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Abstract: Pairs of genes that function together in a pathway or cellular system can sometimes be found fused together in another
organism as a Rosetta Stone protein — a fusion protein whose separate domains are homologous to the two functionally-related proteins.
The finding of such a Rosetta Stone protein allows the prediction of a functional linkage between the component proteins. The significance
of these deduced functional linkages, however, varies depending on the prevalence of each of the two domains. Here, we develop a
statistical measure for the significance of predicted functional linkages, and test this measure for proteins of E. coli on a functional
benchmark based on the KEGG database. By applying this statistical measure, proteins can be linked with over 70% accuracy. Using the
Rosetta Stone method and this scoring scheme, we find all significant functional linkages for proteins of E. coli, P. horikshii and S.
cerevisiae, and measure the extent of the resulting protein networks.
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Introduction The essence of the gene fusion method is illustrated in
The genome sequencing revolution has led to the discovery Figure 1. Two separate genes in one organism, such as the
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functional hnkages are predlCted between genes operating Figure | Three examples of the Rosetta Stone gene fusion analysis. In each

in the same pathways by matching the genes that are found example, the functional linkage between a pair of proteins is inferred from the
occurrence of a third ‘Rosetta Stone’ protein, drawn directly above the pair, which

in similar contexts. For example’ pathways can be is composed of component sequences similar to each of the separated proteins.

reconstructed by 1dent1fy1ng genes OCCllI'I'iIlg in the same The top example shows two yeast proteins, the El alpha component (Pdal) and
El beta component (Pdbl) of the pyruvate dehydrogenase complex. Pdal and
operon (Dandekar etal 1998, Overbeek et al 1999’ Salgado Pdbl are correctly predicted to work together because of their sequence

etal 2000)’ flndlng genes present and absent from the same homology to distinct regions of a third protein, the oxoisovalerate dehydrogenase
from C. pneumoniae. In the second example, the El beta component is additionally

sets of organisms (Pellegrini et al 1999), or finding pairs of linked to the protein X component (Pdx!) of the mitochondrial pyruvate

dehydrogenase. In the third example, two E. coli proteins, subunits A and B of the

enes fused together as a single gene in another organism
g g gle g g L-tartrate dehydrogenase, are correctly linked via the presence of the V. cholerae

(Marcotte et al 1999a; Enright et al 1999; Huynen et al  Rosetta Stone protein fumarate hydratase.
2000b). It is critical that all predictions are accompanied by

appropriate statistical analyses surrounding the significance
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and testing the significance of functional linkages derived
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the bottom of Figure 1, can occasionally also be found fused
into a single protein, such as the Vibrio cholerae protein
drawn above the two E. coli proteins. The presence of this
fusion protein allows us to infer a functional linkage between
the two component proteins (Marcotte et al 1999a; Enright
et al 1999). The fusion protein is termed a ‘Rosetta Stone
protein’ for decoding this relationship (Marcotte et al 1999a).
Pairs of proteins linked by such a Rosetta Stone relationship
often occur in the same cellular pathway (Marcotte et al
1999b; Yanai et al 2001).

It is clear that not all fusion events are equally valuable
for inferring functional linkages between genes. For example,
certain ‘promiscuous domains’ (Marcotte et al 1999a), such
as ATP binding cassettes and SH3 domains, are known to
participate in fusions with more than a hundred other
domains. It would be essentially uninformative to link every
protein containing an SH3 to every protein containing a
kinase domain due to the presence of fusion proteins with
both kinase and SH3 domains. For this method to become a
widely applicable functional genomics technique, we
therefore require a way of identifying only high quality
Rosetta Stone linkages and avoiding the promiscuous
domain-induced linkages.

The limitations of orthology

Intuitively, one might expect that accurate predictions of
Rosetta Stone linkages could be found by considering only
orthologous relationships. However, the applicability of
orthology for this purpose is limited. An example,
diagrammed in Figure 2, will serve to illustrate this point. In
this example, the gyrase A and B, and parE and C

S. cerevisiae
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Figure 2 An example of the limits of orthology for discovering Rosetta Stone
fusion relationships. Yeast topoisomerasell (Top2) is a protein consisting of a gyrB/
parE-type domain fused to a gyrA/parC-type domain. As defined by the
bidirectional best hit criterion, parE is the orthologue of the first domain of yeast
Top2,and gyrase A is the orthologue of the second domain of yeast Top2, as
indicated in the figure by cross-hatching. The precise BLASTP expectation scores
obtained from sequence comparisons are shown in the table. Thus, the orthology-
based method incorrectly pairs parE with gyrA, and omits the correct linkages of
gyrA with gyrB, and parE with parC. Using homology rather than orthology would
ensure both correct linkages are discovered, but also introduces two incorrect
linkages. Therefore, homology increases the coverage, while potentially decreasing
the accuracy, while orthology decreases the coverage without guaranteeing
enhanced accuracy.

topoisomerase proteins, are linked due to the presence of
the yeast topoisomerasell (Top2) protein, which is a fusion
of both gyrase A-like and gyrase B-like domains. To apply
orthology to predict precise linkages between these proteins,
the fusion protein must first be separated into domains, and
the sequence of each domain must be compared to the
separate proteins to identify orthologues.

A common heuristic method for identifying orthologues
is to identify ‘bidirectional best hits’ (for example, see
Overbeek et al 1999): if the most similar sequence to protein
A in genome 2 is B, and if the most similar sequence to
protein B in genome 1 is A, then A and B are bidirectional
best hits, and are operationally considered to be orthologues.
In the case of Figure 2, parE is the bidirectional best hit of
the first domain of Top2 (Top2a), and gyrase A is the
bidirectional best hit of the second domain of Top2 (Top2f).
Therefore, this approach would incorrectly predict a
functional linkage between parE and gyrase A, and would
miss the correct linkages between gyrase A and B, and
between parE and C. Although it may be argued that the
bidirectional best hit method is inadequate, alternative high-
throughput methods for establishing orthology, such as the
COGS database (Tatusov et al 1997), are not useful here
either—both gyrase B and parE belong to the same COG
family, as do gyrase A and parC.

Beyond difficulties in establishing orthologues in a
scaleable fashion, the orthology-based method suffers from
an additional shortcoming. Even in a situation where the
fused orthologues are the correct partners, the method
predicts only one linkage per fusion protein, and makes no
prediction about the remaining proteins, even in simple cases
such as that in Figure 2. For example, even if gyrase A and
B had actually been the orthologues of Top2f and o,
respectively, the method would still omit the linkage between
parC and parE. Thus, the orthology-based method: (1) suffers
from considerably lower coverage than the homology-based
method, and (2) does not guarantee accurate linkages.
Instead, we have opted to use homology, but provide a
quantitative measure of confidence in each prediction. In
this manner, the method’s coverage is maximised, and the
predictions can be easily combined with functional linkages
derived by other methods.

Measuring the significance of
Rosetta Stone linkages

To account for the promiscuous-domain induced ambiguities
in Rosetta Stone linkages, we have developed a statistical
measure that takes into account the prevalence of the two
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Figure 3 An example of promiscuous domains generating uninformative Rosetta
Stone linkages. Each of the two component regulator proteins is linked with each
of the two component sensor proteins because of the presence in the sequence
database of a single Rosetta Stone protein from Synechocystis (GenBank identifier
1653468) that encodes fused regulator and sensor domains.As there are a large
number of sensor and regulator proteins in the database (as well as in any given
organism), it is uninformative to link every sensor to every regulator protein, and
because only a single fusion is observed, one’s confidence in the fusion may be low.
To calculate the significance of such a case, the number n of regulator sequence
homologues in the database of N sequences is measured, the number m of sensor
sequence homologues in the database is measured, and the number k of sensor/
regulator fusion proteins is measured. Then, the probability of observing k or more
fusions by chance due to the prevalence of the two domains is calculated. As
illustrated in the Venn diagram at the bottom of the figure, this is equivalent to the
probability of drawing a set of n objects from a bag containing N, replacing the n
objects, then drawing m from the bag and observing k that were also seen on the
first draw. Here, N = 145 579; n = 249;m = 251;and k = |, and p(Number of
fusions > k | n=249,m=251,N=145579)=0.35.This probability is multiplied by a
correction term accounting for the within-genome ambiguity arising from the large
number of homologues of sensors (S,) and regulators (S,) in E. coli. For this
example, this probability term equals (1-1/max(S,,S;)) = (1-1/23) = 0.96.The
product of these probabilities (0.96 x 0.35 = 0.34) is the probability of this fusion
occurring by random chance. In this example, a probability of ~1/3 is quite high, so
functional linkages generated between the sensor and regulator proteins could
easily be achieved by random chance and are not deemed significant.

separated proteins and favors predictions made between
otherwise rare domains. The approach is illustrated in
Figure 3.

Figure 3 shows an example of promiscuous domains in
bacterial genomes, the two-component signalling protein
sensor and regulator domains. Again, it is clear that although
the domains have a close functional relationship, it is
uninformative to link every sensor to every regulator protein
due to the presence of the Synechocystis fusion protein. There
is an ambiguity as to which of the sensors should be linked
to which of the regulators.

Two proteins, A and B, are predicted to be functionally
linked due to the presence of a third AB fusion protein, where
the sequences A and B are similar to non-overlapping regions
of AB and show no significant similarity to each other. The
number of similar sequences of each of these proteins is

counted in a database of N protein sequences, where a
sequence is considered similar if its amino acid sequence
aligns with the query protein with a statistically significant
BLASTP expectation score (E < 1x10°%; Altschul et al 1997)
using default BLASTP 2.1.2 parameters. If n represents the
number of A homologues in the database, m represents the
number of B sequence homologues and k represents the
number of distinct AB fusion proteins linking A and B, then
based on the hypergeometric distribution we can calculate
the probability of observing exactly k fusions between
domains occurring n and m times in the sequence database:

n\(N-n
p(km’m’N):u
N
m

n!(N - n)!m !(N - m)!
(n—k)k!(m—k) (N —n—m+k)!N!

ey

This probability corresponds to the number of unique ways
that n and m proteins could be chosen with exactly k fusions,
divided by the total number of unique ways that n and m
proteins could be chosen from the database. In practice, to
avoid underflow errors in computing the probability, the log
of the probability is calculated:

In p(k | n,m,N)=In(n!)+1n(N — n)+In(m!}In(N —m)!
—In(n—k)=In(k!}-In(m—k)!
—In(N —n—m+k)~In(N") )

and large factorials are calculated with Sterling’s
approximation. To convert this instantaneous probability into
the probability of observing k or more fusions by random
chance, we subtract from one the probability of observing
from O to k-1 fusions:

p(Number of fusions =2k n,m, N) =1- kzi p(i ln,m, N)
i=0

3)

where i is merely a counter for the summation. This score

now gives us a measure of the significance of the functional

linkage between two proteins that are linked by a fusion

event. The lower the probability, the less likely it is that the

fusions were observed by chance, and the more significant
the linkage is.

Intuitively, this score captures the properties we desired:

it favours fusions between rare domains (small » and m)

over those between common domains (large » and m), unless

those proteins are virtually always observed as fusions (large

k), in which case the rare separated domains are predicted to
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be linked. However, this score fails to account for a second
source of ambiguity: the within-genome ambiguity
introduced by multiple homologues of the A or B proteins
within the query genome for which we are predicting
functional linkages. For example, given an A protein in E.
coli and a B protein in E. coli (with fusion proteins in other
genomes), it is reasonable to link A to B. Given two A proteins
and two B proteins in E. coli, four possible links can be
made (A1-B1, A1-B2, A2-B1, A2-B2), only two of which
are likely to be correct, as in the example in Figure 2. So,
given §, homologues of A and §, homologues of B in the
query genome, the probability that any given linkage between
an A protein and a B protein is correct is given by:

p(A, Bare functionally linked) = M

Sy XSg
_ 1

T max(S,,55) @)

This probability term will be equal to 1 if there is only one A
and one B protein in the query genome. Thus, all
unambiguous linkages are automatically included. By
assuming independence between this within-genome
ambiguity and the whole-database ambiguity discussed
earlier, the final significance score is merely the product of
the probabilities of the two events:

(A, Blinked by random chance)
= p(A, B arenot functionally linked)
X p(Number of fusions =k | n,m, N)

:(1_me(l_§ p(iln,m,N)) 5)

The assumption of independence between these two effects
is certainly incorrect with rare genes that occur only in the
query genome; but for most genes, this assumption holds,
and will only become stronger as the number of genome
sequences grows.

Construction of a benchmark for

testing functional prediction

Having established a scoring scheme, it is necessary to test
this measure to ensure that it correctly predicts the quality
of the functional linkages. Ideally, we expect the functional
relatedness of linked proteins to increase as the probability
of observing the fusion by chance decreases. To test this
functional similarity, a benchmark will be required consisting
of a set of proteins known to operate in a set of cellular
pathways or systems.

Such benchmarks have previously utilised the keywords
associated with proteins in sequence databases such as
SwissProt (Bairoch and Apweiler 2000) or the hierarchical
functional categorisations of proteins, such as the KEGG
database (Kanehisa and Goto 2000) or MIPS database
(Mewes et al 2002), in which curators manually assign
proteins into functional categories. The SwissProt database
keywords, while convenient and available for many proteins,
are limited in their usefulness for this purpose (Devos and
Valencia 2000), and are often only indirectly related to the
functions of the proteins, referring instead to motifs or
subcellular locations.

However, the KEGG database (http://www.
genome.ad.jp/KEGG) organises proteins into pathways and
cellular systems, and this functional hierarchy seems
intrinsically well-suited for serving as a functional
benchmark. The database categorises 1283 E. coli proteins
into 24 main pathways, including metabolic pathways (such
as carbohydrate and energy metabolism), and general cellular
systems (such as transcription, translation, and sorting and
degradation). Within each main category, proteins are further
grouped into subcategories; 147 of these specific categories
are described, of which 117 apply to E. coli. Example KEGG
categories are shown in Table 1.

Unfortunately, the KEGG functional categories also
suffer from certain limitations. Primarily, they are not defined
according to objective criteria—some categories represent
not pathways, but homologous protein families (such as two
component signalling proteins or ATP binding cassette
systems). For the purposes of a functional benchmark, we
are willing to accept a broad definition of pathways
encompassing metabolic pathways, signal transduction
cascades and cellular systems. However, it would be incorrect
to suggest that all two-component sensor proteins operate
in the same specific pathway. Some processing must
therefore be done to select a consistent set of functional
categories from the KEGG database for use as a functional
benchmark.

Each KEGG category in KEGG release 22.0 was
evaluated for its suitability to describe pathway relationships
rather than homologous protein families. First, the set of
E. coli proteins were selected in a given KEGG category
(from the set of 117 specific categories). The amino acid
sequences of these proteins were compared to each other
using BLASTP 2.1.2 to identify proteins with related
sequences. The proteins from the KEGG category were then
modelled as a graph, with each protein represented by a
vertex in the graph, and each significant sequence similarity

Applied Bioinformatics 2002:1(2)
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Table I An example of the functional annotation of 3 pairs of linked proteins from E. coli. The KEGG database (Kanehisa and Goto

2000) annotation for each protein is listed. In this example, the functional similarity between the linked proteins ttdA and ttdB would

be 100%, but the functional similarity between the unlinked proteins ttdA and phoB would be 0%.The functional similarity between

phoB and envZ, linked with a poor significance score and known to act in different specific pathways (phosphate starvation response

and osmolarity sensing, respectively), would be scored as 0% due to removal of the ‘two-component system’ KEGG category during

construction of the functional benchmark.

Link
significance  Functional
Protein General KEGG category Specific KEGG category score similarity
ttdA L-tartrate dehydratase subunit A Carbohydrate metabolism Glyoxylate and dicarboxylate metabolism p=0 100%
ttdB L-tartrate dehydratase subunit B Carbohydrate metabolism Glyoxylate and dicarboxylate metabolism
fucOoxidoreductase Carbohydrate metabolism Pyruvate metabolism
Glyoxylate and dicarboxylate metabolism p=0 50%
aldA aldehyde dehydrogenase Carbohydrate metabolism Pyruvate metabolism
phoB regulator Signal transduction Two-component system p =0.06 0%

envZ sensor Signal transduction

Two-component system

(BLASTP expectation score < 1x10°) represented by an edge
in the graph connecting the similar proteins. The largest
family of homologous proteins was identified as the largest
cluster in this graph. The number of proteins in this family
serves to indicate the nature of the KEGG category.

As shown in Figure 4, more than 95% of the KEGG
categories describe pathways composed of diverse proteins
sharing little sequence similarity to each other. However, a
small number of KEGG categories were composed not of
pathway members, but of homologous sequence families,
and are unsuitable for use as a functional benchmark.
Categories containing more than 10 proteins from a single
protein family (KEGG categories 2020 and 2010) were
removed, and the functional benchmark was composed of
the remaining KEGG categories.

50
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KEGG category 2020: Two-component signaling signal transduction
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Figure 4 Construction of a functional prediction benchmark.The number of E.
coli proteins from the single largest protein family in a given KEGG category is
plotted. More than 95% of the KEGG categories can be seen to reflect pathway
relationships, but a small number of KEGG categories, primarily categories 2010
and 2020, are defined instead by homology.When these categories are removed,
the remaining categories provide a functional benchmark for the proteins of E. coli.

Testing the linkage scoring scheme
Given the functional benchmark, the scoring scheme could
now be tested. We identified all possible Rosetta Stone links
between proteins of the bacterium E. coli in the following
manner. First, we constructed a database consisting of
145 579 protein sequences from the completed genomes of
50 organisms, including the genome of every organism
discussed in this article. Using the program BLASTP 2.1.2
and default search parameters, we then compared the
sequence of every E. coli protein to every protein sequence
in this database. Rosetta Stone linkages were defined between
pairs of E. coli proteins where the proteins showed no
sequence similarity to each other (using a BLASTP
expectation value threshold of 1x10%), but were each
homologous to non-overlapping segments of a third protein
from the database. Of the 4289 proteins in the E. coli genome
(Blattner et al 1997), we found 4613 functional linkages
between 1124 proteins of E. coli, corresponding to
predictions of functionally linked proteins for about 26% of
the genome of E. coli.

To then quantitatively measure protein function, we
examined the subset of E. coli proteins of known function,
as defined in our functional benchmark. For all Rosetta Stone
linked pairs of E. coli proteins assigned to functional
categories in the benchmark, we measured the extent of
functional similarity as the Jaccard coefficient of their

functional category annotations:

|[KEGG , NKEGG|
[KEGG , UKEGG,| (©

Functional similarity=100x

where KEGG_ is the set of specific KEGG categories in
which protein x is known to participate, and IKEGG | is the
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size of the set. This measure represents the normalised
intersection of the set of specific categories to which proteins
A and B belong, and results in a similarity of 100% for
proteins occurring in the identical set of categories and 0%
for proteins in entirely distinct categories. We calculated the
functional similarity for all pairs of linked annotated proteins,
and binned the similarities according to the significance
scores of the linkages, plotting the mean of the functional
similarity for links within a given range of significance
scores. The results of this genome-wide test are shown in
Figure 5.

Several results are notable from this test. Primarily, the
significance scores described earlier correctly predict the
functional relatedness of the linked proteins. The pathway
similarity of the two proteins shows an exponential
dependence upon the linkage probability score, with Rosetta
Stone linked protein pairs with significance scores equal to
1x10® corresponding to ~50% functional similarity, and pairs
linked with significance scores equal to 1x10°!°
corresponding to ~70% functional similarity. A linear
regression fit of the data (R = 0.88) provides the following
relationship:

S =12.7-5.5xlog p(A, B linked by random chance) @)
where § is the functional similarity, and p(A,B linked by
random chance) is the significance score. The linkage scoring
scheme therefore establishes an objective measure of how
much confidence to place in each functional linkage.

100

Functional similarity (%)

Significance score
log p(A,B linked by random chance)

Figure 5 The statistical measure of confidence in Rosetta Stone linkages, log
p(A,B fused by random chance), correlates well with known functional
relationships among proteins of E. coli,as shown by the closed circles and their fit
by linear regression (solid line). All Rosetta Stone linkages, even those with poor
significance scores, associate genes together whose functions are considerably
more similar than random pairs of E. coli proteins (dashed horizontal line).

Calculating networks of

functionally linked proteins
To measure the extent of high confidence fusions, we
examined the number of functional linkages predicted at
different significance scores in several different genomes.
Table 2 summarises the total number of links and the number
of links with significance scores below 1x10° and 1x107°,
corresponding to the ~50% and ~70% functional similarity
cutoffs, in the bacterium E. coli, the archaeon Pyrococcus
horikoshii (Kawarabayasi et al 1998) and the eukaryote
Saccharomyces cerevisiae (Goffeau et al 1997). As seen in
Table 2, hundreds of very high confidence predictions can
be generated for proteins in a genome. Specifically, links at
the ~50% functional similarity level can be predicted for
more than 14% of the proteins of E. coli, 10% of the proteins
of yeast and 8% of the proteins of the archaeon P, horikoshii.
Because these linkages join proteins into networks, it is
reasonable to try and visualise these resulting networks.
Figure 6 shows the network of 475 E. coli proteins connected
by 854 Rosetta Stone linkages with significance scores better
than 1x10'°. The networks generated only by Rosetta Stone
linkages are sparse, but begin to define cellular systems,
many of which are labeled in Figure 6, such as the system of
pyruvate metabolism and aromatic amino acid biosynthesis,
and the fructose and fructose-like phosphotransferase system.
Metabolic proteins are known to be common participants
in gene fusions (Tsoka and Ouzounis 2000), and indeed many
of the proteins pictured in Figure 6 work in metabolic
pathways, such as aroA, aroB and aroD in shikimate

Table 2 The extent of high confidence functional linkages found
in complete genomes.The numbers of links predicted with
significance scores below a given threshold are measured for all
proteins from organisms from the three domains of life. The
percentage of proteins in the genome for which some functional
link can be predicted is shown in parentheses in the last column.

Significance Number of Number

score functional of proteins

Organism threshold links (% of genome)
E. coli 1 (all links) 4613 1124 (26%)
1x10° 1121 583 (14%)

1x 1010 854 475 (11%)

P. horikoshii 1 (all links) 653 384 (19%)
1x10° 135 165 (8%)

1x 1010 107 137 (7%)

S. cerevisiae 1 (all links) 9382 1547 (24%)
1x10° 1473 611 (10%)

1x 1010 918 406  (6%)

Applied Bioinformatics 2002:1(2)



Predicting functional linkages from gene fusions with confidence

S

\li\l_
—E'_

)

-

Fatty acid &
amino acid
metabolism

Transcription

Pyruvate metabolism
Phe/Trp/Tyr synthesis

\

I
AN

\ k Phosphotransferase Transport
% components | |
— N
Acetaldehyde : - / h
metabolism OREFs of Sugar
@ ( unknown metabolism
% function
— aroA >¥‘/ Fructose &

ORFs of
unknown
function

P |

Ile/Leu/Val
metabolism

fructose-like
PTS system

|
4\4 N and amino acid
metabolism
3 ORFs of

unknown function

Figure 6 The 854 high confidence functional linkages between 475 E. coli proteins define a subset of the genome-wide gene network. Proteins are drawn as points.
Rosetta Stone links with significance scores better than | x 10"° are drawn as lines connecting the linked proteins.This figure was generated as in Marcotte 1999b.
Essentially, each protein was represented as a point with random coordinates in the plane, and linked proteins were represented as being connected by springs. Following
iterative cycles of moving the proteins to minimise the spring energies, linked proteins sit close to each other on the page.

synthesis. Non-metabolic proteins are also linked by fusion
events, such as proteins in signalling pathways and
transcriptional regulation. Many open reading frames (ORFs)
of unknown function are included in the network, and their
linkage to proteins of known function should allow
preliminary assignment of the general function of many of
these ORFs. Other uncharacterised ORFs are linked only to
each other, such as the yedL, yedN, and yedM genes linked
to each other (labeled ‘3 ORFS of unknown function’),
suggesting only that the genes associate in the same pathway.

Discussion

It is an open question if this method will be scaleable to
human proteins. We have empirically observed that higher
eukaryotes have large numbers of duplicate genes. The effect
of these duplicate genes is to exacerbate both the
promiscuous-domain induced ambiguity illustrated in
Figure 3 and the within-genome ambiguity that arises from

multiple human homologues of each of the linked proteins.
The statistical measure we have described here should help
in this regard. Early tests on the set of C. elegans genes
(C. elegans genome sequencing consortium 1998) resulted
in many linkages being created between adjacent genes. This
trend suggested that such pairs of genes were incorrectly
annotated as being separate genes; instead, each pair more
likely represented two halves of a single gene. As the set of
human genes is currently even more fragmented than the
worm genes (Lander et al 2001; Venter et al 2001), it is likely
that this method will initially allow the identification of many
such cases of poor annotation. As the annotation improves,
the method should gain power for identifying functionally
linked human genes, as well as enable the use of the human
genes for linking proteins from other organisms. The method
therefore works well on prokaryotes and lower eukaryotes,
and is likely to work on higher eukaryotes as gene annotation
improves.

Applied Bioinformatics 2002:1(2)
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In conclusion, we have analysed the use of gene fusion
events as a tool to predict functional linkages between
proteins. We have developed a statistical measure that
appears to account for the largest sources of error.
Development of a benchmark for testing functional
predictions, and comparison of the significance score against
the benchmark shows that the significance score correlates
well with the degree of functional relatedness of the linked
proteins. The significance score will now also enable
calculation of the significance of a link predicted by multiple
methods, provided each has a measure of significance. With
such a measure of linkage significance in hand, it is possible
to calculate partial protein networks. These partial networks
can logically be combined with functional linkages inferred
by other functional genomics information, such as linkages
from phylogenetic profiles (Pellegrini et al 1999), operon
predictions (Dandekar et al 1998; Overbeek et al 1999;
Salgado et al 2000), and mRNA coexpression patterns (Eisen
et al 1998; Marcotte et al 1999b). By combining functional
linkages inferred from many disparate sources of
information, it should soon be possible to reconstruct large
portions of the genetic networks of an organism.
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