BIO 337

Tuesday, Feb 182014

Fred Sanger

13 August 1918 - 19 November 2013

Nobel Prize in Chemistry, 1958 for protein sequencing (insulin)
Nobel Prize in Chemistry, 1980 for DNA sequencing

Dideoxy sequencing

Automated dye-terminator sequencing

4-fluorescently labelled dideoxy dye terminators ddATP ddGTP
ddCTP pool and load in a single well or capillary
ddTTP - scan with laser + detector specific for each dye

- automated base calling
- very long reads (~ 1000 bases)/run

February 2001

nature

BGMANSTMGELIS
BEYOND THE
BEYOND THE
COURT CASE
COURT CASE
impications for the elaw,
industry and ethics
picetion

October 2010

Functional genomics by sequencing

Used sequencing chemistry invented by Fred Sanger in 1977

In the last 3-5 years, radically new sequencing approaches have been invented and employed for functional genomics, termed

- Next-generation sequencing (NGS, $2^{\text {nd }}, 3^{\text {rd }}$ generation)
- Ultra high-throughput sequencing
- Single-molecule sequencing
- Deep sequencing

Table 1 Next gen sequencing developers

Company	Technology overview	On market?
Complete Genomics	Optical analysis of arrays of 'DNA nanoballs'	Yes
Genapsys Redwood City, California	Electronic detection of thermal/pH changes accompanying nucleotide addition	No
Genia Technologies	Pairing biological nanopores with semiconductor detection	No
GnuBio	Microfluidic system analyzes DNA nanodroplets with fluorescent primers	Alpha testing
Illumina	Sequencing by synthesis with fluorescently labeled reversible terminators	Yes
Lasergen Houston	Sequencing by synthesis with fluorescently labeled reversible terminators	No
Life Technologies (Ion Torrent)	Semiconductor sensor arrays detect protons released by nucleotide addition	Yes
NabSys Providence, Rhode Island	Single-molecule analysis revealing genomic location of sequencing probes	No
Noblegen Biosciences	Optical detection of 'expanded' DNA templates passing through synthetic pores	No
Oxford Nanopore Technologies	Detects changes in current as DNA strands pass through protein nanopores	No
Pacific Biosciences	Uses 'zero-mode waveguides' to optically detect real-time nucleotide addition	Yes
Qiagen (Intelligent BioSystems)	Sequencing by synthesis with fluorescently labeled reversible terminators	No
Roche (454)	Pyrosequencing of template-laden beads prepared by emulsion PCR	Yes
Stratos Genomics Seattle	Optical sequencing of fluorescently labeled, synthetically expanded templates	No

Table 2 Next-generation DNA sequencing instruments

	Cost per base ${ }^{\text {a }}$	Read length (bp)	Speed	Capital cost $^{\text {c }}$
Minimum cost per base				
Complete Genomics	Low	Short	3 months	None (service)
HiSeq 2000 (Illumina)	Low	Mid	8 days	+++++++
SOLiD 5500xI (Life Technologies)	Low	Short	8 days	+++
Maximum read length				
454 GS FLX+ (Roche)	High	Long	1 day	+++++
RS (Pacific Biosciences)	High	Very long	<1 day	+++++++
Maximum speed, minimum capital cost and minimum footprint				
454 GS Junior (Roche)	High	Mid	<1 day	+
lon Torrent PGM (Life Technologies)	Mid	Mid	<1 day	+
MiSeq (Illumina)	Mid	Long	1 day	+
Combined prioritization of speed and throughput		<1 day	++	
lon Torrent Proton (Life Technologies)	Low	Mid	2 days	++++++++
HiSeq 2500 (Illumina)	Low	Mid	++	

${ }^{\text {a }}$ 'Low' is $<\$ 0.10$ per megabase, 'mid' is in-between and 'high' is > \$ 1 per megabase. ${ }^{\text {b }}$ 'Short' is $<200 \mathrm{bp}$, 'mid' is 200-400 bp, 'long' is > 400 bp and 'very long' is $>1,000 \mathrm{bp}$. 'Each " + " corresponds to $\sim \$ 100,000$. We list only commercialized instruments that can be purchased and for which performance data are publically available (as opposed to a comprehensive list of companies developing next-generation sequencing technologies). The categorizations refer to the aspect of sequencing performance to which the technology and/or its implementation in a specific instrument are primarily geared. These estimates were made at the time of publication, and the pace at which the field is moving makes it likely that they will be quickly outdated.

Next Generation Sequencing: Illumina
 a Illumina's library-preparation work flow

 Incorporate Detect Deblock Cleave fluor
 erminator

Next Generation Sequencing: Illumina
 a

Prepare genomic DNA sample
Randomly fragment genomic DNA and ligate adapters to both ends of the fragments.

Attach DNA to surface

Bind single-stranded fragments randomly to the inside surface of the flow cell channels.

Next Generation Sequencing: Illumina

First chemistry cycle: determine first base

To initiate the first sequencing cycle, add all four labeled reversible terminators, primers, and DNA polymerase enzyme to the flow cell.

Before initiating the

Image of first chemistry cycle
After laser excitation, capture the image of emitted fluorescence from each cluster on the flow cell. Record the identity of the first base for each cluster.
next chemistry cycle The blocked 3' terminus and the fluorophore from each incorporated base are removed.

Sequence read over multiple chemistry cycles
Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at a time.

Paired-end and mate paired libraries

b
 b IDUIIDUIID

Ligate adapters

Generate clusters

Sequence first end

Regerate Regerate
clusters and sequence paired end

Emulsion PCR for clonal amplification

Used in next-gen sequencing by Roche/454 and Life/Applied Biosystems platforms

Anneal sstDNA to an excess of DNA capture beads

Emulsify beads and PCR reagents in water-in-oil microreactors

Clonal amplification occurs inside microreactors

Break microreactors and enrich for DNA-positive beads

Pyrosequencing

1-2 million template beads loaded into PTP wells

TCAGGTTTTTTAACAATCAACTTTTTGGATTAAAATGTAGATAACTG CATAAATTAATAACATCACATTAGTCTGATCAGTGAATTTAT

Ion Torrent pH based sequencing

b

Single-molecule sequencing: Pacific Biosystems

Nature Rev. Genet. (2010) 11:31-46

Single-molecule sequencing: Pacific Biosystems

Nanopore sequencing

Nanopores can be

- biological: formed by a pore-forming protein in a membrane such as a lipid bilayer
- solid-state: formed in synthetic materials such as silicon nitride or graphene
- hybrid: formed by a pore-forming protein set in synthetic material

Features of next-gen sequencing

- Short reads (35 bp - 400 bp)
- Millions of reads per run $\left(10^{7}-5 \times 10^{8}\right)$
- Higher error rate per basepair raw
- No cloning in E. coli
- Huge amounts of data per experiment (20 GB primary/2 TB raw)
- Large data storage and computational analysis requirements

- Genome sequencing and variant discovery
- de novo assembly of bacterial and other small genomes
- DNA-protein interactions
- Chromatin and epigenetics

ChIP-seq

Methyl-seq

- RNA expression levels (profiling)

RNA-seq

- ncRNA/small RNA discovery and profiling
- Metagenomics
- Sequencing extinct species (museomics)

Table 1 Applications of next-generation DNA sequencing

Gene expression profiling with RNA-seq

Nature Methods Supplement (2009) 6: S22

Metagenomics

A

B

E

PLoS Comput. Biol. (2010) 6(2): e1000667

Finding copy number variants with NGS

Deletions and amplifications with paired end sequencing

Whole-genome sequencing to identify disease gene

Genotyping to confirm disease allele

A SH3TC2 Genotype and Phenotype

Chromatin immunoprecipitation (ChIP)-seq

$X^{*}=$ Windows-only GUI or cross-platform command line interface
$\mathrm{X}^{\star *}=$ optional if sufficient data is available to split control data
$X^{\prime}=$ method exludes putative duplicated regions, no treatment of deletions

A

Sequence of the human genome
 One dimension

ATCGATCCGTCCGAGACCTAGTC GATCGATCGCCAAATCGATCGGA TCGACTGTCTTAGCGCTAGCCGA GATCTGCTAGGTCGTGTGACAAA

1 Crosslinkinteracting
protein-DNA $\begin{gathered}2 \text { Sonicate } \\ \text { chromatin }\end{gathered} \quad 3$ immuno- $\begin{gathered}\text { precipitation }\end{gathered} 4$ Attach

B Genomic rearrangements by paired-end sequencing Two dimensions

D Longitudinal sequencing

Table I The various NGS assays employed in the ENCODE project to annotate the human genome

Feature	Method	Description	Reference
Transcripts, small RNA and transcribed regions	RNA-seq	Isolate RNA followed by HT sequencing	(Waern et al, 2011)
	CAGE	HT sequencing of 5'-methylated RNA	(Kodzius et al, 2006)
	RNA-PET	CAGE combined with HT sequencing of poly-A tail	(Fullwood et al, 2009c)
	ChIRP-Seq	Antibody-based pull down of DNA bound to lncRNAs followed by HT sequencing	(Chu et al, 2011)
	GRO-Seq	HT sequencing of bromouridinated RNA to identify transcriptionally engaged PolII and determine direction of transcription	(Core et al, 2008)
	NET-seq	Deep sequencing of 3^{\prime} ends of nascent transcripts associated with RNA polymerase, to monitor transcription at nucleotide resolution	(Churchman and Weissman, 2011)
	Ribo-Seq	Quantification of ribosome-bound regions revealed uORFs and non-ATG codons	(Ingolia et al, 2009)
Transcriptional machinery and protein-DNA interactions	ChIP-seq	Antibody-based pull down of DNA bound to protein followed by HT sequencing	(Robertson et al, 2007)
	DNAse footprinting	HT sequencing of regions protected from DNAse1 by presence of proteins on the DNA	(Hesselberth et al, 2009)
	DNAse-seq	HT sequencing of hypersensitive non-methylated regions cut by DNAse 1	(Crawford et al, 2006)
	FAIRE	Open regions of chromatin that is sensitive to formaldehyde is isolated and sequenced	(Giresi et al, 2007)
	Histone modification	ChIP-seq to identify various methylation marks	(Wang et al, 2009a)
DNA methylation	RRBS	Bisulfite treatment creates C to U modification that is a marker for methylation	(Smith et al, 2009)
Chromosomeinteracting sites	5C	HT sequencing of ligated chromosomal regions	(Dostie et al, 2006)
	ChIA-PET	Chromatin-IP of formaldehyde cross-linked chromosomal regions, followed by HT sequencing	(Fullwood et al, 2009a)

www.illumina.com

The HiSeq $X^{\text {тм }}$ Ten, composed of $10 \mathrm{HiSeq} X$ Systems, is the first sequencing platform that breaks the $\$ 1000$ barrier for a $30 x$ human genome.

Raw NGS data (FASTQ file)

4 lines per sequence

```
@HWI-ST1097:104:D13TNACXX:4:1101:18100:2240 1:Y:0:CAACTA
TGAGGCAAACCCAACTTATATGGGTCAATATAATGGTAAAGAAGGTTTAAA\longleftarrow Sequence
+ \leftarrowOptional Read ID
=7=<+2<AACAA<A+<A97AB7<7+2?ABBA@@B4A1?7A<*::;00=AAA \longleftarrow Base quality
@HWI-ST1097:104:D13TNACXX:4:1101:18326:2181 1:N:0:CAACTA SCores
CATACATCAAATTTTTACAAAACTCGAATCTCGGTGGTATTATTCCGACAG
+
CCCFFFFFHHHHGJJJIIIGJGHJIHGIGHGDEIGIHFFHIIIIGG>?DH6
```

@HWI-ST1097:104:D13TNACXX:4:1101:18259:2224 1:N:0:CAACTA
CAGGTGGAGGGACCGGGTAGTGCCGGATCAAGTAGTGTAGTATTTATTGTA
$+$
@C@DBDFDHHGHHI<DHGH1CFGHIIBHBIIIEHIIGFDGAGE>GGHGC@E
@HWI-ST1097:104:D13TNACXX:4:1101:18256:2243 1:N:0:CAACTA
GATAGGTTTGTATGATCTAATTGGTGGCAACTGGGTCCCTCCCATCCTAGC
$+$
@@@FFFDDDFDFHGIJGIJJIICGHIJJAHGGGHGBFGGIHIFGGEAADHG
@HWI-ST1097:104:D13TNACXX:4:1101:18728:2073 1:N:0:CAACTA
TTTСТTTCGAAGGAACCССТСТTTСТСАТGСТTTGTGСТАСТСТGAGGCAA
$+$
@@@DDDDDHHD1<AEHGGGG<FHGIEHEH9CDDA*? ? $<$ DDHHAG<?1?1?
Filesize: few hundred Mb to 1 or $2 \mathrm{~Gb}, \sim 100$ million lines
for one experiment!

Encoding quality scores

Quality character	! "\#\$\% ' () *+,-./0123456789: ; <=> ? @ABCDEFGHI				
	\|				
ASCII Value	33	43	53	63	73
```Base Quality (Q) (ASCII-33)```	0	10	20	30	40

## Probability of error $=10^{-Q / 10}$

This is a Phred score, a standard measure of sequencing quality

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	$90 \%$
20	1 in 100	$99 \%$
30	1 in 1000	$99.9 \%$
40	1 in 10000	$99.99 \%$
50	1 in 100000	$99.999 \%$

## NGS aligners



## NGS aligners

Mapper	O.S.	Seq. Plat.	Input	Output	Min. RL	$\begin{aligned} & \text { Max. } \\ & \text { RL } \\ & \hline \end{aligned}$	Mismatches	Indels	Gaps	Splicing
BFAST	Linux,Mac	I, So, 4, Hel	(C)FAST(A/Q)	SAM TSV		*	Y	Y	Y	N
Blat	Linux,Mac	N	FASTA	TSV BLAST	11	5000K	Score	Score	Y	De novo
Bowtie	Linux,Mac,Win dows	I,So,4,Sa,P	(C)FAST(A/Q)	SAM TSV	4	1K	Score	Score	N	N
Bowtie2	Linux,Mac,Win dows	1,4,Ion	FASTA/Q	SAM TSV		5000K	Score	Score	Y	N
BS-Seeker2	Linux, Unix, Mac	I	$\begin{aligned} & \text { FASTA/Q, } \\ & \text { qseq } \end{aligned}$	SAM BAM	10	200	Score	Score	Y	N
BWA	Linux,Mac,Win dows	I,So,4,Sa, P	FASTA/Q	SAM	4	200	Y		Y	N
CloudBurst	Linux,Mac,Win dows	N	FASTA	TSV		1K	Y	Y	Y	N
ELAND	Linux, Unix, Mac	1	FASTA		15	150		Score	N	N
GMAP	Linux,Unix,Ma   c,Windows	I,	FASTA/Q	SAM GFF Native	8	*	Y	Y	Y	De novo
MapReads	Linux,Mac,Win dows	So	FASTA/Q	TSV	10	120	Score		N	N
MAQ	Linux,Mac	I, So	(C)FAST(A/Q)	TSV	8	63	Y	Y	N	N
MOSAIK	Linux,Unix,Ma   c,Windows	$\begin{aligned} & \text { I,So, } \\ & \text { 4,Sa,Hel,Ion,P } \end{aligned}$	(C)FAST(A/Q)	BAM	15	1000	Y	Y	Y	N
mrFAST	Linux,Unix	1	FASTA/Q	SAM DIVET	25	1000	Score		N	N
Novoalign( CS)	Linux	I,So,4,Hel,Ion	(C)FAST(A/Q) Illumina	SAM Native	1	250	Y	Y	Y	Lib
RMAP	Linux,Mac	1,So,4	(C)FAST(A/Q)	BED	11	10K	Y		N	N
SHRiMP2	$\begin{aligned} & \text { Linux, Unix, } \\ & \text { Mac } \\ & \hline \end{aligned}$	I, So, 4	FASTA/Q	SAM	30	1K	Y	Score	N	N
SOAP2	Linux	1	FASTA/Q	SAM TSV	27	1K			Y	N
SOAPSplice	Linux,Mac	1,4	FASTA/Q	TSV	13	3 K		5	Y	De novo
SSAHA2	Linux,Mac	1,4,Sa	FASTA/Q	SAM		48K	Score	Score	N	N
TopHat 2	Linux,Mac	1	FASTA/Q	BAM					N	De novo
VMATCH	Linux,Mac	N	FASTA	TSV			Score	Score	Y	N

## FASTQC

Quality scores across all bases (Sanger / Illumina 1.9 encoding)


## Aligning to a reference genome



## Variant calling with GATK

## NGS DATA PROCESSING



VARIANT DISCOVERY AND GENOTYPING


## INTEGRATIVE ANALYSIS



# Variant calling 

		1 kb			
Chr 1	159,066,500	159,067,000	159,067,500	159,068,000	159,068,500

## A/G



## RNA-seq alignments



Processed mRNA



## What lies ahead...?

- End-to-end genome sequencing
- Sequencing entire pedigrees
- Sequencing within intact cells
- Single-cell genomes, transcriptomes, epigenomes
- Protein-protein interactions by sequencing
- Cell fate mapping
- Single molecule protein sequencing

