on poly-L-lysine coated slides such that each sample was printed

several times on each of several replicate slides.

Immediately after printing, slides were imaged with transmitted

light to analyze print quality; printed spots were discrete and

typically contained 20–50 cells. Three slides were then probed for

signs of apoptosis by immunofluorescence with antibodies against

cleaved caspase 3, cleaved caspase 9, and cleaved PARP. Each

slide was also labeled with a nuclear stain, and each spot was

imaged using automated microscopy. Images of Jurkat cells

immediately after printing, and of labeled cells after probing for

cleaved caspase 3, are shown in Figure 2.

Although the immunofluorescence data supported the prototype

cell chip’s ability to detect cellular state, we observed that a

significant number of cells – perhaps 10% of the cells in some spots

— had shifted on the slide during the wash steps of the

immunofluorescence protocol. This translocation is evident in

Figure 2 when the pre-probe DIC images are compared to the

fluorescent images (see arrows in figure). Given the relatively small

numbers of cells in each spot, cross-contamination of even

individual cells could dramatically reduce the dynamic range of

the cell chip as an assay tool. To alleviate this problem, we tested

an alternate adherence technique involving an adaptor molecule

instead of relying on electrostatic interaction. After fixation, we

decorated cells with a biotinylated lectin, wheat germ agglutinin

(WGA-biotin), and printed the cells on streptavidin-coated slides.

Under this protocol, increased print buffer viscosity is not

required; cells were resuspended at 106 cells in 20 ml PBS (without

glycerol or sucrose) in each well of the 384-well source plate and

allowed to settle into a loose pellet. The microarray robot was

calibrated to dip the pins into the pellet during loading. We

printed WGA-biotin-labeled Jurkat and DG-75 suspension cells as

well as trypsinized HeLa and HEK293 adherent cells onto

replicate chips. Using the wide-slot pins and a standard wash cycle

between loads, we observed neither cell clumping in the pins nor

cross-contamination of cells into adjacent spots. After printing on a

streptavidin-coated slide and allowing the print to dry, we

observed no cell translocation throughout many repeated washing

steps. The WGA-biotin/streptavidin slide combination was used

for all subsequent prints.

To demonstrate the multiplex capability of the cell chip, we

printed chips with both A549 non-small-cell lung cancer cells and

HeLa cervical cancer cells. Each cell line was divided into three

cultures: one treated with anisomycin (1 mM, 309), one with TNFa
(10 ng/ml, 609), and one untreated control. Anisomycin, a

Figure 2. 15X images of an early print of Jurkat cells onto poly-L-lysine slides without the use of WGA-biotin. Left panels: DIC images
acquired immediately after printing. A 30% sucrose print buffer prevented complete liquid evaporation after printing. Other panels show nuclear
stain (center) and immunofluorescence (right) against cleaved caspase 3, an indicator of apoptosis. Top row, untreated; bottom row, treated with
staurosporine, 4 h. Yellow circles indicate one printed spot; arrows indicate cells outside the circle translocated during the immunofluorescence
protocol. As a consequence, all subsequent prints were conducted with WGA-biotin-decorated cells printed on streptavidin-coated slides.
doi:10.1371/journal.pone.0007088.g002

Human Cell Chips
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translation inhibitor, activates (by phosphorylation) both the p38

and c-Jun N-terminal kinase (JNK) stress kinases. Among the

effects of TNFa exposure are JNK activation and NFkB

translocation to the nucleus. NFkB is maximally concentrated in

the nucleus at about an hour after TNFa exposure [23], while

JNK activation peaks after about 15 minutes and degrades to

background levels about half an hour later [24]. Multiple replicate

chips were printed, each carrying all six conditions printed in

multiple replicate spots.

Individual chips were probed for phospho-p38 kinase, phospho-

JNK, and the p65/RelA subunit of NFkB. Each slide was

counterstained with Hoechst 33342 nucleic acid stain and a high

resolution image of each spot was captured in the corresponding

fluorescent wavelengths. Figure 3a illustrates representative

nuclear stain and immunofluorescence images from the chip

probed for phospho-p38; the two spots show the increase in signal

in HeLa cells treated with anisomycin compared to controls. The

translocation of NFkB to the nucleus in response to TNFa in both

cell lines was apparent in the images (Figure 3b shows p65

translocation in HeLa cells).

We analyzed the set of treated spots from each cell line for an

increase in signal relative to that cell type’s control spots on the

same slide by comparing the set of mean bias-corrected signal

intensities of each set of spots (two-sample one-tailed T-test; see

Methods). Calculated p-values are shown in Table 1. JNK was

phosphorylated in response to anisomycin treatment in both cell

lines but TNFa-treated cells showed a weak response only in

HeLa, consistent with the expected dynamics of TNF-induced

JNK activation and deactivation. Anisomycin also activated p38 in

HeLa cells, as expected, but surprisingly the response was much

weaker in A549s; the p-value of 0.01 is not significant after

multiple-hypothesis correction. P65 translocation to the nucleus is

represented as an increase in nuclear signal in HeLa cells.

To explore the utility of cell chip technology for pathway

analysis, we examined the chip’s ability to recapitulate the

interferon response of A549 cells. Exposure to interferon activates

the JAK/STAT signal transduction cascade, resulting in up-

regulation of interferon response genes, including dsRNA-

activated protein kinase (PKR), the 29–59 oligoadenylate synthe-

tases (OAS), and the Myoxovirus resistance gene (Mx) [25]. We

chose two assay targets, PKR and phospho-STAT1, to further

validate the accuracy of the cell chip technology and to explore its

dynamic range. We grew cells and exposed them to IFN-a
(1000 U/ml) for 15 minutes or 18 hours before trypsinizing and

formaldehyde fixing cells, along with untreated control cells.

Figure 3. Cell chips can be printed with multiple cell types,
treatments, and time points on the same arrays, enabling
extensive multiplexing of experiments. (A) HeLa and A549 cells
were grown in T-75 flasks collected after treatment with anisomycin,
TNFa, or no treatment, and printed on replicate slides. A slide was
probed for phosphorylated p38 kinase; images show Hoechst 33342
nuclear stain (left) and IF spots of treated and untreated HeLa cells. (B) A
slide from the HeLa/A549 print was probed for the p65/RelA subunit of
NFkB. Right panels show overlay of brightest pixels from IF images onto
nuclear stain, demonstrating cytoplasmic localization in untreated cells
and nuclear translocation in response to TNFa. (C) A549 cells were
grown in T-75 flasks and collected without treatment and after
treatment with interferon-alpha (1000 U/ml) for 15 minutes or 18 hours.
A chip was probed for phospho-STAT1; sample images of one 15-
minute timepoint and one untreated spot show strong difference in
signal. (D) A slide from the same print was probed for PKR; a weak
signal is detected in the 18 hour timepoint, which corresponds to a ,3-
fold increase in protein level as detected by Western blotting (data not
shown).
doi:10.1371/journal.pone.0007088.g003
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Technical and biological repeats were printed on the same slide

(‘print 1’). At the same time, an equal number of cultures were

prepared but stored in 220uC methanol for seven weeks before

printing in an identical manner (‘print 2’). After printing, one slide

from each print was immunoprobed for phosphorylated STAT1,

counterstained with nuclear stain, and each spot was imaged at

40X. A second slide from each print was probed for PKR.

Figure 3c shows representative nuclear stain and immunoflu-

orescence images of an individual spot from a slide probed for

phospho-STAT1. Results of quantitative analysis are shown in

Table 2. A fifteen-minute interferon exposure gave very strong

signal for both prints, as well as weaker signal after 18 hours,

indicating no loss of signal due to storage of fixed cells prior to

printing. A third chip was probed after 30 days of storage at 4u; it

showed less overall signal strength across all spots but also less

variance, resulting in p-values nearly identical to the other two

chips.

The slides probed for PKR showed a small increase in signal at

the 18-hour timepoint (Figure 2d; Table 2), but, as expected, no

response in the 15-minute samples. The small increase probably

reflects the fact that PKR under these conditions is only up-

regulated ,3-fold (measured by Western blotting; data not

shown). This low relative signal may bound the sensitivity of the

current state of this technology.

The presence of multiple cell lines and treatment conditions on

the same slide can be exploited as internal controls for both

experimental conditions and probes. In the anisomycin/TNFa

chips, for example, p38 kinase showed lower response to

anisomycin treatment in A549 cells than in HeLa. The anti-

phospho-p38 antibody gave the expected response for the HeLa

cells on the same slide, which serves as a positive control for the

probe. JNK kinase responded to anisomycin in both the A549 and

HeLa cells, which are drawn from the same population as those

probed for phospho-p38, indicating the drug treatment worked

properly. Therefore it is reasonable to conclude that the observed

difference in p38 activation reflects a biological phenomenon

rather than an experimental artifact. This property of multiplex

controls can in principle be applied to much larger screens

including a wider variety of experimental conditions and probes.

Discussion

We have demonstrated the capability of the cell chip to probe

multiple aspects of cellular state using a variety of cell types and

treatment conditions. Since cells are grown and treated under

standard tissue culture conditions, treatment protocols such as

transfections or drug exposure times can be optimized for each set

of samples individually without affecting the assay. Furthermore,

the adaptor molecule used to bind cells to the slide, WGA-biotin,

targets a broad spectrum of human and other cell lines, but even

this step could be optimized on a per-cell-line basis by using a

specific biotinylated lectin. Also, the ability to store cells prior to

printing allows researchers to perform large library transfections or

other treatments asynchronously rather than all at once immedi-

ately before printing. Finally, although we analyzed images to

Table 1. Measuring cellular response to drug treatments (Anisomycin, 1 mM, 309; TNFa, 10 ng/ml, 609) on A549 and HeLa cells
printed on the same chips.

Probe A549 HeLa

Control Anisomycin TNFa Control Anisomycin TNFa

,I. SE ,I. SE Pval ,I. SE Pval ,I. SE ,I. SE Pval ,I. SE Pval

p-P38 0 (n = 10) 397 491 (n = 5) 294 .01 252
(n = 4)

384 .13 0 (n = 10) 225 2256 (n = 5) 679 ,1023 234
(n = 5)

414 .15

p-JNK 0 (n = 10) 241 3897 (n = 5) 1561 .002 2292
(n = 5)

804 .77 0 (n = 10) 374 2701 (n = 5) 1119 .002 605
(n = 5)

280 .003

P65 0 (n = 8) 356 2505 (n = 5) 725 .90 276
(n = 4)

700 .58 0 (n = 9) 359 21051 (n = 5) 1151 .95 969
(n = 5)

423 .002

,I., bias-corrected mean signal intensity (see Methods) for a given condition, with number of spots of that condition on the chip. SE, standard error of mean signal
intensity for a given condition. Pval, p-value of difference between condition ,I. and control ,I., measured by one-tailed, two-sample T-test.
doi:10.1371/journal.pone.0007088.t001

Table 2. Measuring cellular response to interferon treatment and signal variance due to experimental methods.

Probe Slide Control Interferon a (1000 U/ml)

15 min 18 hr

,I. SE ,I. SE Pval ,I. SE Pval

p-STAT1 Print 1 0 (n = 20) 47 860 (n = 10) 278 ,1025 115 (n = 9) 143 .02

Print 2 0 (n = 19) 102 3100 (n = 10) 1056 ,1025 153 (n = 10) 71 ,1024

Print 2 - Stored 0 (n = 19) 64 423 (n = 10) 118 ,1026 88 (n = 10) 57 ,1023

PKR Print 1 0 (n = 17) 246 83 (n = 9) 232 .20 620 (n = 8) 414 .002

Print 2 0 (n = 20) 278 156 (n = 10) 148 .03 416 (n = 10) 228 ,1023

P-values of each condition are shown. Print 1: normal cell prep, immediate printing and assay. Print 2: Cells fixed and stored for seven weeks at 220uC before printing.
Stored: Cell chip stored for 30 days at 4uC after printing, before probing. For column headers, see legend for Table 1.
doi:10.1371/journal.pone.0007088.t002
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gather population data across the cells in a printed spot, it is clear

that single-cell data could be gleaned using more sophisticated

image processing techniques [26,27]. For transfection experi-

ments, adding optical reporters (e.g., green fluorescent protein) on

the same expression vector as the clone of interest or by co-

transfection allows the measurement of cellular response exclu-

sively on successfully transfected cells [16], mitigating the signal

loss encountered when low transfection efficiency is averaged over

a population.

The cell chip is complementary to, and in some cases an

advance over, current high-throughput cell-based assay technol-

ogies. It differs from transfected cell arrays [11] in that it allows the

analysis of multiple cell types and multiple growth and treatment

conditions on a single slide, and it offers an order of magnitude

increase in sample density over existing tissue microarray

technology [17]. Finally, in probing samples from diverse

populations for a single reporter, the cell chip represents an

orthogonal assay to the single-population, many-reporter gene

expression DNA microarray.

A key constraint of the technology as described here is the

considerable manual effort required to prepare a source plate for

printing. While we consider it a major advantage of the cell chip

that cells are grown under normal tissue culture conditions, pin-

based printing requires very high cell density in the source plate,

which is not easily achieved by automated cell handling

techniques. The use of other printing technologies, for example

inkjet or other microspray methods, might ease this burden and

make microplate-based cell culture growth and treatments more

compatible with cell chip printing.

Such development of cell chip technology could make it readily

applicable to functional genomics and chemogenomics. With the

ability to probe an array of cells for target protein abundance,

activation state, and subcellular localization, libraries of small

molecule effectors could be screened for their impact on a variety

of cellular systems. Furthermore, the technology could in principle

be adapted for on-chip fluorescence in-situ hybridization (FISH)

assays against nucleic acid targets. The fact that multiple dosages

and timepoints can be printed on the same set of cell chips

increases the depth to which researchers can investigate the impact

of chemical libraries. Likewise, whereas typical functional genetic

screens are designed around a single reporter or phenotype, the

cell chip allows a different reporter for each replicate slide. Thus,

each genetic perturbation could be assayed for impact on multiple

cellular subsystems and/or for multiple reporters within the same

system, greatly multiplying the data ‘‘bang’’ for the experimental

‘‘buck.’’ Taking into account all these features, we believe the cell

chip offers a useful and general approach for medium- to large-

scale cell-based assays.

Supporting Information

Table S1 Supporting Data. Per-spot bias-corrected mean signal

intensity data for each probed chip.

Found at: doi:10.1371/journal.pone.0007088.s001 (0.02 MB

XLS)
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