BIO 337

Tuesday, Feb 18 2014

Fred Sanger

13 August 1918 – 19 November 2013

Nobel Prize in Chemistry, 1958 for protein sequencing (insulin)

Nobel Prize in Chemistry, 1980 for DNA sequencing

Dideoxy sequencing

А

AGTGTCTTAAC

GTAC

Automated dye-terminator sequencing

ature

the **human** genome

15 February 2001

Nuclear fission Five-dimensional energy landscapes

the Arctic ice

Seafloor spreading The view from under

Career prospects Sequence creates new

opportunities

October 2010

Functional genomics by sequencing

Used sequencing chemistry invented by Fred Sanger in 1977

In the last 3-5 years, radically new sequencing approaches have been invented and employed for functional genomics, termed

- Next-generation sequencing (NGS, 2nd, 3rd generation)
- Ultra high-throughput sequencing
- Single-molecule sequencing
- Deep sequencing

Table 1 Next gen seq	ݨuend	
Company	ñ <image/> Technology (************************************	On market?
Complete Genomics	ਝ Gong Gong Gong Gong Gong Gong Gong Gong	Yes
Genapsys Redwood City, California	ジEdition of the the the tent of the tent	No
Genia Technologies	印	No
GnuBio	झ gang gang gang gang gang gang gang gan	Alpha testing
Illumina	ာ of the	Yes
Lasergen Houston	忌 or gen	No
Life Technologies (Ion Torrent)	象Seminary Seminary S	Yes
NabSys Providence, Rhode Island	ਬ gang gang gang gang gang gang gang gan	No
Noblegen Biosciences	ח of the	No
Oxford Nanopore Technologies	л or ren or	No
Pacific Biosciences	á time teres t	Yes
Qiagen (Intelligent Bio- Systems)	ル	No
Roche (454)	nPyrosed of the temperature of temperature o	Yes
Stratos Genomics Seattle	titte Potte	No

Nature Biotechnology (November 2012)

	Cost per base ^a	Read length (bp) ^b	Speed	Capital cost ^c
Minimum cost per base				
Complete Genomics	Low	Short	3 months	None (service)
HiSeq 2000 (Illumina)	Low	Mid	8 days	++++++
SOLiD 5500xl (Life Technologies)	Low	Short	8 days	+++
Maximum read length				
454 GS FLX+ (Roche)	High	Long	1 day	+++++
RS (Pacific Biosciences)	High	Very long	<1 day	++++++
Maximum speed, minimum capital cost	and minimum fo	otprint		
454 GS Junior (Roche)	High	Mid	<1 day	+
Ion Torrent PGM (Life Technologies)	Mid	Mid	<1 day	+
MiSeq (Illumina)	Mid	Long	1 day	+
Combined prioritization of speed and th	roughput			
Ion Torrent Proton (Life Technologies)	Low	Mid	<1 day	++
HiSeq 2500 (Illumina)	Low	Mid	2 days	+++++++

Table 2 Next-generation DNA sequencing instruments

^a'Low' is < \$0.10 per megabase, 'mid' is in-between and 'high' is > \$1 per megabase. ^b'Short' is < 200 bp, 'mid' is 200–400 bp, 'long' is > 400 bp and 'very long' is > 1,000 bp. ^cEach "+" corresponds to ~\$100,000. We list only commercialized instruments that can be purchased and for which performance data are publically available (as opposed to a comprehensive list of companies developing next-generation sequencing technologies). The categorizations refer to the aspect of sequencing performance to which the technology and/or its implementation in a specific instrument are primarily geared. These estimates were made at the time of publication, and the pace at which the field is moving makes it likely that they will be quickly outdated.

Next Generation Sequencing: Illumina

Annu. Rev. Anal. Chem. (2013) 6:287-303

Next Generation Sequencing: Illumina

First chemistry cycle: determine first base

b

To initiate the first sequencing cycle, add all four labeled reversible terminators, primers, and DNA polymerase enzyme to the flow cell.

Laser

After laser excitation, capture the image of emitted fluorescence from each cluster on the flow cell. Record the identity of the first base for each cluster.

Before initiating the next chemistry cycle

The blocked 3' terminus and the fluorophore from each incorporated base are removed.

Sequence read over multiple chemistry cycles

Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at a time.

Annu. Rev. Genomics Hum. Genet. (2008) 9:387

Paired-end and mate paired libraries

Annu. Rev. Anal. Chem. (2013) 6:287-303

Emulsion PCR for clonal amplification

Used in next-gen sequencing by Roche/454 and Life/Applied Biosystems platforms

Anneal sstDNA to an excess of Er DNA capture beads re

Emulsify beads and PCR reagents in water-in-oil microreactors

Clonal amplification occurs inside microreactors

Break microreactors and enrich for DNA-positive beads

sstDNA library

Bead-amplified sstDNA library

Pyrosequencing

1–2 million template beads loaded into PTP wells

Ion Torrent pH based sequencing

Annu. Rev. Anal. Chem. (2013) 6:287-303

Single-molecule sequencing: Pacific Biosystems

Single-molecule sequencing: Pacific Biosystems

Time

Annu. Rev. Anal. Chem. (2013) 6:287-303

Nanopore sequencing

Nanopores can be

- biological: formed by a pore-forming protein in a membrane such as a lipid bilayer
- solid-state: formed in synthetic materials such as silicon nitride or graphene
- hybrid: formed by a pore-forming protein set in synthetic material

www.nanoporetech.com

Features of next-gen sequencing

- Short reads (35 bp 400 bp)
- Millions of reads per run $(10^7 5x10^8)$
- Higher error rate per basepair raw
- No cloning in *E. coli*
- Huge amounts of data per experiment (20 GB primary/2 TB raw)
- Large data storage and computational analysis requirements

etc.

Genetic variation etc.

transcriptomes etc.

Nature Biotechnology (November 2012) 30(11):1084-94

Some applications of next-gen sequencing

- Genome sequencing and variant discovery
- de novo assembly of bacterial and other small genomes
- DNA-protein interactions
- Chromatin and epigenetics
- RNA expression levels (profiling)
- ncRNA/small RNA discovery and profiling
- Metagenomics
- Sequencing extinct species (museomics)

RNA-seq

Table 1 Applications of next-generation DNA sequencing

Method	Sequencing to determine:	Example reference	ॅ
DNA-Seq	A genome sequence	57	ॅ
Targeted DNA-Seq	A subset of a genome (for example, an exome)	20	ॅ ,
Methyl-Seq	Sites of DNA methylation, genome-wide	34	ॅ, , , , , , , , , , , , , , , , , , , ,
Targeted methyl-Seq	DNA methylation in a subset of the genome	129	ॅ ,
DNase-Seq, Sono-Seq and FAIRE-Seq	Active regulatory chromatin (that is, nucleosome-depleted)	113	ॅ, D <list-item> , D , D , D , D , D , D , D , D , D</list-item>
MAINE-Seq	Histone-bound DNA (nucleosome posi- tioning)	130	ॅं, Din d
ChIP-Seq	Protein-DNA interactions (using chroma- tin immunoprecipitation)	131	ॅ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
RIP-Seq, CLIP-Seq, HITS-CLIP	Protein-RNA interactions	46	ॅ
RNA-Seq	RNA (that is, the transcriptome)	39	ॅ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
FRT-Seq	Amplification-free, strand-specific transcriptome sequencing	119	ॅ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
NET-Seq	Nascent transcription	41	Perturbation, genetic manipulation, cell culture, immunoprecipitation, RNA extraction, adaptor ligation, reverse transcription, circularization, PCR and sequencing
Hi-C	Three-dimensional genome structure	71	Comparison, cell culture, cross-linking, proximity ligation, mechanical shearing, affinity purification, adaptor ligation, PCR and sequencing
Chia-PET	Long-range interactions mediated by a protein	73	Perturbation, cell culture, cross-linking, mechanical shearing, immunoprecipitation, proximity ligation, affinity purification, adaptor ligation, PCR and sequencing
Ribo-Seq	Ribosome-protected mRNA fragments (that is, active translation)	48	Comparison, cell culture, RNase digestion, ribosome purification, RNA extraction, adaptor ligation, reverse transcription, rRNA depletion, circularization, PCR and sequencing
TRAP	Genetically targeted purification of poly- somal mRNAs	132	Comparison, genetic manipulation, 'anatomic', cross-linking, affinity purification, RNA extraction, poly(A) selection, reverse transcription, second-strand synthesis, adaptor ligation, PCR and sequencing
PARS	Parallel analysis of RNA structure	42	Comparison, cell culture, RNA extraction, poly(A) selection, RNase digestion, chemical fragmentation, adaptor ligation, reverse transcription, PCR and sequencing
Synthetic saturation mutagenesis	Functional consequences of genetic variation	93	Variation, genetic manipulation, barcoding, RNA extraction, reverse transcription, PCR and sequencing
Immuno-Seq	The B-cell and T-cell repertoires	86	Perturbation, 'anatomic', DNA extraction, PCR and sequencing
Deep protein mutagenesis	Protein binding activity of synthetic peptide libraries or variants	95	Variation, genetic manipulation, phage display, <i>in vitro</i> competitive binding, DNA extraction, PCR and sequencing
PhIT-Seq	Relative fitness of cells containing disruptive insertions in diverse genes	92	Variation, genetic manipulation, cell culture, competitive growth, linear amplification, adaptor ligation, PCR and sequencing

FAIRE-seq, formaldehyde-assisted isolation of regulatory elements-sequencing. MAINE-Seq, MNase-assisted isolation of nucleosomes-sequencing; RIP-Seq, RNA-binding protein immunoprecipitation-sequencing; CLIP-Seq, cross-linking immunoprecipitation-sequencing; HITS-CLIP, high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation; FRT-Seq, on-flowcell reverse transcription-sequencing. NET-Seq, native elongating transcript sequencing. TRAP, translating ribosome affinity purification. PhIT-Seq, phenotypic interrogation via tag sequencing.

Nature Biotechnology (November 2012) 30(11):1084-94

Gene expression profiling with RNA-seq

Nature Methods Supplement (2009) 6: S22

Metagenomics

PLoS Comput. Biol. (2010) 6(2): e1000667

А

В

С

D

Ε

......

Finding copy number variants with NGS

Trends Biotechnol (2009) 27: 448-54

Deletions and amplifications with paired end sequencing

Whole-genome sequencing to identify disease gene

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Whole-Genome Sequencing in a Patient with Charcot–Marie–Tooth Neuropathy

 James R. Lupski, M.D., Ph.D., Jeffrey G. Reid, Ph.D., Claudia Gonzaga-Jauregui, B.S.,
 David Rio Deiros, B.S., David C.Y. Chen, M.Sc., Lynne Nazareth, Ph.D., Matthew Bainbridge, M.Sc., Huyen Dinh, B.S., Chyn Jing, M.Sc., David A. Wheeler, Ph.D., Amy L. McGuire, J.D., Ph.D., Feng Zhang, Ph.D.,
 Pawel Stankiewicz, M.D., Ph.D., John J. Halperin, M.D., Chengyong Yang, Ph.D.,
 Curtis Gehman, Ph.D., Danwei Guo, M.Sc., Rola K. Irikat, B.S., Warren Tom, B.S., Nick J. Fantin, B.S., Donna M. Muzny, M.Sc., and Richard A. Gibbs, Ph.D.

ABSTRACT

BACKGROUND

Whole-genome sequencing may revolutionize medical diagnostics through rapid identification of alleles that cause disease. However, even in cases with simple patterns of inheritance and unambiguous diagnoses, the relationship between disease

We identified a family with a recessive form of Charcot-Marie-Tooth disease for

which the genetic basis had not been identified. We sequenced the whole genome

of the proband, identified all potential functional variants in genes likely to be related

to the disease, and genotyped these variants in the affected family members.

From the Department of Molecular and Human Genetics (J.R.L., J.G.R., C.G.-J., M.B., F.Z., P.S., D.M.M., R.A.G.), the Hu-

METHODS

.edu.

This article (10.1056/NEJMoa0908094) was published on March 10, 2010, at NEJM.org.

N Engl J Med 2010;362:1181-91. Copyright © 2010 Massachusetts Medical Society.

New England Journal of Medicine 362;13 April 1, 2010

Genotyping to confirm disease allele

a Inherited mutations

Nature Reviews | Genetics

Chromatin immunoprecipitation (ChIP)-seq

Nat Methods. 2008 Sep;5(9):829-34

Program	1	See Je	sion	aphical wi	user internation	ased scar	n kernel	density and specific peak me	scoins officing	E compension	ates for o	s deletions 2 Discovery Comparison	ate onalite	statistical nodel	ortest
CisGenome	28	1.1	Х*	x				х	х		х		X	conditional binomial model	
Minimal ChipSeq Peak Finder	16	2.0.1			x			x				х			
E-RANGE	27	3.1			x			x				х	X	chromsome scale Poisson dist.	
MACS	13	1.3.5		X				X			X		X	local Poisson dist.	
QuEST	14	2.3				x		х			X**		x	chromsome scale Poisson dist.	
HPeak	29	1.1		X				X					Х	Hidden Markov Model	
Sole-Search	23	1	X	X				X		X			X	One sample t-test	
PeakSeq	21	1.01			x			х					X	conditional binomial model	
SISSRS	32	1.4		X			X					X			
spp package (wtd & mtc)	31	1.7		х			x		X	Χ'	x				
				Gen	eratin prof	g density iles	assi	Peak gnment	Adjust	tments w. rol data		Sig	gnificance control	relative to data	

X* = Windows-only GUI or cross-platform command line interface

X** = optional if sufficient data is available to split control data

X' = method exludes putative duplicated regions, no treatment of deletions

Number of Peaks (thousands)

Feature	Method	ר	Reference
Transcripts, small RNA and transcribed regions	RNA-seq CAGE	ာ ning ng n	(Waern <i>et al</i> , 2011) (Kodzius <i>et al</i> , 2006)
	RNA-PET ChIRP-Seq	⊐ of the	(Fullwood <i>et al</i> , 2009c) (Chu <i>et al</i> , 2011)
	GRO-Seq	ב החלק החלק החלק החלק החלק החלק החלק החלק	(Core <i>et al</i> , 2008)
	NET-seq	Ħ n n n n n n n n n n n n n n n n n n n	(Churchman and Weissman, 2011)
	Ribo-Seq	ෛ	(Ingolia <i>et al</i> , 2009)
Transcriptional machinery and protein–DNA interactions	ChIP-seq	ি Dy	(Robertson <i>et al</i> , 2007)
	DNAse footprinting	् potecti de la po	(Hesselberth et al, 2009)
	DNAse-seq	в	(Crawford et al, 2006)
	FAIRE	집 or	(Giresi <i>et al</i> , 2007)
	Histone modification	оскольколькольколькольколькольколькольколь	(Wang <i>et al</i> , 2009a)
DNA methylation	RRBS	ॅं''''''''''''''''''''''''''''''''''''''	(Smith <i>et al</i> , 2009)
Chromosome-	5C	ॅ	(Dostie <i>et al</i> , 2006)
interacting sites	ChIA-PET	ॅ	(Fullwood <i>et al</i> , 2009a)

Table I The various NGS assays employed in the ENCODE project to annotate the human genome

The HiSeq X^{TM} Ten, composed of 10 HiSeq X Systems, is the first sequencing platform that breaks the \$1000 barrier for a 30x human genome.

Raw NGS data (FASTQ file)

Read ID

4 lines per sequence

@HWI_ST1097:104:D13TNACXX:4:1101:18100:2240 1:Y:0:CAACTA
TGAGGCAAACCCAACTTATATGGGTCAATATAATGGTAAAGAAGGTTTAAA ← Sequence

+ ← Optional Read ID

=7=<+2<AACAA<A+<A97AB7<7+2?ABBA@@B4A1?7A<*::;00=AAA ← Base quality @HWI_ST1097:104:D13TNACXX:4:1101:18326:2181 1:N:0:CAACTA scores CATACATCAAAATTTTTACAAAAACTCGAATCTCGGTGGTATTATTCCGACAG +

@@@FFFDDDFDFHGIJGIJJIICGHIJJAHGGGHGBFGGIHIFGGEAADHG @HWI-ST1097:104:D13TNACXX:4:1101:18728:2073 1:N:0:CAACTA TTTCTTTCGAAGGAACCCCCTCTTTCTCATGCTTTGTGCTACTCTGAGGCAA

+

@@DDDDDHHD1<AEHGGGGG<FHGIEHEH9CDDA*??D<DDHHAG<?1?1?</pre>

Filesize: few hundred Mb to 1 or 2 Gb, ~100 million lines for one experiment!

Encoding quality scores

Quality character	! "#\$%&	ဓ -							
ASCII Value	33	43	53	63	73				
Base Quality (Q) (ASCII-33)	0	10	20	30	40				

Probability of error = $10^{-Q/10}$ This is a **Phred** score, a standard measure of sequencing quality

Phred Quality Score	ॅ	Base call accuracy
10	ॅं,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	90%
20	ॅं,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	99%
30	ॅं,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	99.9%
40	ॅं,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	99.99%
50	ॅं,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	99.999%

NGS aligners

http://wwwdev.ebi.ac.uk/fg/hts_mappers/

NGS aligners

Monnor	0.5	Seq. Blat	Innut	Output	Min. Pl	Max.	Mis-	Indolo	Gana	Splicing
	0.3.	Fidi.	input	Output	KL	ĸL	matches	indels	Gaps	Splicing
BFAST	Linux,Mac	I,So,4, Hel	(C)FAST(A/Q)	SAM TSV		*	Y	Y	Y	Ν
Blat	Linux,Mac	N	FASTA	TSV BLAST	11	5000K	Score	Score	Y	De novo
Bowtie	Linux,Mac,Win dows	I,So,4,Sa,P	(C)FAST(A/Q)	SAM TSV	4	1K	Score	Score	N	N
Bowtie2	Linux,Mac,Win dows	I,4,Ion	FASTA/Q	SAM TSV	4	5000K	Score	Score	Y	N
BS-Seeker2	Linux, Unix, Mac	-	FASTA/Q, qseq	SAM BAM	10	200	Score	Score	Y	N
BWA	Linux,Mac,Win dows	I,So,4,Sa,P	FASTA/Q	SAM	4	200	Y	8	Y	N
CloudBurst	Linux,Mac,Win dows	N	FASTA	TSV		1K	Y	Y	Y	N
ELAND	Linux, Unix, Mac	I	FASTA		15	150	2	Score	N	N
GMAP	Linux,Unix,Ma c,Windows	I, 4,Sa,Hel,Ion,P	FASTA/Q	SAM GFF Native	8	*	Y	Y	Y	De novo
MapReads	Linux,Mac,Win dows	So	FASTA/Q	TSV	10	120	Score	0	N	N
MAQ	Linux,Mac	I,So	(C)FAST(A/Q)	TSV	8	63	Y	Y	N	Ν
MOSAIK	Linux,Unix,Ma c,Windows	I,So, 4,Sa,Hel,Ion,P	(C)FAST(A/Q)	BAM	15	1000	Y	Y	Y	N
mrFAST	Linux,Unix	1	FASTA/Q	SAM DIVET	25	1000	Score	4	N	Ν
Novoalign(CS)	Linux	I,So,4,Hel,Ion	(C)FAST(A/Q) Illumina	SAM Native	1	250	Y	Y	Y	Lib
RMAP	Linux.Mac	I.So.4	(C)FAST(A/Q)	BED	11	10K	Y	0	N	N
SHRiMP2	Linux, Unix, Mac	I,So,4	FASTA/Q	SAM	30	1K	Y	Score	N	N
SOAP2	Linux		FASTA/Q	SAM TSV	27	1K	2	0	Y	N
SOAPSplice	Linux,Mac	1,4	FASTA/Q	TSV	13	3K	5	2	Y	De novo
SSAHA2	Linux,Mac	I,4,Sa	FASTA/Q	SAM	15	48K	Score	Score	Ν	Ν
TopHat 2	Linux,Mac		FASTA/Q	BAM					N	De novo
VMATCH	Linux,Mac	N	FASTA	TSV			Score	Score	Y	N

FASTQC

Quality scores across all bases (Sanger / Illumina 1.9 encoding)

Aligning to a reference genome

Variant calling with GATK

Variant calling

RNA-seq alignments

Current Opinion in Chemical Biology (2013) 17:4-11

What lies ahead...?

- End-to-end genome sequencing
- Sequencing entire pedigrees
- Sequencing within intact cells
- Single-cell genomes, transcriptomes, epigenomes
- Protein-protein interactions by sequencing
- Cell fate mapping
- Single molecule protein sequencing