Synthetic Biology = design and engineering of biological systems that aren’t found in nature

Why would we want to do this?
- Want to understand natural systems. One of the best ways to understand a system is to change it or make new, related ones
- To fully “understand” a system, we should be able to predict the outcome when we change the system
- For molecular biology, this means:
 - designing new gene circuits and networks
 - modeling the designed systems & predicting their properties
 - making & testing the designs
 - updating our understanding from the model/test agreement

Engineers often look at biological systems & think that the systems are equivalent to electronic circuits

e.g.,

- fluorescent proteins vs. light bulbs or LEDs
- transcription factors vs. transistors or logic gates
 - repressors vs. NOT gates
 - activators vs. OR/AND gates
- polymerases (transcriptional machinery) vs. batteries

Are they right?

→ raises the possibility that biological parts (genes, proteins, etc.) could be combined using the rules established for analog/digital circuits
The Repressilator = engineered genetic circuit designed to make bacteria glow in a oscillatory fashion
= “repressor” + “oscillator”

Transcriptional repressors

The Repressilator = engineered genetic circuit designed to make bacteria glow in a oscillatory fashion

The repressilator in action...

Can simple biological systems be built from standard, interchangeable parts and operated in living cells? Or is biology simply too complicated to be engineered in this way?

iGEM’s broader goals include:
- To enable systematic engineering of biology
- To promote open & transparent development of tools for engineering biology
- To help construct a society that can productively apply biological technology

2004: MIT, UT, Princeton, Boston University, Cornell
2005: 13 teams (the above + UK, Germany, more...)
2006: 32 teams, incl. Japan/Latin America/Korea/India/more Europe
54 teams in 2007, 84 teams in 2008, 112 teams in 2009, 130 teams in 2010, 165 teams in 2011, and 245 teams in 2012 and 2013...
UT’s 2004/2005 iGEM project – build bacterial edge detector

How does edge detection work in principle?

A computer might visit each pixel in turn, and check to see if it is bordered by both black & white pixels. If yes, highlight the pixel.
Bacterial photography

“Light cannon” developed by Aaron Chevalier, UT undergraduate

The first bacterial photograph (coliroid?)...

Escherichia darwinia

Image: Aaron Chevalier
On to the edge detector...

Tabor et al., Cell 137(7):1272-1281 (2009)

It works!

Projected Mask Photo strain Edge detector strain

Tabor et al., Cell 137(7):1272-1281 (2009)
Who needs nature?
Made-to-order, designer organisms

We can now manufacture a complete genome from commodity chemicals

Therefore, we can program whatever changes we want, assuming we can get it into cells...
“We report the design, synthesis, and assembly of the 1.08–mega–base pair *Mycoplasma mycoides* JCVI-syn1.0 genome starting from digitized genome sequence information and its transplantation into a *M. capricolum* recipient cell to create new *M. mycoides* cells that are controlled only by the synthetic chromosome.”
“The only DNA in the cells is the designed synthetic DNA sequence, including “watermark” sequences and other designed gene deletions and polymorphisms, and mutations acquired during the building process. The new cells have expected phenotypic properties and are capable of continuous self-replication.”

![PCR of 4 engineered “watermarks”](image)

But, wait! They only changed DNA, not the rest of the cell!

However...

In biology, *software encodes the hardware*. Most (all?) of the cell is specified by the DNA.

It’s as though you bought a Blackberry...

installed the Android operating system...

& your phone physically morphed into a Galaxy S4...
Just last month, Hutchison, Chuang, et al. reported making living mycoplasma after cutting the genome by ½ the genes.

In parallel, methods were developed to edit genomes at many locations in parallel, e.g. reassigning all amber (TAG) stop codons in *E. coli* to ochre (TAA).
& now, “rebooting” yeast with synthetic chromosomes

Turns out chromosomes can be synthesized and replaced for yeast too...

& China is pushing for a completely synthetic yeast genome...

"Here, we report the synthesis of a functional 272,871–base pair designer eukaryotic chromosome, synIII, which is based on the 316,617–base pair native *Saccharomyces cerevisiae* chromosome III. Changes to synIII include TAG/TAA stop-codon replacements, deletion of subtelomeric regions, introns, transfer RNAs, transposons, and silent mating loci as well as insertion of loxPsym sites to enable genome scrambling."
Changes engineered into chromosome III

~2.5% of sequence changed
- Recoded all amber (TAG) stop codons to ochre (TAA)
- Introduced 98 Cre/Lox recombination sites
- Introduced unique sequences for PCR and new restriction enzyme sites
- Standardized telomeres

Reduced size from 316,617 bp to 272,871 bp (~14% reduction)
- Deleted 10 tRNA genes, 21 Ty elements/LTRs, silent mating loci
 (only one tRNA was essential, moved to a plasmid)
- Removed leucine biosynthesis gene LEU2 to be an auxotrophic marker
- Deleted all introns (affected 7 genes)
- Deleted subtelomeric DNA

Only 10 errors in assembly: 9 single base changes and 1 lost recombinase site

Let’s end the lectures on a fun note, with some speculative near-future synthetic biology experiments

Science fiction? or not? You be the judge!
“De-extincting” extinct species

What if the cells being cloned came from an extinct animal and were put into a surrogate mother? Would that resurrect the species?

Remember Dolly, the cloned sheep?

This was tried in 2009 for the Pyrenean ibex, and almost worked...

But now there’s another way!

- We can sequence a genome in a few days for a few $K
- We can synthesize or alter big pieces of the DNA
- We can (almost) “reboot” cells with this DNA
- We can convert cells to stem cells to embryos
- We can in vitro fertilize animals

So why not just “edit” the genomes of the closest living animals to be like their extinct relatives?

Sound familiar?

http://jurassicpark.wikia.com
Besides the genome engineering, this hinges on iPS:

From **embryonic stem cells**, we can grow an entire organism or any cells/tissues in it

& thanks to Yamanaka, we can convert **skin cells** back into **stem cells**

There’s a serious proposal to resurrect the woolly mammoth. Here’s the process:

- Mammoth genome sequence
- Make ~100K DNA changes in elephant skin cells to convert elephant skin cells → mammoth skin cells
- Convert skin cells to stem cells
- Convert stem cells to embryos
- *In vitro* fertilize elephants

This might be a hard step.
As of April 2015...

WOOLLY MAMMOTH DNA SUCCESSFULLY SPLICED INTO ELEPHANT CELLS
BUT DON’T EXPECT MAMMOTH CLONES ANYTIME SOON
By Sarah Foster Posted March 26, 2015

Using a DNA editing tool called CRISPR, the scientists spliced genes for the mammoths’ small ears, subcutaneous fat, and hair length and color into the DNA of elephant skin cells. The tissue cultures represent the first time woolly mammoth genes have been functional since the species went extinct around 4,000 years ago.

The research has not yet been peer-reviewed or published in a scientific journal “because there is more work to do,” Church told the U.K.’s Sunday Times, “but we plan to do so.”

Which animal would you resurrect?

The dodo?

The quagga?

Sabertoothed tiger?

In principle, only need the DNA sequence (so, no dinosaurs)

Aurochs?
I vote for some crazy Australasian animals:

- The 12’ tall moa
- & of, course, the marsupial Tasmanian tiger
- The moa-eating Haast’s eagle

Actual scale!

What about neanderthal? Should we do it?

- Human and neanderthal genome sequence
- Edit DNA in human skin cells to convert convert human skin cells ➔ neanderthal skin cells ➔ I give this step 10 years max before we can do this
- Convert skin cells to stem cells
- Convert stem cells to embryos
- In vitro fertilize a surrogate mother

Svante Pääbo