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Biologists have long usedmodel organisms to study human diseases,
particularlywhen themodel bears a close resemblance to thedisease.
We present a method that quantitatively and systematically identi-
fies nonobvious equivalences between mutant phenotypes in differ-
ent species, based on overlapping sets of orthologous genes from
human, mouse, yeast, worm, and plant (212,542 gene-phenotype
associations). These orthologous phenotypes, or phenologs, predict
unique genes associatedwith diseases. Our method suggests a yeast
model for angiogenesis defects, a worm model for breast cancer,
mouse models of autism, and a plant model for the neural crest de-
fects associated with Waardenburg syndrome, among others. Using
thesemodels, we show that SOX13 regulates angiogenesis, and that
SEC23IP is a likely Waardenburg gene. Phenologs reveal functionally
coherent, evolutionarily conserved gene networks—many predating
the plant-animal divergence—capable of identifying candidate dis-
ease genes.
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Biochemical and molecular functions of a given protein are
generally conserved between organisms; this observation is

fundamental to biological research. For example, in x-ray crys-
tallography studies, one can often choose the organism fromwhich
the protein is most easily crystallized to facilitate the study of the
protein’s biochemical function. On the other hand, even with a
conserved gene, disruption of function may give rise to radically
different phenotypic outcomes in different species. For example,
mutating the humanRB1 gene leads to retinoblastoma, a cancer of
the retina, yet disrupting the nematode ortholog contributes to
ectopic vulvae (1, 2). Thus, although a gene’s “molecular” func-
tions are conserved, the “organism-level” functions need not be.
When a conserved gene is mutated, the resulting organism-level
phenotype is an emergent property of the system. This bedrock
principle underlying the use ofmodel organisms not only allows us
to study important aspects of human biology using mice or frogs,
but also permits exploration of inherently multicellular processes,
such as cancer, using unicellular organisms like yeast.
Within this paradigm, once a molecular function has been dis-

covered in one organism, it should be predictable in other organ-
isms:GSK3homologs inyeast arekinases, andsuchGSK3homologs
in every other organism will generally be kinases. In contrast, the
emergent organism-level phenotypes are far less predictable be-
tween organisms, in part because relationships between genes and
phenotypes are many-to-many. Manipulation of GSK3 perturbs
nutrient and stress signaling in yeast, anteroposterior patterning and
segmentation in insects, dorsoventral patterning in frogs, and cra-
niofacial morphogenesis in mice (3–5). Recognizing functionally
equivalent organism-level phenotypes between model organisms
can therefore be nonobvious, especially across large evolutionary
distances.
However, the ability to recognize equivalent phenotypes be-

tweendifferentmodel organisms is important for the studyofhuman
diseases. Given the success of studies in model systems (genes and
phenotypes have been associated inmodel organisms at a far higher
rate than for humans) (Fig. 1A), it seems likely that useful and

tractable models for human disease await discovery, currently hid-
den by differences in the emergent appearance of phenotype in
diverse model organisms. Although a framework exists for discus-
sing complex gene-phenotype relationships across evolution, we
lack simple—and importantly, quantifiable—methods for discov-
ering new gene-phenotype relationships from existing data.
As a foundation for a quantifiable approach to identifying equiv-

alent phenotypes, we introduce the notion of orthologous pheno-
types (phenologs), defined as phenotypes related by the orthology of
the associated genes in twoorganisms. Phenologs are thephenotype-
level equivalent of gene orthologs. Two phenotypes are thus said to
be orthologous if they share a significantly larger set of common
orthologous genes than would be expected at random (i.e., are
enriched for the same orthologous genes) (Fig. 1B), even if the
phenotypes may appear dissimilar.
Phenologs, therefore, are evolutionarily conserved outputs aris-

ing from disruption of any of a set of conserved genes (Fig. 1B,
green and blue). These outputs manifest as different traits or de-
fects in different organisms because of the organism-specific roles
playedby each setof genes.Oneexample,notedabove, is thehuman
retinoblastoma eye cancer and the Caenorhabditis elegans ectopic
vulvae. These phenotypes are orthologous, as failure of equivalent
genes (the Rb pathway)—performing conserved molecular func-
tions but in different contexts—leads to different phenotypes in the
different organisms (1, 2).
By quantifying the equivalence of mutational phenotypes be-

tween different organisms, we demonstrate that orthologous
phenotypes may be found objectively, and that these phenologs
suggest nonobvious models for human disease. We demonstrate
the power of this approach by defining a unique yeast model that
effectively predicts vertebrate angiogenesis genes and a plant
model that predicts genes involved in vertebrate craniofacial
defects that are associated with human congenital malformations.

Results and Discussion
Phenologs are identified by assembling known gene-phenotype
associations for two organisms—considering only genes that are
orthologous between the two organisms—and searching for
interorganism phenotype pairs with significantly overlapping sets
of genes. Significance is derived from three observations: (i) the
total number of orthologs in organism 1 that give rise to phenotype
1; (ii) the total number of orthologs in organism 2 that give rise to
phenotype 2; and (iii) the number of orthologs shared between
these two sets. Formally, significance of a phenolog is calculated
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from the hypergeometric probability of observing at least that
many shared orthologs by chance (SI Materials and Methods).
Fig. 1C shows an example of these observations: the set of

human-worm genes associated with X-linked breast/ovarian
cancer in human significantly overlaps the set of genes whose
mutations lead to a high frequency of male progeny in C. elegans.
Male C. elegans are determined by a single X chromosome, her-
maphrodites by two copies; thus, X chromosome nondisjunction
leads to higher frequencies of males (6). Human breast/ovarian
cancers may derive from X chromosome abnormalities (7), sup-
porting the notion that this phenolog is identifying a useful
disease model. Human orthologs of the 13 additional genes
associated with this worm trait are thus reasonable candidate
genes for involvement in breast/ovarian cancers. Nine of these
genes were not yet linked to breast cancer in the databases we
employed, but could be confirmed as such in the primary liter-
ature (Table S1). The remaining four genes (GCC2, PIGA,
WDHD1, SEH1L) are thus implicated as breast cancer candidate
genes. This rate of literature confirmation is 268-fold higher than
that expected based on the current annotation rate in the Online
Mendelian Inheritance in Man database (8), providing significant
support for the utility of the worm phenotype to predict and
suggest additional genes relevant to human breast cancer. (Note
that the estimated fold-improvements we present here depend
upon consistent literature curation and, thus, should be inter-
preted cautiously.)

Systematic Discovery of Phenologs. To systematically discover
phenolog relationships, we collected from the literature a set of
1,923 human disease-gene associations (8), 74,250 mouse gene-
phenotype associations (9), 27,065 C. elegans gene-phenotype
associations (10), and 86,383 yeast gene-phenotype associations
(11–14). The dataset spans ∼300 human diseases and > 6,000
model organism phenotypes. With these data and the sets of
orthologous gene relationships between each pair of organisms
(15), we quantitatively examined the overlap of each interorgan-
ism phenotype pair, measuring their significance (Fig. 2A). To
correct for testing multiple hypotheses, we repeated all analyses
1,000 times with randomly permuted gene-phenotype associa-
tions, then calculated a false-discovery rate (FDR) based upon the
observed null distribution of scores (Fig. 2B and Fig. S1). We
observed 154 significant phenologs (5% FDR) between human
diseases and yeast mutational phenotypes, 3,755 between human
and mouse, 147 between mouse and worm, 119 between mouse
and yeast, 206 between yeast and worm, and 9 between human
and worm (the low number stems from limited mutational data in
both species) (Fig. 2C).
Many specific, intuitively obvious, phenologs were revealed by

this analysis, especially for the comparison of mouse and human
phenotypes. Our analysis recapitulates many known mouse models
of disease, providing an important positive control for our ap-
proach; Table 1 lists other specific examples of both known and
previously undescribed equivalences. For example, one of the most
significant phenologs identified between human disease andmouse
mutational phenotypes is that linking Bardet-Biedl syndrome with
four mouse traits, each of which relates to the disruption of ciliary
function (abnormal brain ventricle/choroid plexus morphology,
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Fig. 1. Number of unique gene-phenotype associations, identification of
phenologs, and the example of a wormmodel of breast cancer. (A) The rate of
associating genes to organism-level phenotypes in model organisms greatly
exceeds that in humans (data from refs. 8–11, 14). Thus, appropriate mapping
ofmodel organismphenotypes tohuman diseases could significantly accelerate
discovery of human disease gene associations. Orthologous phenotypes (phe-
nologs) offer one such approach. (B) Phenologs can be identified based on sig-
nificantly overlapping sets of orthologous genes (gene A is orthologous to A’, B
to B’, etc.), such that eachgene ina given set (greenboxor cyanbox)gives rise to
the samephenotype in thatorganism. Thephenotypesmaydiffer inappearance
between organisms because of differing organismal contexts. As gene-pheno-
type associations are often incompletelymapped, genes currently linked toonly
one of the orthologous phenotypes become candidate genes for the other
phenotype; that is, the gene A’ is a new candidate for phenotype 2. (C) An
example of a phenolog mapping high incidence of male C. elegans progeny to
human breast/ovarian cancers (details in text).
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small hippocampus, enlarged third ventricle, absent sperm flagella;
all P ≤ 10−11), consistent with the apparent molecular defects in
Bardet-Biedl syndrome (16). These phenologs thus suggest mouse
ciliary defects provide apowerfulmodel for studying humanBardet-
Biedl syndrome, consistent with its recognized utility in this regard.
Similarly, human cataracts are observed to be phenologous to
mouse cataracts (P ≤ 10−24), human obesity is phenologous to
mouse obesity (P≤ 10−14), human deafness to mouse deafness (P≤
10−29), human retinitis to mouse retinal degeneration (P ≤ 10−26),
and human goiter to mouse enlarged thyroid glands (P ≤ 10−8).
Thus, the calculation of phenologs correctly identifies many known
mousemodels of human diseases and therefore has the potential to
identify new models. More generally, cross-validated tests of phe-
nologs confirm their strong predictability for genes associated with
a substantial portion of human diseases (Fig. S2).
Much of the powerful conceptual framework established for

determining homology and orthology for gene sequences may also
be applicable to phenologs. For example, many of the algorithmic
approaches used to identify orthologous genes might also be ap-
plied to the identification of phenologs. We explored this notion
for one effective and easily automated approach to identify
orthologous sequences, the reciprocal best hit (RBH) strategy.
The RBH criterion holds that genesX and Y are orthologs if genes
X and Y are the most similar to each other (reflexively) when
searched genome-wide. We adapted the RBH criterion to the
identification of phenologs to identify the most equivalent phe-
notypes between two organisms from among those assayed, by
asking if the phenotypes have the most significant (lowest P value)
gene overlaps with each other when searched against all pheno-
types in their respective organisms. Such analysis gives a second
criterion for identifying phenologs, useful for legitimate phenologs
with poor P values because of limited phenotypic data sets.
Examples of such RBH phenologs are indicated in Table 1.

Mouse and Yeast Phenologs Predict Unique Angiogenesis Genes. The
power of the phenolog framework lies in discovery of nonobvious
disease models. We identified just such a phenolog between
abnormal angiogenesis in mutant mice and reduced growth rate

of yeast deletion strains when grown in the hypercholesterolemia
drug lovastatin (8 mouse, 67 yeast, 5 shared genes, P ≤ 10−6)
(Fig. 3A). This observation suggests that budding yeast, which
obviously lack blood vessels, could potentially model the genetics
of mammalian vasculature formation and could be used to iden-
tify previously unrecognized genes affecting this process.
We identified five shared genes between these processes. In

yeast, they are the MAP kinases SLT2, PBS2, and HOG1, the
calcineurin B gene CNB1, and the uncharacterized gene VPS70.
Strikingly, mutations of their mouse orthologs (MAPK7,MAP2K1,
MAPK14, PPP3R1, and the prostate-specific membrane antigen
PSMA, respectively) all confer strong angiogenesis defects (e.g.,
MAPK7 deletion causes defective blood vessel and cardiac de-
velopment) (17), and ablation in adult mice leads to leaky blood
vessels (18). Similarly, PSMA regulates angiogenesis by modulat-
ing integrin signal transduction (19). Thus, this conserved set of
genes was alternately repurposed to regulate cell wall stress and
biogenesis in yeast cells (20) or to regulate proper formation and
maintenance of blood vessels in mice.
Phenologs are most important for their ability to map gene-

phenotype associations from one organism to another. In other
words, phenologs suggest unobserved associations in one organ-
ism from observed associations in another (Fig. 1B, gene E and
gene A’). Thus, examination of phenologs should substantially
improve the rate of discovery of new genes over the rate expected
by chance (here ∼1 in 267, as estimated from the frequency of
known angiogenesis genes). We might a priori expect a discovery
rate comparable to the fraction of genes already verified by the
phenolog; for the yeast angiogenesis model, a likely discovery rate
of ∼1 in 13, for a ∼21-fold higher discovery rate than random
expectation. Our model therefore asserts that some of the 62
additional genes associated with lovastatin sensitivity in yeast
would be predicted to be involved in angiogenesis. In fact, liter-
ature confirms three of the correspondingmouse genes to function
in angiogenesis: the known target of lovastatin, HMG-CoA re-
ductase, whose role in angiogenesis has been previously observed
(21), the sirtuin SIRT1, whose disruption in zebrafish and mice
caused defective blood vessel formation and blunted ischemia-

Table 1. Examples from the >6,200 significant phenologs detected among human diseases and mouse, yeast, worm, and Arabidopsis
mutant phenotypes

Phenotype1 Phenotype2 n1 n2 k P value PPV

Hs Cataracts Mm Cataracts 19 47 11 6 × 10−24 1.00
Hs X-linked conductive deafness Mm Circling 47 50 12 2 × 10−20 1.00
Hs Bardet-Biedl syndrome Mm Absent sperm flagella 11 5 4 8 × 10−13 1.00
Mm Lymphoma Sc CANR mutator high 14 11 6 1 × 10−11 1.00
Hs Zellweger syndrome Sc Reduced number of peroxisomes 8 6 4 1 × 10−9 1.00
Hs Susceptible to autism Mm Abnormal social investigation 5 16 3 1 × 10−8 1.00
Mm Abnormal heart development At Defective response to red light 25 9 4 3 × 10−7 1.00
Hs Refsum disease At Defective protein import into

peroxisomal matrix
4 5 2 1 × 10−5 1.00

Mm Absent posterior semicircular
canal

At Shade avoidance defect 2 4 2 1 × 10−6 0.99

Mm Spleen hypoplasia Sc Uge (enlarged cells) 5 16 3 3 × 10−6 0.99
Mm Gastrointestinal hemorrhage Ce Abnormal body wall muscle cell

polarization
6 3 2 4 × 10−6 0.98

Hs Mental retardation At Cotyledon development defects 13 5 2 1 × 10−4 0.98
Hs Congenital disorder of

glycosylation
Sc CID 604586 sensitive 10 25 3 2 × 10−4 0.98

Hs Hemolytic anemia Sc Hydroxyurea sensitive 11 23 3 2 × 10−4 0.98
Hs Amyotrophic lateral sclerosis Sc Increased resistance to

wortmannin
2 34 2 2 × 10−4 0.97

n1 indicates the number of orthologs in organism 1 with phenotype1, n2 the number in organism 2 with phenotype2, and k the number in both sets. The
significance of each phenolog is assessed by the hypergeometric probability (P value), the positive predictive value (PPV) when considering multiple testing
(1 – FDR), and the reciprocal best-hit criterion (bold text). At, Arabidopsis; Ce, worm; Hs, human; Mm, mouse; Sc, yeast.
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induced neovascularization (22), and the casein kinaseCSNK2A1,
inhibitors of which inhibit mouse retinal neovascularization (23).
For phenologs to be useful, they must be able to predict entirely

new gene-phenotype associations. To this end, we examined the
59 remaining genes not already associated with angiogenesis for
conserved function using the frogXenopus. Using whole-mount in
situ hybridization, we examinedmRNA expression of theXenopus
orthologs of these genes. Consistent with our hypothesis, we
found that five of the genes (orthologs of SOX13, RAB11B,
HMHA1, TCEA1/TCEA3, and TBL1XR1) were robustly and
predominantly expressed in the developing vasculature (Fig. 3B
and Fig. S3). These expression data suggest an overall discovery
rate (8 of 62) of this phenolog 34 times higher than expected
given the current annotation rate.
Finally, we directly assayed the role of one of these genes,

SOX13, in angiogenesis. SOX13 is a transcription factor that is
known to regulate T lymphocyte differentiation (24). The gene is
expressed in mouse arterial walls (25), although it is also expressed
in 30 of 45 assayed tissues in the National Center for Biotechnol-
ogy Information Unigene Expressed Sequence Tag database. (The
Xenopus ortholog of SOX13 was previously referred to as Xenopus
xSOX12, but inaccordancewith recentXenopusgenenomenclature
guidelines, we refer to this genenowas sox13,Gene ID397727.)We
found this gene to be prominently expressed in the posterior car-
dinal veins, intersomitic veins, anddeveloping heart, consistentwith
a role affecting developing vasculature (Fig. 3B and Fig. S4). We
knocked down sox13 using microinjection of morpholino antisense
oligonucleotides (MO) and assayed for vasculature defects by in
situ hybridization to the vasculature reporter genes erg and agtrl1

(previously called X-msr, Gene ID 399306). Knockdown of sox13
resulted in severe defects in vascular development, with morphant
animals largely lacking intersomitic and posterior cardinal veins
(Fig. 3C and Fig. S5). By later stages, hemorrhaging was apparent
in morphants because of the defective vasculature (Fig. 3D).
This in vivo requirement for sox13 in Xenopus was then con-

firmed in humans using siRNA-induced knockdown of SOX13 in
an in vitro human umbilical vein endothelial cell angiogenesis
assay (Fig. 3E). Thus, SOX13 is a unique regulator of angiogenesis,
discovered in the absence of any previous functional data linking it
to angiogenesis, on the basis of orthology between mouse angio-
genesis defects and yeast lovastatin sensitivity. Notably, these data
also demonstrate that differentiation both of blood cells (24) and
blood vessels are controlled by the same transcription factor.

Human/Arabidopsis Phenologs Predict Vertebrate Regulators of
Craniofacial Development. Phenologs provide a quantitative frame-
work for identifying cases of extremely distant homology [“deep
homology” (26)] of functionally coherent gene systems. This creates
an opportunity to use very distantly related species as human dis-
ease models. We tested this approach by systematically searching
for plant models of human disease. We collected 22,921 gene-
phenotype associations—spanning 1,711 unique phenotypes—for
the mustard plant Arabidopsis thaliana and analyzed these for
phenologs with fungal and animal phenotypes. Hundreds of orth-
ologous phenotypes were evident (Fig. 4A and Fig. S6), including
897, 733, 172, and 48 between Arabidopsis and yeast, mice, worms,
and humans, respectively (5% FDR). The human-plant phenologs
suggest mappings between specific plant mutational phenotypes
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and diverse human diseases, including cancers, peroxisomal dis-
orders, such as Refsum disease and Zellweger syndrome, and a
variety of birth defects (Table 1).
We observed a striking plant-human phenolog relating neg-

ative gravitropism defects to Waardenburg syndrome (Fig. 4B).
This congenital syndrome stems from defects in the developing
neural crest and is characterized by craniofacial dysmorphology,
abnormal pigmentation, and hearing loss [in fact, it accounts for
2–5% of cases of human deafness (27)]. In particular, this phe-
nolog suggested that a set of three vesicle trafficking genes
involved in directing plant growth in response to gravitational
cues might also serve to direct neural crest cell migration and
differentiation in developing animal embryos.
Encouragingly, one of the identified proteins (STX12) is known

to interact with the protein encoded by the pallid gene in mice (28),
whose mutational phenotypes, including pigmentation and ear
defects, are consistent with Waardenberg syndrome (29). The re-
maining two proteins had no support in the literature, and we
therefore evaluated the three mammalian orthologs of these genes
by whole mount in situ hybridization in developing Xenopus em-
bryos. Strikingly, we found that sec23ip was prominently expressed
in migrating neural crest cells (Fig. 4C). We used targeted micro-
injection of sec23ip morpholinos to knock down this gene specifi-
cally in the neural crest. Unilateral targeting of sec23ip MOs (Fig.
4D) resulted in marked defects in neural crest cell migration pat-
terns specifically on the injected side (Fig. 4E and Fig. S7), thus
confirming a role for this gene in neural crest cell development.
Notably, SEC23IP physically associates with SEC23, a component

of the COPII complex that controls ER-to-Golgi trafficking, and
mutations in SEC23 underlie Cranio-lenticular-sutural dysplasia,
another congenital human disease related to neural crest develop-
ment (30). Thus, SEC23IP, identified here on the basis of orthology
to plant gravitropism defects, is both a promising candidate gene
for Waardenburg syndrome and also provides insights into the
emerging link between COPII function and craniofacial develop-
ment in vertebrates (31). Our success rate of one in two for finding
Waardenburg-relevant genes represents a 550-fold improvement
over the current annotation rate of ∼1 in 1,100 genes. Notably, in
spite of the extremely dissimilar associated phenotypes, phenologs
can identify functionally coherent gene sets that predate the
divergence of plants and animals.

Phenologs Reveal Deeply Homologous Modular Subnetworks. Phe-
nologs imply that although phenotypes diverge, the orthology of
the underlying gene networks—and the networks’ immediate
functional output—is conserved. We might therefore expect genes
involved in a given phenolog to represent a coherent biological
module, and thus to be highly interconnected in gene networks.
Moreover, we might expect that the genes already confirmed to
show the signature phenotypes in both organisms (e.g., the inter-
section labeled by k in Fig. 2A) would be even more highly inter-
connected than the genes associated with the signature phenotype
in only one organism; these latter genes might or might not belong
to this subnetwork, as multiple mechanisms might give rise to the
phenotype. Evidence in current gene networks of more linkages
among the genes in each such intersection would support this
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notion of phenologs recapitulating modular subnetworks. We
therefore systematically tested all significant phenologs involving
yeast and worm genes for the genes’ connectivity in available
functional networks (32). We find the network connectivity of
genes in phenolog intersections to be significantly higher (P <
0.0001; Wilcoxon signed-rank) than the phenolog genes outside of
the intersections, which nonetheless show significantly higher net-
work connectivity than random size-matched gene sets (P< 0.0001)
(Fig. S8). Additional tests confirm that genes in phenolog inter-
sections are no more enriched for homologous genes than
are phenolog genes outside of the intersections (Fig. S9), ruling out
trivial discovery of “deep paralogs.” These observations indicate
that phenologs identify evolutionarily conserved subnetworks of
genes relevant to particular phenotypes or diseases, yet still pre-
dicting as yet undiscovered candidate genes significantly better than
random expectation. Phenologs may inherently identify systems
such as those found by aligning protein interaction networks across
species (33). Indeed, direct searches for evolutionarily conserved
subnetworks composed largely of genes with similar phenotypes
might provide an alternate strategy for phenolo discovery.

Conclusions
Phenologs reflect the innate modularity of gene systems and
identify adaptive reuse of those systems, creating a rich framework
for comparing mutational phenotypes with potential for finding
nonobvious models of human disease. Cross-validated tests indi-
cate phenologs show utility for roughly one-third to one-half of
tested human genetic diseases (Fig. S2). Given a phenolog for a
human disease, any approach for associating more genes with the
model organism trait (e.g., a genetic screen) will suggest additional
new human disease gene candidates. In addition to associating
unique genes with modeled diseases, such models can provide
mechanistic understanding in simplified model organisms for
understanding aspects of more complex human diseases.

Phenologs thus bridge the molecular definitions of homologous
and orthologous genes (34) with classic definitions of homologous
structures from Owen (35) and Darwin (36), deriving from con-
siderations both of gene heredity and of the traits/structures
affected by perturbing the genes, concepts falling within the gen-
eral field of evolutionary developmental biology (evo-devo) (37).
The conserved gene systems revealed by the plant-vertebrate
phenologs illustrate a more ancient homology than the “deep
homology” of metazoans that is currently a focus of evolutionary
developmental biology (26). These phenologs should bring at-
tention to the potentially extensive molecular toolkit within the
last common eukaryotic ancestor, which facilitated the parallel
evolution of complex multicellular organisms. This comparative
approach provides a simultaneously deeper and wider view of the
evolution of life and points the way to a greater synthesis of evo-
lutionary developmental biology and modern medicine.

Materials and Methods
Detailed information regarding the collection of phenotypes, identification
of nonredundant phenotype sets, calculation of orthologs, calculation of
phenologs, and tests of subnetwork modularity can be found in the SI
Materials and Methods. Animal care met the principles and guidelines of the
Institute for Laboratory Animal Research “Guide for Care and Use of Labo-
ratory Animals” and the University of Texas at Austin Institutional Animal
Care and Use Committee. Details of Xenopus laevis embryo manipulations
and tube formation assays can be found in the SI Materials and Methods.
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