
Measuring the Dynamics of the Proteome
Edward M. Marcotte1

Department of Chemistry and Biochemistry and Institute of Cell and Molecular Biology, University of Texas, Austin, Texas 78712, USA

The modest goal of proteomics is to
collect protein expression data to the
same extent that one can now collect
mRNA expression data with DNA micro-
arrays. If proteomics lives up to its prom-
ise, we can expect to catalog thousands
of different proteins from a sample of
cells, then vary the cell growth condi-
tions and see how the protein ex-
pression changes. Several technologies are
vying to deliver on this promise, among
them protein microarrays (MacBeath and
Schreiber 2000). Currently, the most ef-
fective technique for cataloging the
thousands of proteins in an average cell
sample is mass spectrometry.

Studying the Proteome
by Mass Spectrometry

The mass spectrometry proteomics ex-
periments currently come in two general
flavors: In one approach, proteins from
a cell extract are first separated by two-
dimensional (2D) gel electrophoresis.
Then, proteins on the gel are identified
by measuring their masses with MALDI-
TOF mass spectrometry. The coups of
this method include identifying many
proteins from the yeast proteome
(Shevchenko et al. 1996).

A second approach rids itself of the
reliance on 2D electrophoresis and,
therefore, promises to be technically
simpler and more scaleable. In this ap-
proach (Fig. 1), proteins from a cell ex-
tract are first proteolytically digested
into fragments (Hunt et al. 1986). The
fragments are then partially purified by
high-performance liquid chromatogra-
phy and injected into an electrospray
tandem mass spectrometer (MS/MS) or
ion-trap mass spectrometer (LCQ). The

mass spectrometer efficiently separates
the peptide mixtures. In a continuous,
automatic process, each peptide peak is
in turn selected from the peptide mix-
ture flowing into the mass spectrometer
and sequenced by fragmenting the pep-
tide in a collision cell and then measur-
ing the masses of the peptide fragments.

Much like nucleic acid sequencing,
in which the nucleic acid sequence is de-
rived from the different mobilities of se-
quence fragments on a gel, the peptide
sequences can be derived from the
masses of their component fragments.
With a partial sequence of the peptide in
hand, coupled with measurements of
masses of the peptide and some of its
fragments, a database of protein se-
quences is searched to find a protein
containing a matching peptide (Eng et
al. 1994; Mann and Wilm 1994). Pro-
teins whose peptides are identified in
this way can be added to the growing
catalog of proteins expressed under spe-
cific cell conditions. In this manner,
many proteins of Dienococcus radiodu-
rans and Escherichia coli have recently
been cataloged (Jensen et al. 2000).

Finally, mass spectrometry research-
ers have established methods to quanti-
tatively measure protein concentrations.
In this breakthrough technique, one iso-
topically labels proteins harvested from
cells grown under one set of conditions
and then mixes those proteins with dif-
ferentially labeled proteins from cells
grown under different conditions (Gygi
et al. 1999; Jensen et al. 2000). The result
is that the quantity of each protein can
be measured relative to a reference state,
so quantitative changes in protein ex-
pression can be detected.

Measuring Modifications
in the Protein Population

However, where mass spectrometry re-

ally promises to outshine other pro-
teomics techniques is through its poten-
tial to detect mutations and modifica-
tions in proteins. Because peptides are
sequenced during a mass spectrometry
proteomics experiment, the researcher
has the potential to detect specific mu-
tated and modified amino acids among
these sequenced peptides.

How common is posttranslational
modification? A rough count of en-
zymes performing the most common
modifications (Table 1) suggests that a
large fraction, perhaps 5%–10%, of a ge-
nome encodes modification-catalyzing
proteins. So, modifications are wide-
spread and it is likely that the majority
of proteins in the cell are deliberately
posttranslationally modified, in addi-
tion to sporadic nonenzymatic modifi-
cations. In total, >200 different protein
modifications are known to occur in
cells (Gooley and Packer 1997), includ-
ing such diverse modifications as ADP
ribosylation, tyrosine nitration and sul-
fation, palmitoylation, and polyglycyla-
tion. Such modifications are fascinating
in their modulation of the activity of
cellular proteins, but unfortunately, the
diversity of modifications creates signifi-
cant difficulties for proteomics efforts.

Ironically, the physical measure-
ment of modifications does not pose a
problem when analyzing proteins by
mass spectrometry. Instead, the difficul-
ties are computational. When the only
information one has about the identity
of a peptide stems from the masses of its
components, what does one do when,
because of posttranslational modifica-
tions, the masses of the components
change? Because of a combination of
this problem and the quality of mass
spectra and incomplete fragmentation
of peptides, over one-half of the pep-
tides in a typical proteomics experiment
are never identified.
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Overcoming the Main
Computational Barrier

In this issue, Pevzner et al. (2001) pro-
vide several new approaches to solve
this computational problem. The es-
sence of the problem is as follows: In a
mass spectrometry experiment, a mass
spectrum is generated for a particular
peptide. One then attempts to match

this experimental mass spectrum to
mass spectra predicted from peptides in
an amino acid sequence database. A
good match indicates that the corre-
sponding peptide, whose sequence is
known from the database, is present in
the sample. However, mass changes
caused by a modification or mutation of
the sample peptide change the experi-
mental mass spectrum, and it requires

clever algorithms to recognize the
change.

Intuitively, to decide if two mass
spectra are derived from the same pep-
tide sequence, one might simply count
the number of peaks shared by the two
spectra. In fact, this simple method
works for perfect matches but rapidly
loses its efficacy with spectra of lower
quality and with peptide mutations or
modifications. A mass change caused by
modification of one amino acid corre-
spondingly changes the mass of all pep-
tide fragments containing that amino
acid. So, by looking only at the masses,
one has ignored the relationships be-
tween the peaks in the spectra; the rela-
tive mass differences do not necessarily
change, even though the absolute mass
values may do so.

Pevzner et al. (2001) introduce three
new algorithms, each of which signifi-
cantly outperforms the simple counting
of shared peaks. The first, spectral con-
volution, takes into account the mass
differences between peaks in the two
spectra being compared. If the peptides
only differ because of the mutation/
modification of one or two amino acids,
the masses in the resultant spectra will
also differ by a constant amount of
mass. So, the algorithm looks for mass
differences that show up more than ex-
pected, and the specific modification or
mutation can be determined by the par-
ticular mass difference detected.

The second method, spectral align-
ment, represents a particularly elegant
solution to the problem of aligning par-
tially-mismatched spectra. Following
their earlier work (Pevzner et al. 2000),
they apply the most effective method of
amino acid sequence alignment (e.g.,
Smith and Waterman 1981) to the prob-
lem of aligning mass spectra. Peaks in
the spectra are represented as elements
in a matrix, and alignments between the
two spectra are then paths taken
through this matrix. Using the tech-
nique of dynamic programming, one
can find the best match between two
spectra, given some number of allowed
mismatches caused by modifications or
mutations.

Earlier efforts in this field (Yates et
al. 1995) centered on building a data-

Table 1. Number of Genes Dedicated to Catalyzing Several of the Most Common
Post-Translational Modifications

Yeast Worm Human

Protein kinases ∼117a–120b ∼381c–411e ∼1100e

Protein phosphatases ∼43b–52a ∼106c–185e ∼300e

Ubiquitin system proteins >50a >50d >134a

Glycosyl transferases >36a ? ?
Non-proteasomal proteases ∼50a–75b ∼194c ∼700–1000f

The large number of proteins encoded in a genome catalyzing post-translational modifications
suggests that most proteins in the cell will be modified.
a–fThe numbers of genes are taken from (a) the MIPS database, (b) the YPD database of Proteome,
Inc., (c) the WormPD database of Proteome, Inc., (d) the Sanger Center WormPep database, (e)
Plowman et al. 1999, and (f) Southan 2000.

Figure 1 The combination of HPLC and tandem mass spectrometry allows the identification of
potentially thousands of proteins from complex samples. In this approach to proteomics, mass spec-
tra are generated for proteolytic peptides through the illustrated steps. Thousands of spectra may be
generated, requiring sophisticated computational methods to match these spectra against spectra
derived from databases of amino acid sequences.
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base of all possible mutated or modified
peptides to match against one’s spec-
trum. This rapidly leads to a combinato-
rial explosion if one models all of the
possible mutations or modifications at
each position of an amino acid se-
quence. In fact, the advantage of spec-
tral convolution and spectral alignment
is that one does not have to build a da-
tabase of all possible mutations and
modifications. Instead, the data reveal
which modifications have taken place
and leave open the possibility of discov-
ering new modifications. However,
when the number of possible modifica-
tions is small, building a database of
modifications can still be an effective
approach. So, in their third algorithm,
Pevzner et al. (2001) introduce a method
from computer science, a branch-and-
bound algorithm, to improve the effi-
ciency of this type of database search.

And in the Future

Remaining computational challenges
include the details of how to combine
these approaches most successfully and
how to calculate an accurate estimate of
the probability that a match is correct.
With these in hand, the computational
side of mass spectrometry proteomics
will be in much the same situation as
sequence homology searches. Compara-
tive molecular biology has flourished
with the ability to rapidly search se-
quences against databases and to esti-

mate the significance of the results. In
much the same way, introducing such
rigorous computational methods to
mass spectrometry will help fulfill the
promise of proteomics and will make
projects such as complete sequencing of
proteomes possible.

At the rate at which the field of pro-
teomics is advancing, it is reasonable to
expect that we will soon have cellular
protein expression maps, much as we
now have for mRNA expression through
DNA chip approaches. Coupled with
these protein expression data will be in-
formation about the modifications of
each of the proteins. So, we can imagine
a multiple-dimension mapping of all
protein expression in a cell as a function
of cell condition. Each protein will not
only be tallied for its abundance but also
for its state: On, off, membrane-
anchored, oxidized, and so on. This map
of protein expression and modification,
combined with genomewide mRNA ex-
pression patterns and protein interac-
tion data, will provide our first global,
integrated, quantitative picture of the
major cellular processes of transcription,
translation, and posttranslational modi-
fication and will provide the data neces-
sary to construct fundamental, predic-
tive rules, not merely descriptions,
about how these processes operate.
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