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Genes mirror geography within Europe
John Novembre1,2, Toby Johnson4,5,6, Katarzyna Bryc7, Zoltán Kutalik4,6, Adam R. Boyko7, Adam Auton7,
Amit Indap7, Karen S. King8, Sven Bergmann4,6, Matthew R. Nelson8, Matthew Stephens2,3 & Carlos D. Bustamante7

Understanding the genetic structure of human populations is of
fundamental interest to medical, forensic and anthropological
sciences. Advances in high-throughput genotyping technology
have markedly improved our understanding of global patterns
of human genetic variation and suggest the potential to use large
samples to uncover variation among closely spaced populations1–5.
Here we characterize genetic variation in a sample of 3,000
European individuals genotyped at over half a million variable
DNA sites in the human genome. Despite low average levels of
genetic differentiation among Europeans, we find a close corres-
pondence between genetic and geographic distances; indeed, a
geographical map of Europe arises naturally as an efficient two-
dimensional summary of genetic variation in Europeans. The
results emphasize that when mapping the genetic basis of a disease
phenotype, spurious associations can arise if genetic structure is
not properly accounted for. In addition, the results are relevant to
the prospects of genetic ancestry testing6; an individual’s DNA can
be used to infer their geographic origin with surprising accuracy—
often to within a few hundred kilometres.

Recent studies suggest that by combining high-throughput geno-
typing technologies with dense geographic samples one can shed light
on unanswered questions regarding human population structure1–5.
For instance, it is not clear to what extent populations within con-
tinental regions exist as discrete genetic clusters versus as a genetic
continuum, nor how precisely one can assign an individual to a
geographic location on the basis of their genetic information alone.

To investigate these questions, we surveyed genetic variation in a
sample of 3,192 European individuals collected and genotyped as
part of the larger Population Reference Sample (POPRES) project7.
Individuals were genotyped at 500,568 loci using the Affymetrix 500K
single nucleotide polymorphism (SNP) chip. When available, we
used the country of origin of each individual’s grandparents to deter-
mine the geographic location that best represents each individual’s
ancestry, otherwise we used the self-reported country of birth (see
Methods and Supplementary Tables 1 and 2). After removing SNPs
with low-quality scores, we applied various stringency criteria to
avoid sampling individuals from outside of Europe, to create more
even sample sizes across Europe, to exclude individuals with grand-
parental ancestry from more than location, and to avoid potential
complications of SNPs in high linkage disequilibrium (see Methods
and Supplementary Table 3). Although our main result holds even
when we relax nearly all of these stringency criteria, we focus our
analyses on genotype data from 197,146 loci in 1,387 individuals
(Supplementary Table 2), for whom we have high confidence of
individual origins.

We used principal components analysis (PCA; ref. 8) to produce a
two-dimensional visual summary of the observed genetic variation.

The resulting figure bears a notable resemblance to a geographic map
of Europe (Fig. 1a). Individuals from the same geographic region
cluster together and major populations are distinguishable.
Geographically adjacent populations typically abut each other, and
recognizable geographical features of Europe such as the Iberian
peninsula, the Italian peninsula, southeastern Europe, Cyprus and
Turkey are apparent. The data reveal structure even among French-,
German- and Italian-speaking groups within Switzerland (Fig. 1b),
and between Ireland and the United Kingdom (Fig. 1a, IE and GB).
Within some countries individuals are strongly differentiated along
the principal component (PC) axes, suggesting that in some cases the
resolution of the genetic data may exceed that of the available geo-
graphic information.

When we quantitatively compare the geographic position of coun-
tries with their PC-based genetic positions, we observe few pro-
minent differences between the two (Supplementary Fig. 1), and
those that exist can be explained either by small sample sizes (for
example, Slovakia (SK)) or by the coarseness of our geographic data
(a problem for large countries, for example, Russia (RU)); see
Supplementary Information for more detail. Our method also iden-
tifies a few individuals who exhibit large differences between their
genetic and geographic positions (Supplementary Fig. 2). These indi-
viduals may have mis-specified ancestral origins or be recent
migrants. In addition, although the sample used here is unlikely to
include many members of smaller genetically isolated populations
that exist within countries (for example, Basque residing in Spain or
France, Orcadians in Scotland, or individuals of Jewish ancestry), in
rare cases outlying individuals could reflect membership of such
groups. For example, a small set of Italian individuals cluster ‘south-
west’ of the main Italian cluster and one might speculate they are
individuals of insular Italian origin (for example, Sardinia or Sicily).

The overall geographic pattern in Fig. 1a fits the theoretical
expectation for models in which genetic similarity decays with dis-
tance in a two-dimensional habitat, as opposed to expectations for
models involving discrete well-differentiated populations. Indeed, in
these data genetic correlation between pairs of individuals tends to
decay with distance (Fig. 1c). For spatially structured data, theory
predicts the top two principal components (PCs 1 and 2) to be
correlated with perpendicular geographic axes9, which is what we
observe (r2 5 0.71 for PC1 versus latitude; r2 5 0.72 for PC2 versus
longitude; after rotation, r2 5 0.77 for ‘north–south’ in PC-space
versus latitude, and r2 5 0.78 for ‘east–west’ in PC-space versus lon-
gitude). In contrast, when there are K discrete populations sampled,
one expects discrete clusters to be separated out along K 2 1 of the
top PCs8. In our analysis, neither the first two PCs, nor subsequent
PCs, separate clusters as one would expect for a set of discrete, well-
differentiated populations (see ref. 8 for examples).
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The direction of the PC1 axis and its relative strength may reflect a
special role for this geographic axis in the demographic history of
Europeans (as first suggested in ref. 10). PC1 aligns north-northwest/
south-southeast (NNW/SSE, 216 degrees) and accounts for
approximately twice the amount of variation as PC2 (0.30% versus
0.15%, first eigenvalue 5 4.09, second eigenvalue 5 2.04). However,
caution is required because the direction and relative strength of the
PC axes are affected by factors such as the spatial distribution of
samples (results not shown, also see ref. 9). More robust evidence
for the importance of a roughly NNW/SSE axis in Europe is that, in
these same data, haplotype diversity decreases from south to north
(A.A. et al., submitted). As the fine-scale spatial structure evident in
Fig. 1 suggests, European DNA samples can be very informative
about the geographical origins of their donors. Using a multi-
ple-regression-based assignment approach, one can place 50% of

individuals within 310 km of their reported origin and 90% within
700 km of their origin (Fig. 2 and Supplementary Table 4, results
based on populations with n . 6). Across all populations, 50% of
individuals are placed within 540 km of their reported origin, and
90% of individuals within 840 km (Supplementary Fig. 3 and
Supplementary Table 4). These numbers exclude individuals who
reported mixed grandparental ancestry, who are typically assigned
to locations between those expected from their grandparental origins
(results not shown). Note that distances of assignments from
reported origin may be reduced if finer-scale information on origin
were available for each individual.

Population structure poses a well-recognized challenge for disease-
association studies (for example, refs 11–13). The results obtained
here reinforce that the geographic distribution of a sample is impor-
tant to consider when evaluating genome-wide association studies
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Figure 1 | Population structure within Europe. a, A statistical summary of
genetic data from 1,387 Europeans based on principal component axis one
(PC1) and axis two (PC2). Small coloured labels represent individuals and
large coloured points represent median PC1 and PC2 values for each
country. The inset map provides a key to the labels. The PC axes are rotated
to emphasize the similarity to the geographic map of Europe. AL, Albania;
AT, Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH,
Switzerland; CY, Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark;
ES, Spain; FI, Finland; FR, France; GB, United Kingdom; GR, Greece; HR,

Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; LV, Latvia; MK,
Macedonia; NO, Norway; NL, Netherlands; PL, Poland; PT, Portugal; RO,
Romania; RS, Serbia and Montenegro; RU, Russia, Sct, Scotland; SE,
Sweden; SI, Slovenia; SK, Slovakia; TR, Turkey; UA, Ukraine; YG,
Yugoslavia. b, A magnification of the area around Switzerland from
a showing differentiation within Switzerland by language. c, Genetic
similarity versus geographic distance. Median genetic correlation between
pairs of individuals as a function of geographic distance between their
respective populations.
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among Europeans (for example, refs 3–5, 11). A crucial part is also
played by spatial variation in phenotype. To examine this, we simu-
lated genome-wide association data for quantitative trait phenotypes
with varying degrees of linear latitudinal or longitudinal trends
(Supplementary Fig. 4). Even for phenotypes modestly correlated
with geography (for example, $5% of variance explained by latitude
or longitude) the uncorrected P-value distribution shows a clear
excess of small values, suggesting that population structure correc-
tion may be important even in seemingly closely related populations
such as Europeans. Note that many factors, including sample size and
distribution of sampling locations, will influence the effects of strati-
fication on P-value distributions, and so these results should be con-
sidered only as illustrative of the settings in which stratification could
become a problem in European samples.

In all our simulations, use of a PC-based correction12,14 adequately
controlled for P-value inflation (Supplementary Fig. 4). The success of
PCA-based correction is not unexpected here, because the PCs are

excellent predictors of latitude and longitude, and we used only linear
functions of latitude and longitude to determine the means of our
simulated phenotypes. For real phenotypes, higher order functions of
PC1 and PC2 and/or additional PCs might be necessary to correct for
more complex spatial variation in phenotype. We speculate that at the
geographic scale of many association studies carried out so far, many
phenotypes are relatively uncorrelated with geography, and that this
may explain why in many cases PC-based correction has had little
impact in practice3,13. For phenotypes that are more strongly spatially
structured within a sample (for example, height11,15,16), spurious asso-
ciations due to population stratification should be more of a concern.

Although broad correlations between PCs and geography have been
observed previously3–5,17,18 only the large number of loci and dense
geographic sampling of individuals used here reveal the clear map-like
structure to European genetic variation. Because at any one SNP the
average level of differentiation across Europe is small (average
FST 5 0.004 between geographic regions; FST is a measure of differ-
entiation between populations that takes values of 0 when there is no
differentiation and one when there is maximal differentiation19), it is
the combined information across many loci and many individuals
that reveals fine-scale population structure in this sample.

An important consideration in interpreting our analyses is that, as
a result of ascertainment bias20,21, current SNP genotyping platforms
under-represent variation at low-frequency alleles. Low-frequency
alleles tend to be the result of a recent mutation and are expected
to geographically cluster around the location at which the mutation
first arose; hence, they can be highly informative about the fine-scale
population structure (for example, ref. 22). In addition, the PCA-
based methods used here are based on genotypic patterns of variation
and do not take advantage of signatures of population structure that
are contained in patterns of haplotype variation1,23–25. Soon-to-be-
available whole-genome re-sequencing will give us access to inform-
ative low-frequency alleles, and further statistical method develop-
ment will allow us to leverage patterns of haplotype variation. The
prospect of these developments suggests the geographic resolution
presented here is only a lower bound on the performance possible in
the near future. Thus, our results provide an important insight: the
power to detect subtle population structure, and in turn the promise
of genetic ancestry tests, may be more substantial than previously
imagined.

METHODS SUMMARY

The sample of European individuals used here was assembled and genotyped as

part of the larger POPRES project7. Genotyping was carried out using the

Affymetrix GeneChip Human Mapping 500K Array Set. No significant differ-

entiation was observed between individuals collected and/or genotyped at dif-

ferent times (analysis of variance, ANOVA, P . 0.05).

PCA was carried out using the smartpca program8,12. Before running PCA, we

removed SNPs that showed evidence of high pairwise linkage disequilibrium as

well as unique genomic regions (such as large polymorphic inversions) that

might obscure genome-wide patterns of population structure. In addition, an

initial PCA run was used to remove extreme genetic outliers.

When comparing the PC results to geography, we assigned each individual a

location—typically the geographic centre of their corresponding population

(Supplementary Table 3). The rotation of axes used in Fig. 1 is 16 degrees coun-

terclockwise and was determined by finding the angle that maximizes the

summed correlation of the median PC1 and PC2 values with the latitude and

longitude of each country.

The new assignment method used here is based on independent linear models

for latitude and longitude where each is predicted jointly by PC1 and PC2,

including quadratic terms and an interaction term. To assess performance, we

used leave-one-out cross-validation and adjusted for unequal sample sizes (for

example, we weigh each population equally when computing the mean predic-

tion accuracy).

For the genome-wide association simulations, we simulated each individual’s

phenotype as having a mean determined by his or her geographic position and

then simulated Gaussian distributed residual variation to obtain a phenotype

with a fixed proportion of variance explained by geographic position. To per-

form the association test with PC-based correction, we used multiple linear
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Figure 2 | Performance of assignment method. a, Predicted locations for
each of 1,387 individuals based on leave-one-out cross validation and the
continuous assignment method. Small coloured labels (for definitions, see
Fig. 1 legend, except here CH-I, CH-F, and CH-G denote Swiss individuals
who speak Italian, French, or German respectively) represent individual
assignments. Coloured points denote the locations used to train the
assignment method. b, Distribution of prediction accuracy by country.
Distances are measured between the population assigned by the discrete
assignment method and the geographic origin of the individual. The average
is taken of the proportions across populations and each population is given
equal weight. The panel shows results for populations with greater than six
individuals; performance decreases for populations with smaller sample
sizes (Supplementary Fig. 3).
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regression with PC1 and PC2 as covariates, as implemented in the program
eigenstrat8,12.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Sample collection and genotyping. The samples were assembled and genotyped

as part of the larger POPRES project currently consisting of ,6,000 individuals

from worldwide populations7. The subsample of European individuals used here

is derived from two independent collections: the London Life Sciences

Population (LOLIPOP) study26, which consists mainly of European individuals

sampled in London, and (2) the CoLaus study27, which represents a broad set of

European individuals sampled from Lausanne, Switzerland. The combined sam-

ple contains individuals with origins from across Europe (Supplementary Table

2), although origins from eastern Europe are generally less well represented (for

example, Finland, Latvia, Ukraine, Slovakia and Slovenia) and some countries

are not sampled at all (for example, Belarus, Estonia, Lithuania and Moldova).

Genotyping was carried out using the Affymetrix GeneChip Human Mapping

500K Array Set according to published protocol. We observe no significant

differentiation in the PCA between individuals collected and/or genotyped at

different times (ANOVA, P . 0.05). A thorough description of the collections,

data processing methods and public data release is presented in ref. 7.

To prepare the sample analysed here, we used the demographic data available

for each individual to create a ‘geographic origin’ that represents a single location

from which the individual’s very recent ancestry is derived. Where possible, we

based the geographic origin on the observed country data for grandparents. We

used a ‘strict consensus’ approach: if all observed grandparents originated from a

single country, we used that country as the origin. If an individual’s observed

grandparents originated from different countries, we excluded the individual.

Where grandparental data were unavailable, we used the individual’s country of

birth.

We excluded individuals whose putative geographic origin was from outside

of Europe (for example, Europeans from USA, China, Mozambique, Ivory

Coast, and so on), individuals who were putatively related (using the same

approach as in ref. 7), and individuals found to be outliers in a preliminary

PCA run (for more detail, see the section on PCA below). Because of the large

number of Swiss individuals available and the availability of language informa-

tion for most of these individuals, for some analyses, we divided Swiss indivi-

duals into three ancestry labels (Swiss-French, Swiss-German and Swiss-Italian)

on the basis of their reported primary language. Finally, we chose to include only

a random sample of 200 individuals from the United Kingdom and 125 Swiss-

French to obtain more even sample sizes across Europe. Supplementary Table 2

provides more detail on how the sample numbers changed with each step in the

sample preparation, and Supplementary Table 1 summarizes the number of

grandparents observed for the 1,387 individuals used in the final sample.

Geographic locations associated with each country were assigned using the

central point of the geographic area of the country (Supplementary Table 3).

Three exceptions are the Russian Federation, Sweden and Norway, where the

geographic locations were assigned to the location of the capitals of these coun-

tries (because central points were assumed to not be as reflective of the probable

origins of these individuals). Within Switzerland, we represent the Swiss-French

with the geographical coordinates of Geneva, the Swiss-German with those of

Zurich, and Swiss-Italian with those of Lugano. Distances between points are

always calculated as great circle distances.

For estimating FST
19 and for assessing the performance of assignment, we

combined individuals into geographic groupings with larger and more compar-

able sample sizes than the original ancestral origins. These groupings do not

reflect discrete structure in the data, rather the practical need to create geograph-

ical groupings with reasonable sample sizes. The strategy was to create a 3 3 3

grid of regions across Europe, with a tenth region for far southeastern Europe

(Supplementary Table 3).

Principal components analysis. To conduct PCA, we used the smartpca soft-

ware8,12. In a preliminary phase of the study, we ran smartpca using default

settings and five outlier detection iterations, which resulted in the identification

and exclusion of 34 individuals that were greater than six standard deviations

from the mean PC position on at least one of the top ten eigenvectors. For our

final run, we use the default settings without any outlier removal.

To avoid artefacts due to patterns of linkage disequilibrium3, we filtered

autosomal SNPs using two approaches simultaneously. First, before running

PCA we used the PLINK28 software to exclude SNPs with pairwise genotypic

r2 greater than 80% within sliding windows of 50 SNPs (with a 5-SNP increment

between windows). Second, we took an iterative approach by running an initial

PCA and removing chromosomal regions that showed evidence of reflecting

regions of exceptional long-range linkage disequilibrium rather than genome-

wide patterns of structure. These regions are detectable by plotting the correla-

tion between individual PC scores and genotypes against the genome and iden-

tifying sharp, concentrated peaks in correlation (alternatively, we could have

plotted the magnitude of elements of the SNP-based eigenvectors from the PCA,

but here we used the correlation-based approach because much of this work was

done before the release of recent versions of smartpca that provide the SNP

eigenvectors). SNPs falling within a 4 megabase region of a peak were excluded

from the final PCA. Initially, peaks were defined by taking the top 0.01% of SNPs

correlating with a PC for each of the top 6 PCs of the preliminary analysis. In this

initial analysis PCs 1 and 2 did not appear to be artefacts of long-range linkage

disequilibrium, but we still removed regions around the top PC-correlated SNPs.

This approach is conservative (in the sense that we potentially remove more
SNPs than necessary and hence might hinder ourselves from detecting subtle

patterns). The procedure removed SNPs in regions such as the lactase region

(2q21), the MHC region and the inversion regions 8p23 and 17q21.31, amongst

others. The final number of SNPs used for PCA was 197,146 SNPs. The patterns

of structure observed in PCs 1 and 2 were robust to further removal of chromo-

somal regions correlated with the PCs, suggesting the observed patterns are

representative of genome-wide differentiation.

The inter-individual genetic correlations used in Fig. 1c were the same as those

used for the PCA analysis and were obtained using the formula of ref. 8 as

computed by smartpca.

The angle used to create the rotated PC1–PC2 coordinate system that is used

in Fig. 1 was obtained by maximizing h in the objective function:

f(h) 5 Cor(g(h, v1, v2),Long) 1 Cor(h(h, v1, v2),Lat)

where g(h, v1, v2) and h(h, v1, v2) are functions that return coordinates of v1 (the
PC1 eigenvector) and v2 (the PC2 eigenvector) after rotation about the point

(0,0) in PC1–PC2 space by the angle h. Lat and Long are vectors of the latitude

and longitude of each individual, and Cor(?, ?) is the correlation function. The

resulting optimal value of h was found to be 216 degrees.

Spatial assignment. We assigned each individual to a specific geographic loca-

tion by fitting independent linear models for latitude and longitude as predicted

jointly by PC1 and PC2. We used the rotated PC1 and PC2 scores because these

more strongly correlate with latitude and longitude (see main text). Specifically,

we use the linear models:

x 5 bx1u1 1 bx2u2 1 bx11u2
1 1 bx22u2

2 1 bx12u1u2 1 e

y 5 by1u1 1 by2u2 1 by11u2
1 1 by22u2

2 1 by12u1u2 1 e

where x and y are vectors containing the longitude and latitude, respectively, of

each individual, u1 and u2 are vectors containing the rotated PC1 and PC2 scores,

respectively, for each individual (that is, u1 5 g(h, v1, v2), u2 5 h(h, v1, v2), where

h 5 216 degrees), b coefficients are regression coefficients, and e represents

residual error.

To perform assignment, we first estimated the b coefficients by means of least-

squares regression with a training set of individuals with known locations and

then used the estimated coefficients of the linear model to predict the latitude

and longitude of a test individual on the basis of their PC1 and PC2 values (we

call this a ‘continuous assignment’). We also made a ‘discrete assignment’ by

assigning individuals to the country for which the centre-point is closest to the

latitude and longitude predicted by the continuous assignment method. In
practice, the two methods produce roughly similar results (Supplementary

Table 4). As a reference point for evaluating performance, the Supplementary

Table also reports statistics for how a method would perform if all individuals

were assigned to a central location within Europe (here taken to be Austria).

Simulation of genome-wide association study for a spatially structured
quantitative trait. We simulated two types of traits: one with a latitudinal trend

in the mean and the other with a longitudinal trend. For each type of trait, we

simulated a range of different degrees to which the geographical axis (latitude or

longitude) contributed to the overall variance in the trait. Specifically, we let x9

and y9 be normalized latitudinal and longitudinal variables, respectively (that is,

x9 5 (x 2 �xx)/sx and y9 5 (y 2 �yy)/sy, where x is a vector of each individual’s

longitude, y is likewise for latitude, �tt is the mean value of the elements of t,
and st is their standard deviation). We then simulated two phenotypes with the

mean determined by x9 or y9: wx 5 x9 1 ex and wy 5 y9 1 ey, where e is a vector of
random normal deviates with mean 0 and variance s2. We let s2 take values of (1,

4, 19, 99), so that the resulting variance in the traits are approximately (2, 5, 20,

100), and the proportion of variance explained is approximately (50, 20, 5, 1) per

cent.

To perform the association test with PC-based correction, we used multiple

linear regression with PC1 and PC2 as covariates as implemented in the software

eigenstrat12. The Armitage x2 statistic was used to test the strength of the asso-

ciation. We also calculate an inflation statistic, by taking the ratio of the 50%
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quantile of the observed Armitage x2 statistic with that expected under the null x2
1

distribution.
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