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Cells are controlled by the complex and dynamic actions of
thousands of genes. With the sequencing of many genomes, the
key problem has shifted from identifying genes to knowing what
the genes do; we need a framework for expressing that
knowledge. Even the most rigorous attempts to construct
ontological frameworks describing gene function (e.g., the
Gene Ontology project) ultimately rely on manual curation and
are thus labor-intensive and subjective. But an alternative exists:
the field of functional genomics is piecing together networks of
gene interactions, and although these data are currently
incomplete and error-prone, they provide a glimpse of a new,
probabilistic view of gene function. We outline such a
framework, which revolves around a statistical description of
gene interactions derived from large, systematically compiled
data sets. In this probabilistic view, pleiotropy is implicit, all
data have errors and the definition of gene function is an
iterative process that ultimately converges on the correct
functions. The relationships between the genes are defined by
the data, not by hand. Even this comprehensive view fails to
capture key aspects of gene function, not least their dynamics
in time and space, showing that there are limitations to the
model that must ultimately be addressed.

The necessity for a logical framework
A primary issue in biology is describing the global organization of
genes into systems and understanding the coordination of these sys-
tems in the cell. The sequencing of complete genomes has yielded the
full parts lists of several organisms, and we now have powerful tech-
niques to sample different aspects of gene function at a genome-wide
level. Together, these advances hold great promise in leading us closer
to a complete description of the molecular biology of the cell. For us to
reach this goal, however, we need some coherent framework in which
to express what we learn about gene function through the accumula-
tion of data. What do we mean by ‘gene function’? More importantly,
what should we mean by this? What are the key properties of genes
that we should measure to adequately describe their function in the
cell? If we have all the measurements, how should we integrate them
into a complete description of the molecular machineries that are the

basis of a cell? Our framework for thinking about gene function
inevitably colors the questions we ask and the conclusions we draw;
therefore, defining a rational framework is not merely an exercise in
abstraction but a key tool in understanding how an organism works.

Great effort (e.g., refs. 1–8) has already gone into defining precisely
what we mean by the functions of genes, as well as how we should
record this information. These summaries help us by identifying com-
mon features of genes with similar functions and giving clues to the
organization and control of processes in the cell. They may also help us
to see whether this organization can explain observed biological prop-
erties and guide us toward new processes. The functional framework
itself, perhaps even more than the raw data on which it was based,
becomes useful for comparing how processes are organized in differ-
ent organisms, uncovering common themes and giving insight into
the biological evolution of complexity.

The framework we use for describing gene function is of such
importance that it is worth considering the possible forms that such a
framework might take and the possible ways to construct it. In partic-
ular, it is now routine to generate vast data sets rapidly; developing the
conceptual tools to integrate and examine these data is thus of para-
mount importance. Here, we argue that functional genomics has cre-
ated an opportunity for substantially refining our existing frameworks
of gene function, specifically the ontologies capturing systems, path-
ways and interactions, and that there is much to be gained by consider-
ing an alternate, probabilistic view of gene function that has only
recently become feasible.

What features should a functional framework possess?
Although we may not yet have a rigorous definition of gene function,
we already understand a great deal about how genes act together in the
cell. Any reasonable framework seeking to describe gene function
should include these features. We know that many (if not most) genes
carry out not a single function in the cell, but several. For example,
some TAFs have a role both in transcriptional initiation9 and in DNA
repair10,11; ras regulates both mitogenesis and cytoskeletal rearrange-
ments12; and p53 (if we believe all the literature) can run an entire cell
almost single-handedly. Whatever framework we choose must there-
fore allow for pleiotropy. We also know that cellular processes seem to
be organized in a hierarchical manner. Consider the example of the
protein ORC2, which binds the origin of DNA replication to initiate
the process of DNA replication13–15. The specific function of ORC2 is
to bind DNA and, along with the proteins ORC1–ORC6, it forms the
origin recognition complex16–18 . The origin recognition complex is a
single component of the prereplicative complex, which in turn is one
component required for initiation of DNA replication, and so on up
the hierarchy of functions, from specific to general, detailed to global.
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In addition to encapsulating both pleiotropy and a hierarchical
organization of functions, we also need a framework that can rapidly
accommodate new data. As the rate at which new data are being pro-
duced is ever increasing, the nearer one can get to an automated sys-
tem, the better. This is a key feature for any workable framework.
Finally, as well as being able to encapsulate our current state of knowl-
edge regarding gene function, a useful framework should serve as a
guide for future analysis, capable of highlighting unexplored processes
and connections that arise from new data. Some of these may correctly
overturn previous models, and a good framework must have the flexi-
bility to allow this kind of change.

All in all, this is not a trivial problem. We want a framework that
describes gene function in a hierarchical structure that can accommo-
date pleiotropy, that not only encapsulates all our current knowledge
but can also rapidly pull in new data and direct our research towards
new, uncharacterized phenomena. Where to even start? In the next
section we contrast two possible approaches to this problem.

Two methods for constructing a hierarchical ontology
Two approaches seem feasible for constructing a rational hierarchical
ontology for analyzing gene function: the ‘top-down’ and ‘bottom-up’
strategies (Fig. 1). The top-down approach, exemplified by the Gene
Ontology project1,8, involves first defining an almost comprehensive
list of gene function categories and organizing them into a hierarchy
and, second, fitting individual genes into those categories. In this
approach, ‘what a gene does’ is to be associated with a series of attrib-
utes covering its molecular and cellular functions (for example). The
choice of categories, their hierarchical organization and the assign-
ment of genes into these categories are all done through meticulous
manual curation; this is ultimately a subjective process. In contrast, the

bottom-up approach uses statistical methods to integrate multiple
data sets, generating networks of gene linkages. These networks have
features that can be extracted and used as the framework for describ-
ing and categorizing gene function. In the bottom-up view of gene
function, ‘what a gene does’ is to interact with other genes, no more no
less. In this admittedly simple view, the way in which a gene interacts
and the topological features of the network in which a gene sits define
its function. A key difference between these two approaches is that in a
top-down system, the functional hierarchy is fixed by the subjective
manual curation of the underlying data, whereas in a bottom-up
approach, the data directly reveal the hierarchy. In the former case,
what a gene does is defined by the processes it carries out; in the latter,
it is the way a gene links to other genes that defines both its function
and the processes themselves.

The top-down approach has many merits: it consolidates the obser-
vations of uncountable researchers into a reasonable, though subjec-
tive, view of the current state of knowledge of gene function. This
strategy creates an ontology that agrees, by design, with the current
opinions of how genes mesh together functionally, with a nice side
effect of having easy-to-read gene functions. In practice (e.g., as in the
Gene Ontology project), curators begin with the sum of knowledge in
the field, manually organize the observations into hierarchical cate-
gories of increasing precision and then place genes into these cate-
gories by examining the scientific literature, perhaps aided by
computational approaches19–21. As new literature becomes available,
the categories and gene assignments are manually modified. However
powerful this approach—for example, curators may filter noise and
suppress errors during this process—it suffers from certain shortcom-
ings: there is no objective way to define the categories or to place the
genes into the categories. It can be difficult to assess the quality of
those assignments, as the evidence placing genes into a category may
differ, and thus the quality of assignments varies in each category. Also,
improvements to the hierarchy are difficult to automate and must usu-
ally be manual. Given the incredible speed with which data are now
being gathered along with bewildering complexity of the data sets gen-
erated by many functional genomics approaches, this is a key limita-
tion. Some of these limitations can perhaps be addressed by
bottom-up approaches, which rely entirely on the integration of mul-
tiple data sets to map out a framework for describing gene function.

Constructing a probabilistic network model
Rather than impose a subjective functional hierarchy on the genes, as
is done in the top-down approaches illustrated above, we would prefer
to let the data construct the network and the implicit hierarchies
directly. How might we integrate the many available data sets to give
such a bottom-up network? Such a process of integration requires us
first to deal with diverse data sets (e.g., physical interaction data,
microarray coexpression data and genetic interaction studies) and,
second, to be able to separate signal from noise. Merely summing the
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Figure 1  Comparison of top-down and bottom-up methods of generating a
framework for describing gene function. In a top-down approach, expert
curators draw up a hierarchical ontology for describing different aspects of
gene function (boxes 1–6) from their knowledge of biology; they then
manually assign genes (circles A–C) to categories according to evidence from
literature. Although we depict here a method in which genes are placed into
a single category, genes can be associated with multiple categories, and
these associations can be weighted. In the alternative, bottom-up approach,
gene linkages are imported from diverse data sets and integrated into a
complex network of genes (small circles). The features of this network define
both the processes (dashed regions 1–4) and the associations of each gene
with each of the processes.



P E R S P E C T I V E

connections seen in all the hundreds of available error-strewn data sets
would clearly result in a tangled network of little biological utility. Any
researcher familiar with the large data sets generated by functional
genomics approaches is acutely aware of the noise and error in such
sets, and dealing with these errors is an essential part of any integrative
approach.

To deal with noisy data sets, one must use statistical methods to
ensure that each data set is quality-controlled and given only the
weight that corresponds to its quality. For each incorporated data set,
we can measure the error associated with the data by establishing
objective, quantitative tests (‘benchmarks’) to distinguish accurate
from inaccurate data. We expect that correct data sets should in gen-
eral perform better than incorrect datasets on these benchmarks. For
example, we might ask how often known protein interactions are
recovered by a high-throughput interaction screen22,23, how often
proteins observed to interact in a high-throughput screen actually
localize to the same subcellular compartment24 or to what extent the
interaction partners’ mRNAs tend to be coexpressed across DNA
microarray experiments25. We might even measure properties of the
resultant properties interaction network26,27. This testing of the noisy
data sets in the bottom-up approach explicitly relies on independent
high quality data or manual annotations, such as those created in the
top-down descriptions of gene function. Benchmarks provide a
numerical estimate of the average error rate in a set of experiments and
thereby make it feasible to combine interactions from different experi-
ments (Fig. 2). Because the error is quantified, interactions from each
data set can be weighted according to their measured performances on

the benchmarks, and interactions can be assigned a joint confidence
based on the combined weight of evidence. This measurement of error
and weighted association between genes is the essence of the bottom-
up approach. There are many different schemes for establishing the
weights of each data set based on its underlying errors; these include
Bayesian statistics, used recently for scoring physical interactions23,28,
or heuristic or other probabilistic approaches29–31. Similarly, there are
many approaches for ensuring the quality of the integrated data, such
as using independent benchmarks or even saving aside portions of
benchmarks for final tests of accuracy, akin to the cross-validation
procedures used commonly in computer sciences. In outline, the
methods give a similar output: they result in networks in which the
links between the genes are no longer binary (i.e., YES-NO, linked-
unlinked) but are probabilistic weights. The weight attached to each
gene-gene linkage derives both from the ‘tightness’ of the association
and the extent of error in measuring the linkage.

In addition to being able to deal with error in the data sets that
underlie the construction of the network, this integrative approach
also has the excellent qualities that it improves iteratively as more data
are added and, furthermore, that it can be used for the integration of
diverse data sets. We can illustrate this by showing how one might
begin to construct a complex network model of gene function in yeast
(Fig. 3). The conceptually simplest network, and the one that many
people recognize most easily, is a map of the physical interactions
between proteins, and we take this as our starting point. Using the
methods outlined above, we can integrate evidence from different data
sets including both small-scale and large-scale (e.g., high-throughput
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Figure 2  Integration of diverse data sets into a
probabilistic network. Data sets from diverse
experiments are individually tested for their
quality against a benchmark set and are weighted
accordingly. Various statistical approaches can
then be used to integrate these weighted matrices
to yield a final matrix that contains all the
probabilistic linkages between genes. Graphical
networks can be derived from this matrix by
extracting all links that exceed a specified
confidence threshold. Thus, the integrated matrix
can yield multiple networks of differing
complexity and confidence.
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Figure 3  Networks of interactions between
S. cerevisiae genes. Three networks are shown,
each with a different level of confidence. The
links derive from refs. 32,33,35–37 and are
compared with benchmarks as described in ref.
25, with high confidence (3,344 interactions,
estimated accuracy 78%) corresponding to
interactions found in two or more screens
combined with interactions from ref. 36, medium
confidence (7,328 interactions, estimated
accuracy 45%) corresponding to high-confidence
interactions plus those from ref. 35 and low
confidence (10,435 interactions, estimated
accuracy 31%) including all interactions from the
above screens.



P E R S P E C T I V E

yeast two-hybrid32–35 or affinity purification of complexes36,37) data
sets and obtain a tolerably accurate view of the total possible network
of interactions that might occur between cellular proteins. Links seen
in multiple data sets (even if each of these is very noisy) reinforce and
greatly improve the quality of the network; thus, even links observed in
weak or noisy data sets are of value as they may sum with other such
links to form statistically significant informational interactions.
Because each linkage is a weight rather than a binary interaction, it is
possible to view the network at differing degrees of confidence (Fig. 3).

Physical interaction data sets do not sample all the possible biologi-
cally significant interactions between genes. To do this, we need to add
other data sets to the physical interaction map. A key aspect of this
integrative approach is that it can deal easily with very diverse data
sets: genetic interaction data sets can be imported as easily as physical
interaction data, computational predictions of linkages as easily as
microarray correlations. We can (for example) add links deriving from
genetic interactions38 to the physical interaction map (Fig. 3) and
obtain a hybrid network. In this network, links between genes no
longer represent any obvious physical reality but are informational
constructs: a link between two genes is not a single defined connection
but a sum of different linkages that exceed a statistical threshold.
Because of this generality, we anticipate that many distinct types of
functional genomics data, including genetic or physical interactions,
colocalization and expression patterns, could be combined in this
framework.

The network obtained is not a uniform landscape of gene linkages,
but has ‘features’, areas of high connectivity separated by more sparsely
connected genes. Computational clustering of genes according to their
connectivities39–43 shows that these features may correspond to known
cellular machines (e.g., the ribosome, the proteasome, etc.)44,45 but may
also be totally unexplored46–49. The network as a stand-alone descrip-
tion of gene function is not directly interpretable by us. What do those
highly connected clusters of genes represent? How do they relate to the
processes that we already know? The key is that whatever the features
are, they arise directly out of the data in an unbiased manner. Adding
subjective ‘labels’ to these features (e.g., the splicing machinery) is vital
for us to be able to extract their meaning as useful, but the labels do not
dictate the form and hierarchical organization of the network. A reason-
able strategy would therefore be to construct the network and hierarchy

by the bottom-up approach, then to interpret it with labels from the
top-down approach, looking especially to rationalize areas of disagree-
ment, which have the potential of being new connections between sys-
tems, unappreciated in the top-down approach but uncovered by the
bottom-up synthesis of functional genomics data.

The bottom-up approach described here naturally leads to an entirely
probabilistic description of gene function. Not only are the links
between genes actually weighted, but also the descriptions of a ‘process’
and the relative involvement of a gene in that process are mathematical,
probabilistic constructs that depend on the network features. These
probabilistic connections arise in part from our experimental uncer-
tainty in connecting genes together but also may reflect the stochastic
nature of protein function, with finite copies of proteins forced to parti-
tion between alternate tasks in a cell. ‘What a gene does’ is defined by
where it resides in the network and the probabilistic paths that link it to
features. The organization of the features, their interconnections and the
locations of each gene in this landscape arise purely from the data and
form a pleasingly simple source of a hierarchical framework for describ-
ing gene function. Like many deceptively simple solutions to complex
problems, however, probabilistic networks are not without their quirks
and pitfalls. We consider some of these in the next section.

Properties and limitations of networks
Certain points are immediately obvious from looking at the kind of
networks shown in Figure 3. First, the links are not distributed uni-
formly, but there are regions of high connectivity interspersed with
barer, less connected areas; the highly connected areas probably corre-
spond to biological processes or machineries such as the splicing
machinery or DNA polymerase. Second, defining exactly where one
highly connected region starts and another stops or the amount of
connectedness required to say ‘this is a connected region’ is not rigid.
Thus, biological processes (i.e., the highly connected regions) are not
fixed entities but can be defined according to different criteria. One
might consider as few as three interlinked genes to be a process or
define a fully linked arrangement of ten genes as a process. Processes
can thus be defined at different levels of complexity, which results
directly in a hierarchical organization of subnetworks, networks,
supernetworks. The networks thus implicitly capture the hierarchical
organization of biological processes in the cell, and this hierarchy can
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Figure 4  C. elegans gene networks derived from S. cerevisiae networks
are good predictors of gene function. A network of S. cerevisiae genes
(the medium-confidence network from ref. 22) was ‘transported’ into
C. elegans by mapping each yeast gene in the network to its worm
counterpart using the Inparanoid algorithm55. (a) In the network, each
node is a worm gene (or in some cases a number of worm paralogs), and
each link between genes is hypothetical, based uniquely on links
between yeast genes. (b) To test whether the features seen in the worm
networks have any functional relevance, we examined whether genes
with related loss-of-function phenotypes (as determined by RNAi56) are
found in similar areas of the network. Genes with nonviable RNAi
phenotypes are shown as red nodes, and links between nonviable genes
are shown as red edges; genes with growth-defective RNAi phenotypes
are shown in green. (c) Clusters of linkages in the networks correspond
to known molecular processes. (d) Close-up of the proteasome. Large red
circles mark nodes that were not found to have nonviable RNAi
phenotypes in ref. 56 but were found to have nonviable phenotypes in
other RNAi analyses57,58.
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be explored by clustering the genes according to their network connec-
tions, the genes’ precise functions being reflected in their member-
ships in different clusters39–49. Third, however one defines a process in
the full network, these processes are highly interlinked. Thus, these
networks encapsulate the linked nature of molecular biology as we
know it. For example, DNA repair is closely linked to DNA replication,
the anaphase promoting complex is linked to cell-cycle regulation and
so forth. Last, any gene is linked to multiple processes by a relatively
short path. Pleiotropy is therefore implicit in these probabilistic net-
works. Because most biological networks examined so far are ‘small-
world’ networks27,50–52, the path length from any gene to any process,
or between any processes, is remarkably short, reinforcing both
pleiotropy and the linked nature of processes.

Despite the strengths of the bottom-up, integrative approach, the
current models for networks that result have several key shortcomings
that should be addressed. First, they do not show either time or space
(not insignificant omissions!), describing all linkages as equivalent sta-
tic entities. Second, the networks represent ‘genotypic’ averages across
cells, tissues, mutants and conditions. Thus, although each ‘node’ in
the network represents a single gene, links attached to any node may in
fact be a sum of data relating not to the ‘normal’, wild-type gene but to
other forms (e.g., genetic interactions between point mutants or
knockouts of the genes, or physical interactions between activated
forms or single domains of the encoded proteins). Many of the differ-
ent data sets used to construct the network may even derive from
mutually excusive conditions, such as wild-type and mutant. Each
node is thus an ‘average gene’, and the links to that average gene are the
sums of data. Ultimately this problem of how to interpolate wild-type
function by integrating data from perturbed states is a crucial one in
much of biology, not only in these networks, but it is nonetheless one
that we need to be aware of and attempt to address in the future.

Regarding time and space, network models are currently static sum-
mations of all available data. Genes have dynamic expression patterns
in time and space, and the associations between genes and proteins are
extensively regulated, rarely occurring constitutively. Thus, we might
imagine the vertices of the network winking in and out of existence as
the genes are expressed, and the edges only truly connecting the genes
when given conditions are met. The network should thus be regarded
as containing all possible linkages, regardless of which may occur in a
given circumstance.

One conceptual solution to these problems is to consider the net-
works we have described so far as representing an organism’s ‘master’
network, of which only pieces (subnetworks) will be active at any one
time or in any one condition or cell type. The master network and sub-
networks bear the same relationship to each other as do the genome
and transcriptome—the former represents the organism’s potential,
the latter the actual genes observed under given conditions. Likewise,
the master network represents the union of all possible gene linkages,
and the conditional subnetworks reflect the state of the cell. For exam-
ple, vertices might only be present conditional on the genes’ expres-
sion, whereas edges might be conditional on the genes’ activities. The
conditional subnetworks would thus capture some aspects of the time
dependency of cellular activities. The subcellular location might be
implicit in the links themselves; links between molecules in different
subcellular compartments are presumably less likely. Thus, we might
imagine capturing the activity of the system as subnetworks dynami-
cally evolving over time and conditions.

These are issues that must ultimately be resolved to represent the
true state of relationships between genes in a cell. But they do not
diminish the probabilistic network as a useful framework for consider-
ing gene function.

The universal network
We might consider the entire set of statistically significant linkages
between genes in any one organism as the master informational net-
work of the organism. Such networks are most robust in model organ-
isms for which many large data sets have been accumulated;
Saccharomyces cerevisiae is the best example. As model organisms have
been essential for the generation of testable hypotheses in higher
eukaryotes including humans, one might imagine constructing a net-
work in one model organism, basing it entirely on data gathered in
that system, and then using orthology to transport all the information
in the network into another genome. The start network is the sum of
all experimental data derived in one organism, and the resulting net-
work is the sum of all testable hypotheses in the second organism.
Doing this requires robust methods for the identification of ortholo-
gous sequences in the two genomes and makes the large assumption
that the network underlying the basic biology of the cell in one organ-
ism is similar in form to that in a second. In Figure 4, we illustrate how
even with these caveats, a network constructed in yeast can form a
tremendously useful scaffold for understanding the function of
Caenorhabditis elegans genes. The networks may thus provide an
objective view of gene function that can be transported between
organisms, and perhaps iteratively improved with data from across
organisms47,53,54. Thus, one might consider constructing a universal
network, the union of individual organisms’ networks, perhaps with
linkages and vertices flagged by the organisms from which they derive
(such as in the Genome Knowledgebase; http://www.genomeknowl-
edge.org/), that would represent the cumulative body of knowledge of
gene function, even across evolutionary divergence of the systems.
Even if such a grand goal may be currently unattainable, transporting
entire networks from model organisms into higher genomes may
already provide a valuable framework for generating testable hypothe-
ses in these higher organisms.

Conclusion
Having a rational framework for describing gene function is essential
for us to be able to understand what every gene does and how gene
functions are coordinated in the cell. Here, we illustrate how such a
framework can come out of the integration of diverse large data sets
into a probabilistic network of gene interactions. Both the framework
itself and its hierarchical organization arise directly from raw data
without any requirement for manual curation or assumptions about
underlying cellular processes—the networks and framework also
improve iteratively and automatically as new data are added. In this
view of gene function, ‘what a gene does’ is defined simply by the way
in which it interacts with other genes. Because the association between
any two genes in this model is probabilistic rather than binary, the
function of a gene is also probabilistic rather than concretely defined.
The organization of the interactions of all the genes in these network is
not uniform but ranges from areas of high connectivity to far emptier
spaces; the areas of high connectivity may define individual biological
processes. Defining a biological process in this way is, like the defini-
tion of gene function, a probabilistic approach. Both gene functions
and biological processes are thus probabilistic constructs in this view.
Furthermore, in this model of function, both pleiotropy and the hier-
archical organization of biological processes are implicit.

This way to view gene function, and the underlying methods used to
evaluate and integrate large data sets, may provide us with a practical
way to use the enormous quantity of functional data being generated
by genomics analyses to inform our understanding of the cell and of
gene function in general. Although there are still key limitations to this
probabilistic approach, we believe that it provides an important and
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productive view of gene function. Furthermore, as new data sets are
incorporated into probabilistic networks in the future, they will itera-
tively converge on a more complete description of the molecular net-
works governing the fundamental biology of the cell.
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