Assembling Genomes

BCH364C/391L Systems Biology / Bioinformatics – Spring 2015 Edward Marcotte, Univ of Texas at Austin

Edward Marcotte/Univ. of Texas/BCH364C-391L/Spring 201

CLONE LIB	RARIES USED FOR GENOM AND SEQUENCING	ME MAPPING
Vector	Human-DNA insert size range	Number of clones required to cover the human genome
Yeast artificial chromosome (YAC)	100–2,000 kb	3,000 (1,000 kb)
Bacterial artificial chromosome (BAC)	80–350 kb	20,000 (150 kb)
Cosmid	30-45 kb	75,000 (40 kb)
Plasmid	3-10 kb	600,000 (5 kb)
M13 phage	1 kb	3,000,000 (1 kb)

Thinking about the basic shotgun concept

- Start with a very large set of random sequencing reads
- How might we match up the overlapping sequences?
- How can we assemble the overlapping reads together in order to derive the genome?

Thinking about the basic shotgun concept

- At a high level, the first genomes were sequenced by comparing pairs of reads to find overlapping reads
- Then, building a graph (i.e., a network) to represent those relationships
- The genome sequence is a "walk" across that graph

The "Overlap-Layout-Consensus" method

Overlap: Compare all pairs of reads

(allow some low level of mismatches)

Construct a graph describing the overlaps Layout:

Simplify the graph

Find the simplest path through the graph

Consensus: Reconcile errors among reads along that path to find the consensus sequence

Building an overlap graph

EUGENE W. MYERS. Journal of Computational Biology. Summer 1995, 2(2): 275-290

Simplifying an overlap graph

1. Remove all contained nodes & edges going to them

EUGENE W. MYERS. *Journal of Computational Biology*. Summer 1995, 2(2): 275-290 (more or less)

Simplifying an overlap graph

2. Transitive edge removal:
Given A – B – C and A – C, remove A – C

EUGENE W. MYERS. *Journal of Computational Biology*. Summer 1995, 2(2): 275-290 (more or less)

Simplifying an overlap graph

$$A \rightarrowtail B \rightarrowtail C \longleftrightarrow E \rightarrowtail G \longleftarrow I$$

3. If un-branched, calculate consensus sequence
If branched, assemble un-branched bits and then decide
how they fit together

EUGENE W. MYERS. *Journal of Computational Biology*. Summer 1995, 2(2): 275-290 (more or less)

GigAssembler (used to assemble the public human genome project sequence)

Jim Kent

David Haussler

GigAssembler - Preprocessing

- 1. Decontaminating & Repeat Masking.
- 2. Aligning of mRNAs, ESTs, BAC ends & paired reads against initial sequence contigs.
 - psLayout → BLAT
- 3. Creating an input directory (folder) structure.

RepBase + RepeatMasker

GigAssembler: Build merged sequence contigs ("rafts")

Figure 1 Two sequences overlapping end to end. The sequences are represented as dashes. The aligning regions are joined by vertical bars. End-to-end overlap is an extremely strong indication that two sequences should be joined into a contig.

Sequencing quality (Phred Score)

$$Q=-10~\log_{10}P$$
 — Base-calling Error Probability
$$P=10^{\frac{-Q}{10}}$$

Phred quality scores are logarithmically linked to error probabilities

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90 %
20	1 in 100	99 %
30	1 in 1000	99.9 %
40	1 in 10000	99.99 %
50	1 in 100000	99.999 %

http://en.wikipedia.org/wiki/Phred_quality_score

GigAssembler: Build merged sequence contigs ("rafts")

Figure 2 Two sequences with tails. The nonaligning regions on either side can be classified into 'extensions' and 'tails.' Short tails are fairly common even when two sequences should be joined into a contig because of poor quality sequence near the ends and occasional chimeric reads. Long tails, however, are generally a sign that the alignment is merely due to the sequences sharing a repeating element

GigAssembler: Build merged sequence contigs ("rafts")

Figure 3 Merging into a raft. A contig ('raft') of three sequences: A, B, and C has already been constructed by GigAssembler. The program now examines an alignment between sequence C and a new sequence, D, to see whether D should also be added to the raft. The parts of D marked with +s are compatible with the raft because of the C/D alignment. The program must also check that the parts of D marked with ?s are compatable with the raft by examining other alignments.

GigAssembler: Build sequenced clone contigs ("barges")

Figure 4 Three overlapping draft clones: A, B, and C. Each clone has two initial sequence contigs. Note that initial sequence contigs a1, b1, and a2 overlap as do b2 and c1.

GigAssembler: Build a "raft-ordering" graph

AAAAAAAAAAAAAAAA alalala alalaladagaga Benessessessessessessesses biblelbibibi b2b2d biblelbibibi b2b2d cicic c2c2ccc

Figure 4 Three overlapping draft clones: A, B, and C. Each clone has two initial sequence contigs. Note that initial sequence contigs a1, b1, and a2 overlap as do b2 and c1.

Figure 5 Ordering graph of clone starts and ends. This represents the same clones as in Fig. 4. (As) The start of clone A; (Ae) the end of clone A. Similarly Bs, Be, Cs, and Ce represent the starts and ends of clones B and C.

Figure 6 Ordering graph after adding in rafts. The initial sequence contigs shown in Fig. 4 are merged into rafts where they overlap. This forms three rafts: a1b1a2, b2c1, and c2. These rafts are constrained to lie between the relevant clone ends by the addition of additional ordering edges to the graph shown in Fig. 5.

GigAssembler: Build a "raft-ordering" graph

- Add information from mRNAs, ESTs, paired plasmid reads, BAC end pairs: building a "bridge"
 - Different weight to different data type: (mRNA ~ highest)
 - Conflicts with the graph as constructed so far are rejected.
- Build a sequence path through each raft.
- . Fill the gap with N's.
 - 100: between rafts
 - 50,000: between bridged barges

Figure 6 Ordering graph after adding in rafts. The initial sequence contigs shown in Fig. 4 are merged into rafts where they overlap. This forms three rafts: a1b1a2, b2c1, and c2. These rafts are constrained to lie between the relevant clone ends by the addition of additional ordering edges to the graph shown in Fig. 5.

Finding the shortest path across the ordering graph using the Bellman-Ford algorithm

http://compprog.wordpress.com/2007/11/29/one-source-shortest-path-the-bellman-ford-algorithm/

Mapping reads to assembled genomes

Program	Website	Open source?	Handles ABI color space?	Maximum read length
Bowtie	http://bowtie.cbcb.umd.edu	Yes	No	None
BWA	http://maq.sourceforge.net/bwa-man.shtml	Yes	Yes	None
Maq	http://maq.sourceforge.net	Yes	Yes	127
Mosaik	http://bioinformatics.bc.edu/marthlab/Mosaik	No	Yes	None
Novoalign	http://www.novocraft.com	No	No	None
SOAP2	http://soap.genomics.org.cn	No	No	60
ZOOM	http://www.bioinfor.com	No	Yes	240

Trapnell C, Salzberg SL, Nat. Biotech., 2009

Input ABANANA | http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

		Iransformation		10
Input	All Rotations	Sorting All Rows in Alphabetical Order	Taking Last Column	Output Last Column
	^BANANA ^BANANA A ^BANAN	ANANA ^B ANA ^BAN A ^BANAN	ANANA ^B ANA ^BAN A ^BANAN	
^BANANA	NA ^BANA ANA ^BAN NANA ^BA	ANA ANANA	BANANA ^ NANA ^B A NA ^BAN A	BNN^AA A
	ANANA ^B BANANA ^	To a second control of the control o	^BANANA ^BANAN A	

BWT is remarkable because it is reversible.

Any ideas as how you might reverse it?

Input BNN^AA | A http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

Burrougl	ns-Wheele	r transform i	ndexing
Add 1	Sort 1	Add 2	Sort 2
В	A	BA	AN
N	A	NA	AN
N	A	NA	A
^	В	^B	BA
A	N	AN	NA
A	N	AN	NA
1	^	^	^B
A	1	A	^
Write the	Sort it	Add the	Sort those
sequence as he last column		columns	
	http	://en.wikipedia.org/wiki/B	urrows-Wheeler tr

Add 3	Sort 3	Add 4	Sort 4
BAN	ANA	BANA	ANAN
NAN	ANA	NANA	ANA
NA	A ^	NA ^	A ^E
^BA	BAN	^BAN	BANA
ANA	NAN	ANAN	NANA
ANA	NA	ANA	NA ^
^B	^BA	^BA	^BAN
A ^	^B	A ^B	^BA
Add the	Sort those	Add the	Sort those

Add 5	Sort 5	Add 6	Sort 6
BANAN	ANANA	BANANA	ANANA
NANA	ANA ^	NANA ^	ANA ^I
NA ^B	A ^BA	NA ^BA	A ^BAN
^BANA	BANAN	^BANAN	BANANA
ANANA	NANA	ANANA	NANA /
ANA ^	NA ^B	ANA ^B	NA ^BA
^BAN	^BANA	^BANA	^BANAI
A ^BA	^BAN	A ^BAN	^BAN
Add the	Sort those	Add the	Sort those

	Add 8	Sort 7	Add 7
	BANANA ^	ANANA ^	BANANA
The row wit	NANA ^BA	ANA ^BA	NANA ^B
the "end of fil	NA ^BANA	A ^BANA	NA ^BAN
 character at t 	^BANANA	BANANA	^BANANA
end is the	ANANA ^B	NANA ^B	ANANA ^
original text	ANA ^BAN	NA ^BAN	ANA ^BA
	^BANANA	^BANANA	^BANAN
	A ^BANAN	^BANAN	A ^BANA
	Add the	Sort those	Add the

