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Protein interaction networks summarize large amounts of

protein–protein interaction data, both from individual, small-

scale experiments and from automated high-throughput

screens. The past year has seen a flood of new experimental

data, especially on metazoans, as well as an increasing number

of analyses designed to reveal aspects of network topology,

modularity and evolution. As only minimal progress has been

made in mapping the human proteome using high-throughput

screens, the transfer of interaction information within and across

species has become increasingly important. With more and more

heterogeneous raw data becoming available, proper data

integration and quality control have become essential for reliable

protein network reconstruction, and will be especially important

for reconstructing the human protein interaction network.
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Introduction
Although metabolic network analysis dates back to the

1940s, data-driven genome-scale analyses of gene and

protein networks are recent newcomers by contrast,

beginning not more than five years ago and receiving

increasing attention ever since. One big boost came at

the end of the 1990s from computational efforts that used

the genomic context of genes (e.g. fusion, neighborhood

and phylogenetic profile) to predict functional relations

between gene products [1–3] and the respective networks

of such associations. On the experimental side, the first

direct large-scale protein interaction data were presented

in 2000 [4,5]; both studies used yeast two-hybrid technol-

ogy. Two years later, the first large-scale protein complex

purification data sets were published [6,7]. Several other

approaches that reveal functional associations between

genes to various degrees were published in the same

period (e.g. localization data, double knockouts, etc.)

and other sources, such as spotted microarrays, have been

used to extract interaction information [8]. In the light of

these developments, several databases storing interaction

data became very popular, derived at first mainly from

small-scale experiments (e.g. [9–12]) and increasingly

becoming warehouses for large-scale assay data, while

novel databases continue to be developed [13].

This data collection phase was accompanied by intensive

analysis and comparison of networks, particularly based

on the large protein interaction data sets mentioned

above. The networks were compared to each other, to

known protein complexes, to functional annotation and

to other types of high-throughput experimental data. In

particular, the topologies of the networks have received a

lot of attention, as they were discovered to all be small

world, scale free and modular [14�].

In 2003, we witnessed the explosive growth of research on

protein interactions and networks, with new data types,

data sets, analysis methods and discoveries being pub-

lished at a constantly increasing pace (Figure 1). In

particular, initial eukaryotic network and interaction data

came almost exclusively from yeast, but we now face the

challenge of deciphering the much more complex net-

works in metazoans. Further challenges include mapping

partially complete and accurate data sets between spe-

cies, with the ultimate goal of transferring the combined

information to human as accurately as possible. Here, we

will review recent progress by focusing on protein inter-

action networks in eukaryotes, but we emphasize that

equally important progress is also seen for gene regulatory

(transcription) and metabolic networks.

Novel experimental data on protein
interactions
While the majority of large-scale interaction experiments

have so far been performed on yeast proteins, the past year

marks the arrival of the first large-scale animal protein

interaction data sets (Table 1) [15��,16��], providing insight

into the molecular functions behind multicellularity and

cell–cell communication. A large-scale map of approxi-

mately 4000 genetic interactions was also derived from

synthetic lethal mutations [17�]. These interaction data

were complemented by several types of supporting data,

including large-scale yeast protein localization data (using

GFP-tagged yeast proteins [18�,19]) and the quantitation

of the expression levels of approximately 4500 affinity-

tagged yeast proteins through western blot analysis [20�].
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Along with the large-scale data, strategies were refined for

more accurate protein interaction mapping, such as the

use of isotope labeling techniques to estimate protein

enrichment during affinity purification of complexes

[21,22]. Also, many smaller regions of protein interaction

networks were explored in detail, such as the EGF

(epidermal growth factor) signaling pathway [23] and

interactions among bZIP proteins [24].

Advances in methods to predict
interactions
Computational methods for predicting interactions also

advanced in the past year, with completely new ap-

proaches and sophisticated ‘mining’ of existing interac-

tion data to infer additional interactions. One new trend to

be exploited was the tendency of proteins that can

functionally substitute for one another to have anti-

correlated distribution patterns across organisms [25�],
allowing both discovery of non-obvious components of

pathways and precise function prediction of uncharacter-

ized proteins. Another new trend was the tendency of

interacting proteins to exhibit similar phylogenetic trees

[26�]; quantitative algorithms for assigning interaction

partners involved analyzing trees of families of interacting

proteins, such as a ligand and receptor tree, and finding

proteins that occupy similar positions in two trees

[27�,28].

Computational approaches for predicting novel interac-

tions from known interactions have been developed too:

interactions were inferred between pairs of proteins

whose sequences are compatible with known X-ray crys-

tal structures of heterodimers [29,30�] and between pairs

of proteins with domains that are often observed in

interacting proteins [31]. The specificity of the interac-

tions predicted by the latter approach can, in some cases,

be improved by looking for correlated mutations in the

domains using an approach dubbed ‘in silico two hybrid’

[32]. Structure-based interaction prediction (including

protein complex prediction and the prediction of cross-

talk between complexes) has recently culminated in the

delineation of the first network of modeled protein com-

plexes in yeast [30�].

The ability to better predict protein interactions has

matured to the point at which online services are now

conveniently publicly accessible, such as STRING [33],

PLEX (http://bioinformatics.icmb.utexas.edu/plex),

Bioverse [34] and Predictome [35]. An advantage of such

Figure 1
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The growth of protein interaction literature over time. The number of

publications related to protein interaction networks has been growing

strongly over the past five years or so, as revealed by citation analysis

of two sets of key papers (Ito et al. [4] and Uetz et al. [5], red line; Ho

et al. [6] and Gavin et al. [7], blue line) and a PubMed query (‘protein

interaction networks OR genome interaction OR proteome network
OR proteome interaction OR interactome’, the total for 2004 was

estimated from publications so far; black line). Although the rate at

which key papers are being cited seems to have stabilized,

increasing numbers of PubMed abstracts mention interaction

networks, illustrating the increasing popularity of the topic.

Table 1

Interaction coverage. Current estimates, by species and type
of experiment, of the volume of large-scale experimental
protein–protein interaction data available in the public domain.

Proteins Interactions

S. cerevisiae

Two-hybrid assays 934 [5] 854

4131 [4] 3986

Affinity purification/

mass spectrometry

1361 [7] 3221 (spoke)

31 304 (matrix)

1560 [6] 3589 (spoke)

25 333 (matrix)

Protein arrays 10 [24] �30

Synthetic lethal arrays 1029 [17�] 3627

DIP [10] (small scale) �400 �3000

C. elegans

Two-hybrid assays 2898 [15��] �4000

D. melanogaster

Two-hybrid assays 7048 [16��] 20 405
(4679 core) (4780 core)

H. sapiens/M. musculus

Affinity purification/

mass spectrometry

32 [71] 221

Protein arrays 49 [24] �450

DIP [10] (small scale) 1177 1312

HPRD [70�] (small scale) 2750 10 534
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tools is that they allow the prediction of interactions in

organisms with no experimental interaction data, permit-

ting systematic searches for new protein systems [36�]
and the genome-wide characterization of functional

modules [37�].

Quality assurance, benchmarking and
data integration
Although experimentalists appreciate that all data are

error prone, strategies for rigorously evaluating the reliab-

ility of large-scale protein interaction data sets have

emerged only recently. The essential problem is that

only a relatively small fraction of interactions in networks

are known with any certainty, which leads to difficulties in

estimating the rate of both false positives and false

negatives. Furthermore, the number of true interactions

is considerably larger than the results of typical experi-

ments suggest, implying that the failure of individual

experiments to agree on interactions may stem from

either poor specificity or poor coverage.

In practice, the various interaction data were tested for

accuracy on confident sets of interactions [38]. The rate of

false positives for the various large-scale experimental

approaches varied widely, but was always larger than that

for confident small-scale experiments. However, high-

quality subsets could often be chosen on the basis of

additional criteria [15��,16��,38,39], such as the degree to

which mRNAs of interacting proteins are co-expressed in

microarray experiments [40,41], topological properties of

the resulting networks [42,43], shared pathways or sub-

cellular localization [36�,39], or combinations of these

various approaches [44].

Benchmarks allowing the accuracy of interaction data

sets — or, better, individual interactions — to be judged

are a prerequisite for the successful integration of data

from multiple sources. However, if data of several types

are to be integrated, the choice of benchmark set becomes

less obvious as not all data will be directly related to

physical interactions. This is especially problematic

because the agreement among different benchmark sets

is surprisingly poor (see Figure 2).

Several approaches to integration have been tried, rang-

ing from simple intersections [8,45] or unions [46] of sets

of interactions to more sophisticated probabilistic

approaches [33,47�]. The past year also saw the appear-

ance of ‘meta-analyses’, in which the combination of

existing interaction networks suggests additional interac-

tions from the context of the protein network [48,49].

Two key lessons emerge from the benchmarking and

integration studies. First, the measurement of accuracy

is critical for the integration of large-scale experiments,

which rarely reach the accuracies of experiments done on

a small scale. Second, the reconstruction of protein inter-

action networks seems to be a continuous process in

which all data, even noisy data, increase the quality of

the network — provided they are integrated appropri-

ately. Thus, the current interaction maps represent the

first steps on the way to accurate networks, and should

continue to improve in both accuracy and sensitivity.

New analyses and interpretations of
networks
The topological properties of protein interaction net-

works have been intensely studied since the first large-

scale data sets were published. Interaction networks have

been shown by numerous groups to be so-called ‘small-

world’ networks, an architecture previously observed for

several other types of networks (e.g. co-appearance of

actors, the US power grid and Caenorhabditis elegans neu-

ron connectivity [50]). Another topological term fre-

quently attributed to interaction networks is ‘scale

free’. Although small-world networks need not be scale

free, or vice versa, protein interaction networks have both

properties [14�]. However, the biological consequences of

these topological properties are not clear — in fact, there

Figure 2
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Comparison of benchmark data sets. The number of interactions/

associations between yeast proteins is shown for each of three

different benchmark data sets. The agreement of these three

benchmarks sets is surprisingly poor, as illustrated by the fact that

less than half of all pairs in the KEGG benchmark set are present in

the Gene Ontology biological process benchmark set.
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might not be any, as both small-world and scale-free

behavior can be explained by well-known evolutionary

events without the need for any selective pressure acting

on the network topology itself [51]. Still, the over-

representation of genetic interactions between hubs in

protein interaction networks supports the hypothesis

that hubs play an important role [52].

In addition to the study of the global topology of inter-

action networks, the existence of recurring local topol-

ogical features, known as network motifs, has been shown

first in transcriptional networks [53] and later in protein

networks [54]. Although some of these motifs (partic-

ularly in regulatory networks) make biological sense, the

biological significance of network motifs remains to be

studied.

Predicting functional modules
As interaction networks become increasingly large and

complex, there is a growing need to break them down into

more manageable subnetworks or ‘modules’. These mod-

ules should preferably represent groups of proteins that

together contribute to the same cellular function and the

modularity should be dictated largely by the topology of

the network itself. Functional modules are useful for

annotating uncharacterized proteins, for studying the

evolution of interacting systems and for getting a general

overview of the immediate, first-order functional partners

of a protein. Modules are being sought for a variety

of networks: metabolic networks [55], high-throughput

experimental interaction data [56–60] and in silico pre-

dicted networks [37�,61]. Prediction accuracy for the

latter type of functional module can be high — almost

90% when benchmarked against manually curated meta-

bolic pathways in Escherichia coli. These modules are thus

a rich source for function prediction and pathway anno-

tation [37�]. Furthermore, functional genomics data such

as mRNA expression profiles can be integrated with

high-throughput interaction data to find consistent

subnetworks [62].

To identify the actual modules, a variety of supervised

or unsupervised clustering techniques are used — often

Figure 3
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(a)

(b)

Examples of human functional modules. The modules were predicted

by automated transfer of interaction evidence from other species to

human. (a) All proteins but one (Q9Y3A5) are known members of the

exosome complex. Q9Y3A5 is the product of a human disease gene

(Shwachman-Bodian-Diamond syndrome protein) that has been

suggested to function in RNA processing [73,74]. This network was

derived using STRING [33]; RRP41 was the query protein; settings were

modified to exclude interaction evidence derived from PubMed

abstracts or expression analysis. A total of 15 organisms contributed to

this network — none of the data stem from Homo sapiens. Pink line:

high-throughput interaction data, interactions transferred from yeast

and/or fruit fly. Green line: conserved genomic neighborhood,

information transferred from 13 archaeal genomes. (b) Proteins in this

module form part of the proteasome core and regulatory particles, two

of the better characterized protein complexes, as reconstructed from a

combination of small-scale and high-throughput protein interaction

data in yeast, as well as mRNA co-expression data and phylogenetic

profiling using PLEX. One gene, KIAA0368, is uncharacterized in the

human genome, belonging to ‘uncharacterized conserved protein
family’ KOG0915, although the yeast ortholog Ecm29 has been

suggested to tether the core particle to the regulatory particle [75].

Purple line: high-throughput interaction data, interactions transferred

from yeast. Cyan line: mRNA co-expression of yeast orthologs. Red

line: phylogenetic profile, based on 89 genomes. Black line: small-scale

interaction assays, transferred from yeast.

Protein interaction networks Bork et al. 295

www.sciencedirect.com Current Opinion in Structural Biology 2004, 14:292–299



with previous knowledge as the benchmark — but it

remains to be seen to what extent the various results

are consistent. In general, functional modules often

encompass protein complexes, but conceptually they

go beyond stable physical interactions; modules can

include transient binding partners and upstream tran-

scriptional regulators, and even proteins that never bind

each other but nevertheless function in the same pathway

[63]. Implicitly, modules are also the basis of approaches

that functionally classify proteins according to their net-

work neighbors [64–66]. Figure 3 shows two examples of

functional modules that expand known protein com-

plexes with either additional subunits or functionally

associated proteins. Taken together, identification of net-

work modules not only hints at new cellular systems, but

might also guide the ongoing discussions concerning the

definition of pathways and cellular processes.

Network comparisons: can interactions be
transferred between species?
The abundance of interaction data on yeast, and now fly

and worm as well, combined with the paucity of informa-

tion on other organisms, has led naturally to the question

of how networks compare between species and to what

extent interactions in one organism are maintained in

another. Not surprisingly, conserved proteins tend to

have conserved interactions and comparison of the yeast

network with the Helicobacter pylori bacterial network

identified small conserved subnetworks [67�] by search-

ing for conserved interactions between pairs of yeast/

bacterial orthologs. A related approach was used to pre-

dict a protein interaction map for E. coli from H. pylori
interaction data [68] and to import yeast interactions to

expand the C. elegans interaction data set [16��], and has

led to reconstructions of genetic networks based on the

evolutionary conservation of gene co-expression patterns

[69�]. The significant conservation of interactions con-

firms that a feasible strategy for reconstructing networks

is to transfer interactions from organisms in which they

have been measured (for examples, see Figure 3, in

which all interactions have been transferred). Despite

the fact that functional modules are not always present

together in distant organisms (i.e. they can change within

evolutionary timescales), one can imagine constructing a

composite interaction network representing the union of

interactions from many different cells within or between

organisms, with any particular cell possessing only a sub-

network. However, a realistic characterization of meta-

zoan interaction networks and their conservation is only

now becoming feasible with the availability of large-scale

data sets, such as the yeast two-hybrid screens in fly and

worm [15��,16��].

Perspectives: towards the human
interactome
Obtaining a reliable interaction set describing the human

interactome is a milestone yet to be reached.

Given the existing data sets for yeast proteins (see

Table 1), we estimate a total of 10 000–30 000 pairwise

interactions. This would correspond to roughly 3–10

interactions per protein in the yeast cell. In contrast to

the yeast interactome, the human interactome is largely

unknown: a back-of-the-envelope calculation assuming

that 3–10 interactions also holds true for each of the

25 000–40 000 human proteins leads to an estimate of

roughly 40 000–200 000 interactions. Beyond this obvious

uncertainty, this estimate does not even take into account

complicating factors such as alternative mRNA splicing or

post-transcriptional modification, both of which produce

many more protein species and hence more interactions.

Compounding the larger scale of the human interactome

is the fact that it has not yet been studied by high-

throughput interaction assays and a much smaller fraction

of protein interactions are known for human (perhaps

�20 000–30 000 total are recorded in the literature [70�])
than for yeast. Despite the first medium-scale studies in

human centered around individual pathways [71] or

machineries [72], there is a strong need for methods to

predict or measure protein interactions that scale to the

size of the human interactome.

Although experimental approaches are still being scaled

to tackle the number of mammalian genes, as witnessed

by the first animal protein interaction networks published

this past year [15��,16��], computational approaches can

rapidly generate initial interaction sets, mostly by transfer

of information from other organisms (e.g. see Figure 3). In

metazoans such as human, this harbors additional chal-

lenges due to the distinct networks in each of the various

cell types, many of which have no clear correspondence in

other organisms (e.g. there is no adaptive immunity in the

fly and probably not too much data should be transferred

from the fly exoskeleton to human). As comparative

morphology and anatomy is an unfinished research field

in its own right, obtaining a thorough and well-annotated

benchmark for protein interactions in human is an impor-

tant next step. If a common reference was to be accepted

by experimentalists and computational biologists alike,

we would, from the very beginning of large-scale inter-

action and network prediction in human, have a much

better idea of how much we have to expect. We could

avoid misperceptions such as the inflated human gene

numbers and could more quickly concentrate on im-

portant downstream questions, such as the impact of

context on networks, or their temporal and spatial

dynamic changes.
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