
BIO 337 

Tuesday, Feb 18 2014 



Fred Sanger 

Nobel Prize in Chemistry, 1958 for protein sequencing (insulin) 
 
Nobel Prize in Chemistry, 1980 for DNA sequencing 

13 August 1918 – 19 November 2013 



Dideoxy sequencing 



Automated dye-terminator sequencing 
 
4-fluorescently labelled dideoxy dye terminators 
ddATP 
ddGTP 
ddCTP 
ddTTP 

pool and load in a single well or capillary 
• scan with laser + detector specific for each dye 
• automated base calling 
• very long reads (~ 1000 bases)/run 



February 2001 October 2010 



Functional genomics by sequencing 

Used sequencing chemistry invented by Fred Sanger in 1977 

In the last 3-5 years, radically new sequencing approaches 
have been invented and employed for functional genomics, 
termed 
 
•  Next-generation sequencing (NGS, 2nd, 3rd generation) 
•  Ultra high-throughput sequencing 
•  Single-molecule sequencing 
•  Deep sequencing 
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what we see with different platforms and dif-
ferent pipelines.”

The extent to which such problems can 
be solved with biochemical and algorithmic 
advances remains a subject of debate. For exam-
ple, ‘mate-pair’ sequencing strategies enable 
researchers to analyze cloned ends from large 
genomic fragments; by knowing the size of the 
original insert, one can extrapolate the distance 
between the two sequences and thereby map 
both data points. “We can do library preps that 
have 2,000 or 10,000 or 100,000 base-pair paired 
ends and get all of that structural information,” 
says Rothberg. However, these methods can 
also be time consuming and unreliable. “It’s 
very manual currently,” says John McPherson, 
director of genome technologies at the Ontario 
Institute for Cancer Research in Toronto. “It also 
requires a fair amount of input material, because 
it’s rather inefficient.”

Full reads from intact, ultra-long inserts could 
therefore be a potent resource for structural 
variant detection, de novo genome assembly 
and high-precision mapping of alternate splic-
ing in transcriptomic analyses. Indeed, this is a 
key advantage of the technology developed by 
Pacific Biosciences of Menlo Park, California. 
Their first-generation PacBio RS system burst 
onto the scene in 2010, using chips riddled with 
tiny ‘zero-mode waveguides’, which track indi-
vidual DNA polymerase molecules in real time 
as they synthesize complementary strands to 
long, circularized template molecules. A pio-
neer in single-molecule sequencing, the com-
pany was lauded as a top technology innovator 
in multiple publications in 2010, but this has 
failed to translate into a thriving business. Part 
of the reason was that the instrument was large 
and expensive and slow to sell in an uncertain 
funding environment, especially given reports of 
error rates far higher than other NGS platforms. 
Accordingly, PacBio’s stock plummeted by more 
than 80% last year and the company was forced 
to lay off over 25% of its workforce. Some ana-
lysts see an uncertain future for the company, 
hearing echoes of Helicos Biosciences—the 
Cambridge, Massachusetts–based company 
that produced the first commercial single-
molecule sequencing instrument in 2009, but 
subsequently underwent a slow-motion col-
lapse. The Heliscope instrument sold poorly 
and was eventually pulled from the market, 
and an unsuccessful outcome in a costly patent 
infringement lawsuit against Illumina may spell 
the company’s end.

However, PacBio may yet see a renaissance—
the PacBio RS has steadily won many support-
ers at leading sequencing centers who believe 
that it just took time to take advantage of the 
platform’s undeniable assets and for PacBio to 
optimize platform performance. “It’s just part 

As one might expect, Illumina has also pre-
pared a major upgrade to the HiSeq. Although 
the HiSeq 2500 is by itself a major investment, 
current 2000 users can upgrade for just $50,000, 
a compelling argument for moving to the new 
technology, given that the instrument can pro-
duce 120 Gb of sequence in just over a day or as 
much as 600 Gb of data over the course of 5 days, 
depending on the operation mode and user 
needs. With both instruments poised to make a 
big splash, it seems unlikely that this battle will 
be resolved any time soon—although users are 
likely to continue to benefit from the competi-
tion. “It’s all about getting things faster, getting 
quicker results,” says Swerdlow.

Taking read-lengths from Carver to Tolstoy
Life Tech and Illumina have built consider-
able momentum for their platforms as tools 
for resequencing known genomes as well as de 
novo assembly of genomic scaffolds—but these 
instruments also have notable limitations. For 
example, many genomic segments may be 
intractable due to repetitive stretches, pseu-
dogenes or large structural rearrangements, 
which can be challenging to map with 100- to 
300-base reads. “It’s an information problem, 
where it’s easy to get fooled by short reads about 
exactly how many copies of a repeat there are,” 
says Michael Schatz, a bioinformatician at the 
Cold Spring Harbor Laboratory in New York. 
“And if you’re looking at indels of 10 or 15 bases, 
there can be a huge discrepancy in terms of 

study—rendering the comparison invalid. And 
indeed, many data quality issues are steadily 
being addressed. “It’s definitely improved over 
where we were a year or even 6 months ago,” 
says Mason, “[in] both the informatics and base-
calling accuracy as well as the underlying chem-
istry.” Meanwhile, Illumina has pushed forward 
with improvements to MiSeq that deliver even 
more data per run, with read-lengths of up to 
500 bases (two 250-base reads from either end 
of a fragment), in roughly the same time frame 
as the current generation’s 300-base reads.

Some sequencing centers with dedicated 
Illumina-oriented workflows have hesitated 
to adopt Ion Torrent technology, but the Ion 
Proton may lead some to reconsider. The 
system itself costs roughly $250,000, which 
includes the instrument as well as the accom-
panying server and sample preparation sys-
tems—the chips needed for each run, however, 
cost only $1,000 each. The first-generation 
‘Proton I’ chip enables sequencing of 10 Gb in 
2–4 hours, but the second-generation Proton 
II chip will feature far more sensors per chip, 
with a slated sequencing throughput of 100 Gb 
in a 2-hour run. Accordingly, many centers are 
keen to try the platform for themselves and see 
if it delivers as promised. “If they can meet their 
benchmarks in terms of being able to generate 
a 30× human genome for around $1,000 worth 
of consumables in a reasonable amount of time, 
that’s a very compelling application for us,” says 
Tallon.

Table 1  Next gen sequencing developers
Company Technology overview On market?

Complete Genomics Optical analysis of arrays of ‘DNA nanoballs’ Yes

Genapsys 
Redwood City, California

Electronic detection of thermal/pH changes accompanying 
nucleotide addition

No

Genia Technologies Pairing biological nanopores with semiconductor detection No

GnuBio Microfluidic system analyzes DNA nanodroplets with  
fluorescent primers

Alpha testing

Illumina Sequencing by synthesis with fluorescently labeled reversible 
terminators

Yes

Lasergen 
Houston

Sequencing by synthesis with fluorescently labeled reversible 
terminators

No

Life Technologies  
(Ion Torrent)

Semiconductor sensor arrays detect protons released by  
nucleotide addition

Yes

NabSys 
Providence, Rhode Island

Single-molecule analysis revealing genomic location of 
sequencing probes

No

Noblegen Biosciences Optical detection of ‘expanded’ DNA templates passing  
through synthetic pores

No

Oxford Nanopore 
Technologies

Detects changes in current as DNA strands pass through  
protein nanopores

No

Pacific Biosciences Uses ‘zero-mode waveguides’ to optically detect real-time 
nucleotide addition

Yes

Qiagen (Intelligent Bio-
Systems)

Sequencing by synthesis with fluorescently labeled reversible 
terminators

No

Roche (454) Pyrosequencing of template-laden beads prepared by emulsion 
PCR

Yes

Stratos Genomics 
Seattle

Optical sequencing of fluorescently labeled, synthetically 
expanded templates

No
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equivalent of massively parallel sequencing for 
amino acid polymers has yet to be developed 
(Table 3). Possible solutions are analogous to 
next-generation DNA sequencing technolo-
gies, for example, nanopores49 or identifying 
and counting single protein molecules spread 
on a two-dimensional surface50.

Immunogenomics uses massively paral-
lel sequencing to characterize complex T-cell 
receptor and B-cell receptor repertoires in 
samples from individuals, with high depth 
and resolution51–54. Sequencing immune rep-
ertoires might make it possible to identify the 
acute response to diseases or malignancies, to 
gauge the status of the immune system in the 
context of immunodeficiency, transplantation 
or normal aging and to track malignancies of 
the hematopoietic system itself. Furthermore, 
profiling immune memory could identify 
markers of past exposures and successful vac-
cinations55. To achieve their potential, such 
methods must evolve toward reliably quantify-

ing the abundances of an extraordinarily diverse population of immune 
receptor genes. Technical challenges to achieving this include the enor-
mous dynamic range of the immune repertoire as well as the fact that 
the two chains of individual T-cell receptors and B-cell receptors are 
unlinked in the genome and transcriptome.

Cancer cells exhibit pronounced genomic instability56. Differences 
between an organism’s genome and a derivative cancer genome are read-
ily determined by sequencing, albeit with the previously mentioned dif-
ficulties in detecting many relevant types of variation. Sequencing-based 
characterization of cancer genomes, epigenomes and transcriptomes 
is already informing the basic biology of specific cancer types, and the 
resulting insights may eventually provide a more powerful classification 
of human cancers than anatomy or histology. However, there is also 
remarkable heterogeneity among tumors ostensibly of the same type, 
and fully understanding the genetic basis of cancer is likely to require 
the characterization of extremely large numbers of cancer samples. 
Nonetheless, there is considerable enthusiasm about the use of genomic 
information to directly facilitate therapeutic decision-making for can-
cer patients57. For example, there are several reports of whole-genome 
sequencing of tumor DNA from individual patients yielding informa-
tion that has altered clinical decisions58,59. Deep sequencing may also 
enable noninvasive cancer-screening methods, for instance, by examin-
ing circulating tumor cells60 or stool61. Detailed dissection of genetic 
heterogeneity in tumors through techniques such as ‘single-nucleus 
sequencing’ coupled with lineage analysis62 may also lead to a better 
understanding of cancer evolution as well as to improved diagnostics 
and prognostics. Of note, the needs of clinical laboratories in this area, 
for example, those seeking to implement next-generation sequencing 
of actionable cancer genes, are driving the market to offer instruments 
particularly geared to their requirements, for example, the development 
of ‘bench-top’ sequencers (Table 2 and Box 1).

Sequencing-based surveys of microbial communities (including shot-
gun metagenome sequencing and profiling of signature 16S rDNA), 
both in the human body63,64 and in environmental niches ranging from 
whale falls to acid mines, are overturning our world view of the number 
and breadth of species associated with humans and the environment. 
Genome sequencing of bacterial65,66 and viral67 pathogens (including 
of viral quasi-species68) has been used to detect the microorganisms 
responsible for disease outbreaks as well as to track the emergence and 

recessive disorders has been demonstrated and may eventually become 
routine30. After conception, an appreciable fraction of maternal cell–
free DNA during pregnancy can be derived from the fetus. As such, 
aneuploidies can now be noninvasively detected by next-generation 
sequencing31,32, and clinical tests implementing this are gaining rapid 
adoption. Furthermore, by combining haplotype-resolved parental 
genome sequencing and maternal cell–free DNA sequencing, we have 
recently demonstrated noninvasive, whole-genome sequencing of a 
human fetus using samples obtained noninvasively from parents in the 
second trimester33 (J.S. and colleagues). Although improvements with 
respect to cost, accuracy and variant interpretation are necessary, such 
methods may eventually enable the noninvasive, prenatal diagnosis of 
many, if not most, Mendelian disorders.

Characterizing differences between cells within an individual. Recent 
studies have applied sequencing to reveal differences in regulatory state 
between different cell types in an organism, the somatic genetic variation 
that defines the immune repertoire, somatic differences between the 
genomes of cancerous and normal cells, and the microorganisms that 
colonize the human body.

Cell-to-cell differences in the regulatory state of a genome under-
lie differences in transcription, translation and cellular phenotype. 
Epigenetics traditionally refers to the study of biochemical changes in 
the immediate vicinity of DNA, including modifications of the DNA 
itself (for example, DNA methylation) and modifications of the histone 
proteins that package DNA into chromatin. Such epigenetic marks, as 
well as chromatin accessibility and transcription factor binding, directly 
involve DNA and are thus readily detected using sequencing-based 
assays34–37. Current challenges in applying sequencing to query the epig-
enome include specificity (for example, producing effective antibodies 
for each histone modification or transcription factor), adapting proto-
cols to very low amounts of starting material and measuring the dynam-
ics of epigenetic regulation rather than obtaining static snapshots38. 
Transcriptional processes have been interrogated in exquisite detail 
by sequencing-based methods for profiling steady-state expression39, 
allele-specific expression40, nascent transcription41, secondary struc-
ture formation42, alternative splicing43, RNA editing44, protein bind-
ing45,46 and degradation47. Translation of mRNA into protein can also 
be monitored via ribosomal profiling48. However, the methodological 

Table 2  Next-generation DNA sequencing instruments
Cost per basea Read length (bp)b Speed Capital costc

Minimum cost per base

Complete Genomics Low Short 3 months None (service)

HiSeq 2000 (Illumina) Low Mid 8 days +++++++

SOLiD 5500xl (Life Technologies) Low Short 8 days +++

Maximum read length

454 GS FLX+ (Roche) High Long 1 day +++++

RS (Pacific Biosciences) High Very long <1 day +++++++

Maximum speed, minimum capital cost and minimum footprint

454 GS Junior (Roche) High Mid <1 day +

Ion Torrent PGM (Life Technologies) Mid Mid <1 day +

MiSeq (Illumina) Mid Long 1 day +

Combined prioritization of speed and throughput

Ion Torrent Proton (Life Technologies) Low Mid <1 day ++

HiSeq 2500 (Illumina) Low Mid 2 days ++++++++
a‘Low’ is < $0.10 per megabase, ‘mid’ is in-between and ‘high’ is > $1 per megabase. b‘Short’ is < 200 bp, ‘mid’ is 200–400 
bp, ‘long’  is > 400 bp and ‘very long’ is > 1,000 bp. cEach “+” corresponds to ~$100,000. We list only commercialized instru-
ments that can be purchased and for which performance data are publically available (as opposed to a comprehensive list of 
companies developing next-generation sequencing technologies). The categorizations refer to the aspect of sequencing perfor-
mance to which the technology and/or its implementation in a specific instrument are primarily geared. These estimates were 
made at the time of publication, and the pace at which the field is moving makes it likely that they will be quickly outdated.

REV IEW
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(a) Illumina R© library-construction process. (b) Illumina cluster generation by bridge amplification. (c) Sequencing by synthesis with
reversible dye terminators.

synthesized strands by denaturation and regenerates the clusters by performing a limited bridge
amplification to improve the signal-to-noise ratio in the second read. After the amplification step,
the opposite ends of the fragments are released from the flow cell surfaces by a different chemical
cleavage reagent (corresponding to a labile group on the reverse adapter), and the fragments are
primed with the reverse primer. Sequencing proceeds as described above. All of these steps occur
on-instrument with the flow cell in place and without manual intervention, so the correlation of
position from forward (first) to reverse (second) reads is maintained and yields a very high read-pair
concordance upon read alignment to the reference genome.

Illumina data have an error model that is described as having decreasing accuracy with
increasing nucleotide addition steps. When errors occur, they are predominantly substitution
errors, in which an incorrect nucleotide identity is assigned to the base. The error percentage
of most Illumina reads is approximately 0.5% at best (i.e., 1 error in 200 bases). Sources of noise
include (a) phasing, wherein increasing numbers of fragments fall out of phase with the majority
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Reversible dideoxy 
dye terminator 

Next Generation Sequencing: Illumina 



Next Generation Sequencing: Illumina 
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Next Generation Sequencing: Illumina 
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Paired-end and mate paired libraries 
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Figure 2
Comparison between (a) paired-end and (b) mate-pair sequencing library-construction processes.

certainty can be obtained from longer read lengths, and several next-generation sequencers have
offered increases in read length over time and refinement of their signal-to-noise characteristics
to allow this certainty. Another fundamental improvement has resulted from so-called paired-end
sequencing, namely producing sequence data from both ends of each library fragment. Read pairs
can be obtained by one of two mechanisms: (a) paired ends or (b) mate pairs (Figure 2).

In paired-end sequencing, a linear fragment with a length of less than 1 kb has adapter sequences
at each end with different priming sites on each adapter. The sequencing instrument is designed to
sequence from one adapter priming site by use of the stepwise sequencing described above; then,

292 Mardis

A
nn

ua
l R

ev
ie

w
 o

f A
na

ly
tic

al
 C

he
m

is
try

 2
01

3.
6:

28
7-

30
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 U
ni

ve
rs

ity
 o

f T
ex

as
 - 

A
us

tin
 o

n 
02

/1
6/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Annu. Rev. Anal. Chem. (2013) 6:287–303 



Emulsion PCR for clonal amplification 

Used in next-gen sequencing by Roche/454 and Life/Applied Biosystems platforms 



Pyrosequencing 

Nature Reviews | Genetics
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Figure 3 | Next-generation sequencing technologies that use emulsion 
PCR. a | A four-colour sequencing by ligation method using Life/APG’s 
support oligonucleotide ligation detection (SOLiD) platform is shown. 
Upon the annealing of a universal primer, a library of 1,2-probes is added. 
Unlike polymerization, the ligation of a probe to the primer can be 
performed bi-directionally from either its 5 -PO

4
 or 3 -OH end. Appropriate 

conditions enable the selective hybridization and ligation of probes to 
complementary positions. Following four-colour imaging, the ligated 
1,2-probes are chemically cleaved with silver ions to generate a 5 -PO

4
 

group. The SOLiD cycle is repeated nine more times. The extended primer 
is then stripped and four more ligation rounds are performed, each with 
ten ligation cycles. The 1,2-probes are designed to interrogate the first (x) 
and second (y) positions adjacent to the hybridized primer, such that the 
16 dinucleotides are encoded by four dyes (coloured stars). The probes also 
contain inosine bases (z) to reduce the complexity of the 1,2-probe library 
and a phosphorothiolate linkage between the fifth and six nucleotides of 
the probe sequence, which is cleaved with silver ions106. Other cleavable 
probe designs include RNA nucleotides107,108 and internucleosidic 

phosphoramidates107, which are cleaved by ribonucleases and acid, 
respectively. b | A two-base encoding scheme in which four dinucleotide 
sequences are associated with one colour (for example, AA, CC, GG and TT 
are coded with a blue dye). Each template base is interrogated twice and 
compiled into a string of colour-space data bits. The colour-space reads are 
aligned to a colour-space reference sequence to decode the DNA 
sequence. c | Pyrosequencing using Roche/454’s Titanium platform. 
Following loading of the DNA-amplified beads into individual PicoTiterPlate 
(PTP) wells, additional beads, coupled with sulphurylase and luciferase, are 
added. In this example, a single type of 2 -deoxyribonucleoside 
triphosphate (dNTP) — cytosine — is shown flowing across the PTP wells. 
The fibre-optic slide is mounted in a flow chamber, enabling the delivery of 
sequencing reagents to the bead-packed wells. The underneath of the 
fibre-optic slide is directly attached to a high-resolution charge-coupled 
device (CCD) camera, which allows detection of the light generated from 
each PTP well undergoing the pyrosequencing reaction. d | The light 
generated by the enzymatic cascade is recorded as a series of peaks called 
a flowgram. PP

i
, inorganic pyrophosphate.
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group. The SOLiD cycle is repeated nine more times. The extended primer 
is then stripped and four more ligation rounds are performed, each with 
ten ligation cycles. The 1,2-probes are designed to interrogate the first (x) 
and second (y) positions adjacent to the hybridized primer, such that the 
16 dinucleotides are encoded by four dyes (coloured stars). The probes also 
contain inosine bases (z) to reduce the complexity of the 1,2-probe library 
and a phosphorothiolate linkage between the fifth and six nucleotides of 
the probe sequence, which is cleaved with silver ions106. Other cleavable 
probe designs include RNA nucleotides107,108 and internucleosidic 
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respectively. b | A two-base encoding scheme in which four dinucleotide 
sequences are associated with one colour (for example, AA, CC, GG and TT 
are coded with a blue dye). Each template base is interrogated twice and 
compiled into a string of colour-space data bits. The colour-space reads are 
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sequence. c | Pyrosequencing using Roche/454’s Titanium platform. 
Following loading of the DNA-amplified beads into individual PicoTiterPlate 
(PTP) wells, additional beads, coupled with sulphurylase and luciferase, are 
added. In this example, a single type of 2 -deoxyribonucleoside 
triphosphate (dNTP) — cytosine — is shown flowing across the PTP wells. 
The fibre-optic slide is mounted in a flow chamber, enabling the delivery of 
sequencing reagents to the bead-packed wells. The underneath of the 
fibre-optic slide is directly attached to a high-resolution charge-coupled 
device (CCD) camera, which allows detection of the light generated from 
each PTP well undergoing the pyrosequencing reaction. d | The light 
generated by the enzymatic cascade is recorded as a series of peaks called 
a flowgram. PP

i
, inorganic pyrophosphate.
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Ion Torrent pH based sequencing 
AC06CH13-Mardis ARI 13 May 2013 16:4
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Figure 4
(a) Structure of the Ion Torrent Ion Chip used in pH-based sequencing. (b) pH sensing of nucleotide incorporation.

the chip, thereby providing a metric of single-base incorporation signal strength with which to
calibrate the remaining responses during the ensuing incorporation steps.

Because the Ion Torrent sequencer uses native nucleotides for the sequencing reaction, there
are no sources of noise akin to those identified for Illumina sequencing due to fluorescence or
blocking groups on the reactants. Rather, noise accumulates due to phasing wherein not all the frag-
ments are extended by nucleotide incorporation at each step. This effect is especially pronounced
at sites in the library fragments with multiple bases of the same identity (so-called homopolymers).
Coincidentally, the error model of Ion Torrent sequencing is defined largely by insertion or dele-
tion errors that are also most prevalent at homopolymers. Here, the effect is most pronounced
as the length of the homopolymer increases mainly due to loss of quantitation and ultimately
saturation of the pH detector. Substitution errors also occur, albeit at very low frequency, and
may be due to carryover effects from the previous incorporation cycle. Overall, the error rate of
this instrument on a per read basis averages approximately 1% (i.e., 1 in 100 bases).

During the 2 years since the Ion Torrent was introduced, the average read length obtained
has increased from 100 to 200 bp, produced as single-end reads. Unlike reversible terminator
sequencing, the use of native nucleotides and the different sequences present on each bead loaded
in the chip mean that incorporation rates differ from one bead to the next by incorporation cycle and
according to sequence. As a result, a wide range of read lengths are obtained from any sequencing
run, and this range increases as the total number of incorporation cycles increases. Throughput
has increased over time, from 10 Mb per run average to 1 Gb per run average, by coupling longer
reads with higher well density on the Ion Chip, which allows more beads to be sequenced per run.
Each run requires approximately 2 h to complete; an intermediate series of washes requires an
additional hour before the instrument can perform another run. Reaction volume miniaturization
and the mass production of the Ion Chip using standard semiconductor techniques make this
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Single-molecule sequencing: Pacific Biosystems 

Nature Rev. Genet. (2010) 11:31-46 



Single-molecule sequencing: Pacific Biosystems 
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Nanopore sequencing 

www.nanoporetech.com 

Nanopores can be 
 
•    biological: formed by a pore-forming protein in a membrane such as a lipid bilayer 
•    solid-state: formed in synthetic materials such as silicon nitride or graphene 
•    hybrid: formed by a pore-forming protein set in synthetic material 



Features of next-gen sequencing 

•  Short reads (35 bp – 400 bp) 

•  Millions of reads per run (107 – 5x108) 

•  Higher error rate per basepair raw 

•  No cloning in E. coli 

•  Huge amounts of data per experiment (20 GB 
primary/2 TB raw) 

•  Large data storage and computational analysis 
requirements 



NGS data 

Variants Assembly Counting 

RNA-seq 
ChIP-seq 
etc. 

Cancer genomes 
Genetic variation 
etc. 

New genomes, 
transcriptomes 
etc. 
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generation’ methods of obtaining contiguity 
information at different scales. This might be 
as simple as including data from alternative 
sequencing platforms with a higher cost-per-
base but substantially longer read lengths  
(Table 2 and Box 1). It could also include 
additional sources of contiguity information 
at a diversity of scales, such as long-distance 
mate-paired reads, hierarchical (that is, clone 
by clone) sequencing, dilution-pool sequenc-
ing, optical sequencing and genetic maps. As 
sequencing technologies continue to mature, 

a truly complete reference assembly of the human genome will be an 
increasingly realistic ambition (Table 3).

Cataloging variation between individuals of a species. Genetic varia-
tion within a species underlies a substantial fraction of phenotypic 
variation—for example, the genetic contribution to human disease 
risk. Fortunately, using sequencing to identify genetic variation 
between individuals of the same species is considerably easier than 
assembling a reference genome for the species in the first place, as it 
only requires the mapping of reads to a reference assembly while allow-
ing for differences owing to polymorphisms or sequencing errors1,14. 
With sufficient coverage, one can then identify certain types of genetic 
variation with high sensitivity and specificity, for example, single-
nucleotide polymorphisms15.

One challenge for the future will be to develop techniques that enable 
more complete maps of genetic variation. For example, current methods 
have limited sensitivity and specificity for detecting small insertions and 
deletions, tandem repeat expansions, transposition events, copy-number 
variation, copy-neutral rearrangements and all types of variation within 

the Genome 10K project aims to produce a de novo assembly for each of 
over 10,000 vertebrate species10.

Nevertheless, the de novo sequencing of a complete genome (that is, a 
gapless, errorless, end-to-end assembly) is far from routine. New tech-
nologies are required to facilitate the sequencing of repetitive genomic 
regions (including transposons, satellite sequences, segmental duplica-
tions, ribosomal sequences and the like), which have largely confounded 
sequencing technologies to date. These regions are difficult to sequence 
even in relatively small genomes, such as that of Saccharomyces cerevi-
siae. For example, the current 12-Mb genome assembly of S. cerevisiae 
omits the 1-megabase rDNA locus.

Repetitive regions are particularly challenging for sequencing 
because identical reads may be generated from multiple locations 
in the genome. Despite advances in assembly algorithms11,12, the 
quality of de novo genome assemblies based purely on shotgun reads 
continues to fall short of the assemblies that can be achieved by hier-
archical, clone-based Sanger sequencing13. It is unlikely that this 
gap can be overcome simply by increasing the amount of sequence 
data entering the assemblies. Instead, what are required are ‘next-
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Figure 1  Where we are headed: a road map of 
sequencing science. The earliest sequencing 
projects focused on creating ‘reference’ genomes 
for individual species of interest. With new 
technologies, such projects can now be taken on 
for entire taxa, even when some of their members 
are extinct (top left). Next-generation sequencing 
is also enabling the study of biological systems 
at ever-finer scales. For example, we can explore 
genetic variation between individual members 
of a single species (top center), and the genetic 
and epigenetic differences between the cells of a 
single individual (top right). Sequencing can also 
provide a window into diverse processes in cells, 
including all of the phenomena shown (bottom).

Until recently, the act of acquiring high-throughput molecular data 
(for example, DNA sequencing or DNA microarrays) was the primary 
cost associated with many experiments in genomics (for example, 
genome assembly, expression analysis and so on). For some projects, 
the emergence of next-generation sequencing has simply increased 
ambitions, such that DNA sequencing costs remain dominant. 
However, for most experiments, other ‘rate limiters’ are an increasing 
fraction of the overall cost and effort. These include the following: 
first, the cost of generating, acquiring and/or storing samples; 
second, the costs of constructing and indexing fragment libraries; 
third, the costs of building and maintaining infrastructure for  

large-scale data analysis, storage, exchange and deposition to public 
repositories; fourth, the time and labor costs of executing on both 
routine (for example, read mapping) and specialized (for example, 
data interpretation) tasks in large-scale data analysis; fifth, the costs 
of training personnel for the experimental and analytical skill sets 
associated with next-generation DNA sequencing; sixth, the costs 
associated with transient or persistent mismatches between the local 
capacity and local demand for next-generation DNA sequencing; and 
finally, for clinical samples, the costs associated with phenotyping 
subjects, obtaining consent from subjects and complying with 
regulations for working with human subjects.

Box 1  ‘Rate limiters’ of next-generation DNA sequencing experiments

REV IEW



Some applications of next-gen sequencing 

•  Genome sequencing and variant discovery 
•  de novo assembly of bacterial and other small 

genomes 
•  DNA-protein interactions 
•  Chromatin and epigenetics 
•  RNA expression levels (profiling) 
•  ncRNA/small RNA discovery and profiling 
•  Metagenomics 
•  Sequencing extinct species (museomics) 

ChIP-seq 
Methyl-seq 

RNA-seq 
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effect sizes and epistatic interactions to the so-called ‘missing heritabil-
ity’25. However, these are likely to require enormous disease cohorts so 
as to have adequate statistical power.

In a clinical setting, many barriers still prevent the routine use of 
genome sequencing to inform patient care. Notably, the utility of 
genomic information to provide a personalized, asymptomatic prognosis 
for common diseases is inherently limited (exemplified by the simple 
fact that monozygotic twins do not usually die of the same disease)26,27. 
Instead, genome sequencing may be most useful for diagnosing rare, 
Mendelian disorders where the mutations are highly penetrant and thus 
more readily interpreted. For example, there are already case reports 
where exome or genome sequencing has led to a clear diagnosis of a 
known Mendelian disorder in a patient for whom that diagnosis had 
not been suspected, leading to substantial and sometimes life-saving 
changes in clinical management21,28,29.

Clinical sequencing of human genomes may also prove highly impact-
ful in the context of reproductive health, as about 1% of new births are 
affected by a Mendelian disorder requiring specialized medical atten-
tion. Preconception screening of carrier status across hundreds of severe 

structurally complex regions of a genome. A separate aspect of complete-
ness, effectively ignored by conventional shotgun genome sequencing, is 
haplotype information, for example, the combinations of alleles present 
on the same chromosome in a diploid human genome. Several methods 
have recently enabled the ascertainment of haplotypes at a genome-
wide scale, albeit only locally16,17 or sparsely18,19. Combinations of these 
methods, or entirely new technologies, will be required fully resolve 
haplotypes in nonhaploid genomes.

Another challenge is how best to use sequencing to understand 
the genetic basis of human disease. Genome sequencing and exome 
sequencing (that is, the targeted sequencing of the ~1% of the human 
genome that is protein-coding) have substantially accelerated the deter-
mination of the genetic basis for single-gene (Mendelian) disorders20,21 
and are being used to identify de novo mutations that may be risk factors 
for neuropsychiatric disorders such as intellectual disability22, autism23 
(J.S. and colleagues) and schizophrenia24. For complex traits and com-
mon diseases, genome-wide association studies have already identified 
the most common risk alleles. Ongoing, sequencing-based studies may 
clarify the contribution of rare variants, common variants with small 

Table 1  Applications of next-generation DNA sequencing

Method Sequencing to determine:
Example  
reference ‘Subway’ route as defined in Figure 3

DNA-Seq A genome sequence 57 Comparison, ‘anatomic’ (isolation by anatomic site), flow cytometery, DNA extraction, 
mechanical shearing, adaptor ligation, PCR and sequencing

Targeted DNA-Seq A subset of a genome (for example, an 
exome)

20 Comparison, cell culture, DNA extraction, mechanical shearing, adaptor ligation, PCR, 
hybridization capture, PCR and sequencing

Methyl-Seq Sites of DNA methylation, genome-wide 34 Perturbation, genetic manipulation, cell culture, DNA extraction, mechanical shearing, 
adaptor ligation, bisulfite conversion, PCR and sequencing

Targeted methyl-Seq DNA methylation in a subset of the 
genome

129 Comparison, cell culture, DNA extraction, bisulfite conversion, molecular inversion 
probe capture, circularization, PCR and sequencing

DNase-Seq, Sono-Seq  
and FAIRE-Seq

Active regulatory chromatin (that is, 
nucleosome-depleted)

113 Perturbation, cell culture, nucleus extraction, DNase I digestion, DNA extraction, adap-
tor ligation, PCR and sequencing

MAINE-Seq Histone-bound DNA (nucleosome posi-
tioning)

130 Comparison, cell culture, MNase I digestion, DNA extraction, adaptor ligation, PCR and 
sequencing

ChIP-Seq Protein-DNA interactions (using chroma-
tin immunoprecipitation)

131 Comparison, ‘anatomic’, cell culture, cross-linking, mechanical shearing, immunopre-
cipitation, DNA extraction, adaptor ligation, PCR and sequencing

RIP-Seq, CLIP-Seq,  
HITS-CLIP

Protein-RNA interactions  46 Variation, cross-linking, ‘anatomic’, RNase digestion, immunoprecipitation, RNA extrac-
tion, adaptor ligation, reverse transcription, PCR and sequencing

RNA-Seq RNA (that is, the transcriptome) 39 Comparison, ‘anatomic’, RNA extraction, poly(A) selection, chemical fragmentation, 
reverse transcription, second-strand synthesis, adaptor ligation, PCR and sequencing

FRT-Seq Amplification-free, strand-specific  
transcriptome sequencing

119 Comparison, ‘anatomic’, RNA extraction, poly(A) selection, chemical fragmentation, 
adaptor ligation, reverse transcription and sequencing

NET-Seq Nascent transcription 41 Perturbation, genetic manipulation, cell culture, immunoprecipitation, RNA extraction, 
adaptor ligation, reverse transcription, circularization, PCR and sequencing

Hi-C Three-dimensional genome structure 71 Comparison, cell culture, cross-linking, proximity ligation, mechanical shearing, affinity 
purification, adaptor ligation, PCR and sequencing

Chia-PET Long-range interactions mediated by a 
protein

73 Perturbation, cell culture, cross-linking, mechanical shearing, immunoprecipitation, 
proximity ligation, affinity purification, adaptor ligation, PCR and sequencing

Ribo-Seq Ribosome-protected mRNA fragments 
(that is, active translation)

48 Comparison, cell culture, RNase digestion, ribosome purification, RNA extraction, adap-
tor ligation, reverse transcription, rRNA depletion, circularization, PCR and sequencing

TRAP Genetically targeted purification of poly-
somal mRNAs

132 Comparison, genetic manipulation, ‘anatomic’, cross-linking, affinity purification, RNA 
extraction, poly(A) selection, reverse transcription, second-strand synthesis, adaptor 
ligation, PCR and sequencing

PARS Parallel analysis of RNA structure 42 Comparison, cell culture, RNA extraction, poly(A) selection, RNase digestion, chemical 
fragmentation, adaptor ligation, reverse transcription, PCR and sequencing

Synthetic saturation 
mutagenesis

Functional consequences of genetic 
variation

93 Variation, genetic manipulation, barcoding, RNA extraction, reverse transcription, PCR 
and sequencing

Immuno-Seq The B-cell and T-cell repertoires 86 Perturbation, ‘anatomic’, DNA extraction, PCR and sequencing

Deep protein  
mutagenesis

Protein binding activity of synthetic  
peptide libraries or variants

95 Variation, genetic manipulation, phage display, in vitro competitive binding, DNA extrac-
tion, PCR and sequencing

PhIT-Seq Relative fitness of cells containing  
disruptive insertions in diverse genes

92 Variation, genetic manipulation, cell culture, competitive growth, linear amplification, 
adaptor ligation, PCR and sequencing

FAIRE-seq, formaldehyde-assisted isolation of regulatory elements–sequencing. MAINE-Seq, MNase-assisted isolation of nucleosomes-sequencing; RIP-Seq, RNA-binding protein immunoprecipi-
tation-sequencing; CLIP-Seq, cross-linking immunoprecipitation-sequencing; HITS-CLIP, high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation; FRT-Seq, on-flowcell 
reverse transcription–sequencing. NET-Seq, native elongating transcript sequencing. TRAP, translating ribosome affinity purification. PhIT-Seq, phenotypic interrogation via tag sequencing.
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Gene expression profiling with RNA-seq 
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Metagenomics 

PLoS Comput. Biol. (2010) 6(2): e1000667 



Finding copy number variants with NGS 
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Deletions and amplifications with paired end sequencing 

Human Molecular Genetics, 4/e. (© Garland Science) 



Whole-genome sequencing to identify disease gene 

New England Journal of Medicine 362;13  April 1, 2010 



Genotyping to confirm disease allele 

New England Journal of Medicine 362;13  April 1, 2010 

(by Restriction Fragment Length 
Polymorphism – RFLP) 
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RESULTS
Analytical framework
QuEST requires data in the form of genome coordinates (‘tags’)
obtained from mapping several million sequencing reads to a
reference genome. Tags from forward and reverse reads cluster on
opposite sides of the TFBS (Fig. 1a) This is because sequencing
proceeds from one end of the fragment toward its middle in a
strand-specific manner, which leads to an underrepresentation of
tags in the immediate proximity of the TFBS.

QuEST first constructs two separate profiles, one for forward and
one for reverse tags. These profiles are characterized by areas of
strong enrichment where tags are particularly dense (Fig. 1). The
distance between forward and reverse profiles is not known a priori,
but it is important to account for it and to correctly combine the two
separate profiles into one. As this distance may vary considerably
from experiment to experiment, QuEST estimates it from a parti-
cularly robust subset of the data. We refer to half of this distance as
the ‘peak shift’.

Once the experiment-specific peak shift
has been estimated, the forward and reverse
profiles are shifted and summed to produce
the combined density profile (CDP) on
which all subsequent analyses are carried
out (Fig. 1b and Supplementary Fig. 1
online). By combining the profiles in
this manner, QuEST accomplishes two key
aspects of ChIP-Seq analysis: first, the

signals from reverse and forward reads are represented by a single
classifier; second, local maxima of this classifier correspond to
protein-DNA cross-linking points, providing an estimate for the
location of the TFBS.

QuEST then searches the CDP for enriched loci in a process
referred to as ‘peak calling’. Specifically, QuEST identifies candi-
dates for CDP peaks as positions in the reference genome corre-
sponding to local maxima of the CDP with sufficient enrichment
compared to the control data. The strongest of these are likely to be
due to real binding events, whereas weaker-scoring peaks may be
false positives, requiring the setting of a CDP threshold for peak
calling. As this threshold may vary considerably between experi-
ments, the desired balance between sensitivity and specificity can be
achieved by a calibration procedure. Briefly, we separated the
negative control data into two sets, one of which we used as a
pseudo-ChIP sample in which peaks are to be predicted and the
other of which we used as a background for this sample. Any peak
that is predicted in this comparison is a false positive. Hence, the
false-discovery rate estimate is the ratio of the number of peaks
predicted in the pseudo-ChIP analysis to the number of peaks
identified in the real ChIP experiment. This approach allows the
user to set specific thresholds and determine the false-discovery
rate, or vary the thresholds until a desired false-discovery rate is
achieved (Supplementary Fig. 2 online).

As a final result, for each peak in the list of high-confidence peak
calls, QuEST reports a score quantifying the tag enrichment at the
peak and a genome coordinate that corresponds to the position of
that peak. Each such coordinate is a predictor of the position
of a binding event, likely an endogenous TFBS occupied by the
immunoprecipitated transcription factor. The kernel density
estimation–derived score QuEST reports for each peak is propor-
tional to the frequency at which the TFBS was present in the
sequenced library. Because the score reflects the amount of evidence
for the peak, QuEST ranks the final peak calls accordingly.

Performance of QuEST
To evaluate key aspects of the performance of QuEST, we generated
five ChIP-Seq libraries from the human Jurkat cell line and
sequenced them using the Solexa platform (Table 1). One library
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Figure 1 | QuEST’s representation of ChIP-Seq data using density profiles.
(a) GABP ChIP-Seq reads from the promoter and CpG island of the gene
encoding nitric oxide synthase–interacting protein. Hypothetical schematic
of GABP binding in five cells to the corresponding DNA fragments with
sequencing reads marked in blue (forward) or red (reverse). Actual read data
are shown below. (b) Forward and reverse read density profiles derived from
the read data (top) contribute to the CDP (bottom). The zero x-coordinate
corresponds to position 54775300 of human chromosome 19 (US National
Center for Biotechnology Information (NCBI) build 36). One area of sequence
read enrichment from the genome-wide profiles is shown for illustration.

Table 1 | ChIP-Seq data and analysis summary

GABP SRF

NRSF (polyclonal

antibody)

NRSF (monoclonal

antibody)

Number of aligned ChIP reads 7,862,231 8,721,730 8,813,398 5,358,147

Number of peaks called by QuEST 6,442 2,429 2,960 2,596

False-discovery rate estimate 1/6,442 1/2,429 o1/2,960 1/2,595

Percent peaks near genes (o2 kb or

within genes)

83 72 53 53

830 | VOL.5 NO.9 | SEPTEMBER 2008 | NATURE METHODS

ARTICLESChromatin immunoprecipitation (ChIP)-seq 
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The prevalence of an Ets-like motif may be due to the previously
described interaction between SRF and the Ets factor ELK4
(refs. 17,25). Notably, the antibody to SRF has no detectable
cross-reactivity with other proteins as determined by western blot
analysis (data not shown). We applied the same strategy to the
NRSF dataset, which reproduced the discovery of NRSF half-sites
previously reported (Fig. 4), and resulted in an additional 16% of
peaks explained. We found no other significant motifs for GABP.

We observed that a large fraction of SRF peaks (29%) occurred
within 100 bp of GABP peaks, and NRSF peaks almost never
coincided with either SRF or GABP peaks. The close proximity of
SRF and GABP peaks might suggest that SRF not only physically
interacts with the Ets factor ELK4 (ref. 17) but, in some promoters,
with GABP as well.

QuEST analyses can be combined with orthogonal genome-wide
data or resources such as GO to provide general insights into the
functions of proteins targeted by ChIP-Seq experiments. For both
GABP and SRF, a majority of peak calls (83% and 72%, respectively)
were within 2 kb of a gene. By contrast, only 53% of NRSF peak calls
were within 2 kb of a gene, suggesting that NRSF’s effects on gene
regulation are, on average, exerted over longer distances than those
of GABP and SRF. Having obtained a set of peak-associated genes,
we then conducted gene expression profiling and GO analyses.

Gene expression profiling revealed that NRSF-associated genes
were expressed at significantly lower relative levels than the average
of all genes (Wilcoxon test, P o 2.2 ! 10–16; nNRSF ¼ 1,274,
nall ¼ 20,588). This result is consistent with NRSF’s known general
function as a transcriptional repressor and with previous results5.
By contrast, both SRF-associated genes and GABP-associated genes
were expressed significantly higher than the average gene (Wilcox-
on test, Po2.2 ! 10–16; nSRF ¼ 1,936, nGABP ¼ 5,394, nall ¼ 20,588;
Supplementary Fig. 5 online), which is consistent with their
activator functions12,15.

GO analysis26 (Supplementary Tables 1–3 online) revealed that
NRSF-associated genes are mostly involved in neuronal function,
which is consistent with previous results5. Both SRF and GABP had
significant enrichment of genes that are involved in basic cellular
processes, particularly those related to gene expression. These
results are consistent with both GABP and SRF being fundamental
regulators of basic cell biology, rather than specialized factors with
specific physiological roles. GABP is the more broadly acting of the
two factors, as reflected by its almost threefold larger number of
peaks and associated genes.

DISCUSSION
The high resolution of QuEST peak calls is noteworthy. For
example, 89% of CDP peaks that contained a matching canonical
TFBS motif in the NRSF polyclonal data were within 25 bp of
the motif center and 56% were within 10 bp (Fig. 3). QuEST
thereby brings within reach the ability to identify at high confidence
the precise locations at which DNA binding proteins interact with
the genome.

The score QuEST generates for each peak, according to which the
peaks are ranked, is directly proportional to the amount of tag
enrichment in the set of DNA fragments that yielded the sequences.
Thus, a peak with a score of 50 is due to a TFBS that was twice as
abundant in the DNA sample as a TFBS with a peak score of 25.
Although both scores may be above the reporting cutoff chosen (by
the desired false-discovery rate), and are therefore considered real,
there is twice the support for (and hence the confidence in) the
stronger peak.

One potential drawback of QuEST is that it does not convert
peak scores into definitive P values. Instead, the stringency of peak
calls is determined by the score threshold at which the peaks are
reported, and the false-discovery rate is calculated for this thresh-
old. Users can either use the default threshold or specify their own
and assess the stringency through the false-discovery rate.

Model-free analysis as implemented in QuEST may be consid-
ered less powerful than approaches that leverage the additional
power of an explicit model for the ChIP-Seq data. However, such
explicit modeling will likely be elusive in the near future because of
the many experimental and biological factors that influence the
eventual enrichment signal that is detected by ChIP-Seq. Some part
of the enrichment signal should reflect occupancy by the transcrip-
tion factor, but confounding factors such as antibody specificity,
epitope accessibility and susceptibility of TFBS-adjacent DNA to
shearing will be difficult to model explicitly. Furthermore, down-
stream manipulation necessary for library building, especially
library amplification and sequencing, introduce additional biases
into the enrichment signal. Together, these factors contribute to
increased variance of signal strength across the binding sites and
complicate detection of weak binding signals. Application of
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Figure 4 | Motif analysis results. (a) GABP. (b) SRF. (c) NSRF (ChIP with
polyclonal antibody). For each of the three transcription factors, significantly
overrepresented motifs are graphically depicted (Weblogos27). Number of
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proximity to the peak (o100 bp). Histograms show the distribution of the
motif number within 100 bp of the peak.
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in performance between the NRSF and GABP datasets came from
the Kharchenko’s spp package, wtd and mtc, which were less
sensitive in the GABP dataset. The decreased sensitivity of the spp
methods on the GABP dataset may be caused by the broader
enrichment regions noted in this dataset (see Figures S6, S7 and S8
and further discussion in the ‘‘Spatial Resolution’’ section).
Directional scoring methods are known to be less useful for
identifying broad enrichment signals, such as histone modification
or RNA polymerase binding, due to blurring of the signal between
the forward and reverse reads (Figure 1B).

Though high in confidence, the qPCR gold-standards cover
only a handful of sites across the genome, perhaps limiting our
ability to assess more subtle difference in sensitivity. To gain a
more comprehensive picture of sensitivity between these methods,
a whole genome scan for the presence of high confidence
canonical binding motifs was conducted. This approach, which
permits an assessment of sensitivity from a larger database,
generated a list of more than 3000 potential NRSF and 6500
GABP binding sites. The coverage of these motif occurrences
largely recapitulates the patterns seen with the qPCR binding site
analysis, suggesting that the similarities observed with the high
confidence qPCR database are not simply artifacts of the small
sample size (Figure 5B,D). In summary, the sensitivity of all
methods on the NRSF dataset remains remarkably similar over
most of the peak-lists, while more noticeable differences emerge in
examining the GABP data. The similarities from the NRSF data
likely emerge from the fact that many algorithms may have been
tested and trained on this same dataset, thereby optimizing their
default settings. The differences seen with GABP highlight the
potential variability in performance and seem to indicate that, for
this dataset, directional scoring methods were less sensitive

(SISSRS, mtc, wtd), corroborating the findings from our qPCR
analysis.

It is important, however, to consider that high confidence motif
sites represent putative binding sites for the transcription factor.
Some sites may not be occupied under the experimental
conditions and may not even be present in the cell line’s genome,
given that cell lines are prone to genomic instability. Thus, while
the co-occurrence of motif instances and detected peaks likely
represent true binding sites, the failure to identify a peak at a motif
site has a several possible explanations.

Specificity. Assessing the rate of false positives in the peak
lists is a challenging task. The available set of qPCR-determined
negative sites for NRSF provides only 30 ‘‘true negatives’’, defined
as sites where enrichment was less than 3 fold [45]. By this
standard, nine of eleven programs called a total of two putative
false positives (CisGenome and QuEST found none). The same
two ‘‘true negative’’ sites (chr20: 61280784–61280805 and
chr6:108602345–108602365 in hg18) were identified by all nine
programs. Although this could indicate some systematic bias in
peak calling, Kharchenko et al. argue that, based on sequence tag
distributions, these sites are likely bound by NRSF under the
ChIP-seq experimental conditions (see Supplementary Fig. 9 from
Kharchenko et al. [31]). Thus, we find these ‘‘negative’’ sites and
their corollaries in the GABP dataset unreliable for assessing the
specificity of the different programs using metrics such as a
receiver operator curve (ROC), despite the fact that other groups
have used this metric previously [12].

In the absence of an appropriate dataset for rigorous false
positive testing, many investigators prefer to examine a stringent
set of binding sites. Thus, programs must provide accurate means
for ranking peaks according to some confidence metric. To assess

Figure 2. ChIP-seq peak calling programs selected for evaluation. Open-source programs capable of using control data were selected for
testing based on the diversity of their algorithmic approaches and general usability. The common features present in different algorithms are
summarized, and grouped by their role in the peak calling procedure (colored blocks). Programs are categorized by the features they use (Xs) to call
peaks from ChIP-seq data. The version of the program evaluated in this analysis is shown for each program, as the feature lists can change with
program updates.
doi:10.1371/journal.pone.0011471.g002
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peak ranking accuracy, we calculated the rate of canonical motif
occurrence for NRSF, GABP and FoxA1 within additive intervals
of 50 peaks (top 50, top 100, top 150, etc; Figure 6 and Figures S1,
S2). The percentage of peaks containing high confidence motifs
decays with decreasing peak rank, suggesting that rank generally
discriminates well between high confidence and lower confidence
peaks. The performance of the different ChIP-seq methods at
detecting high confidence NRSF binding sites is very similar; the
percentage of motif-containing peaks varied by less than 3% with
the exception of PeakSeq and HPeak. More variability is seen in
the ranking of the top 50 peaks, though the methods still differ by
only 10% when the outliers (PeakSeq and HPeak) are excluded.
Over the first 2000 peaks, PeakSeq and HPeak detect between 10
and 20% fewer peaks with strong motifs than other algorithms.
However, when a larger window (1 kb) surrounding the peak
center is examined, the performance of these methods is
comparable to other programs (Figure S3). This result suggests
that both PeakSeq and HPeak identify peaks with lower positional
resolution than other methods for the NRSF dataset. The decay of
motif content in ranked peaks for the other two datasets were
similarly tightly clustered, showing relatively little variation with
the exception of slightly poorer performance for Sole-Search in the
GABP dataset and QuEST in the FoxA1 dataset (Figure S1 and
S2, respectively). While changes in the significance threshold set
for defining a motif occurrence impacted absolute percentage of
peaks containing motifs, such changes did not alter the
performance of the programs relative to one another (Figure
S5). Another interesting point with regards to peak ranking is that
the different statistics provided by the same program can produce
substantially different rankings, with variable success at determin-
ing high-quality peaks (Figure S4).

This peak ranking analysis provides considerably more practical
information to the user than does the motif analysis conducted by
Laajala et al. [12], which simply reports the average significance of
motif overlap with all peaks. Our results support their general
conclusion that the whole peak lists from all programs show
significant proportion of the canonical binding motif and also
demonstrate the significance of peak rank in recovering high
confidence motif sites.

We note that the absence of a strong motif occurrence does not
definitively classify peaks as false positives, as some such peaks
could represent true binding sites with weak or non-canonical
binding motifs. Nonetheless, high confidence motif occurrences
within peaks are a good indicator of an actual binding event and
can be used to assess how well peak ranking identifies the most
confident binding sites. Furthermore, previous studies of non-
canonical motifs suggest that these sites makes up a relatively
minor fraction of overall motif occurrences [16].

Given the vagaries of ChIP enrichments, it is important to
consider the robustness specificity in peak calling with ‘‘noisy’’
data. Less efficient ChIP enrichments will produce datasets with a
larger ratio of non-specific background sequence to ChIP-targeted
sequence. Such datasets will thus be characterized by higher
background noise, lower peaks and under-sampling of low-
intensity peaks. The complexity of features in the background
sequence (discussed in Introduction) makes modeling ‘‘noise’’
features extremely challenging. We have simulated noisy datasets
in silico by removing randomly sampled ChIP reads from Johnson
et al. ’s NRSF dataset and introducing an equal number of reads
from the background data. Datasets were simulated where the
noisy ChIP sample was composed 10%, 30% and 50% reads
sampled from the background control dataset. These increasingly
noisy datasets are meant to simulate decreasing efficiency ChIP
enrichments with the same sequencing coverage.

As expected, the number of peaks called decreases in
simulations of less efficient ChIP (Figure S6). The size of the
decrease tended to be most marked for programs that called larger
peak lists, suggesting that it was the smaller peaks were lost in the
noise. This conclusion was borne out in by searching for canonical
motifs in the ranked peak lists from our simulated noisy data. Few
differences were observed between variable noise datasets in the
motif content of ranked peaks (Figure S7), indicating that though
all programs lost some peaks in the noise, they tended not to
increase spurious peak calls. QuEST showed the most notable
decay of motif content in noisier datasets, likely because this
algorithm’s background filtering method relies on larger control
datasets. In noisier simulations, HPeak and PeakSeq showed
increasing motif content in the top 500 peaks, such that it seems
that their ranking algorithms performed better on noisier datasets.
Further investigation is needed to discover the origin of this
phenomenon, though we suspect that this may be due to better
spatial precision in their identifications. In summary, however, we
find few substantial differences between the performance of these
programs on our simulated datasets at increasing noise thresholds.

Spatial resolution. In addition to discriminating the true
binding sites, a ChIP-seq peak finder should identify that binding
site with some degree of precision to facilitate the location of
DNA-protein binding. The width of identified peaks can be an
important consideration for de novo motif searches of peaks
identified by ChIP-seq, since extraneous sequence around the
true protein binding adds significant noise that can obscure the
motif signal. Most programs will report a peak region of variable
width, given by start and stop coordinates. However,
directionality-scoring methods tend to report either narrow fixed
width peaks (SISSRS) or single coordinate peaks (spp package),

Figure 3. Quantity of peaks identified. Programs report different
numbers of peaks, when run with their default or recommended
settings on the same dataset. Number of reported peaks is shown for
the GABP (green bars), FoxA1 (red bars) and NRSF (blue bars) datasets.
To assess how different these peak lists were, those peaks identified by
all 11 methods were calculated (core peaks).
doi:10.1371/journal.pone.0011471.g003

Testing of ChIP-Seq Algorithms

PLoS ONE | www.plosone.org 5 July 2010 | Volume 5 | Issue 7 | e11471

PLoS ONE (2010) 5(7): e11471 



et al, 2007; Korbel et al, 2007; Ng et al, 2007). Presently, four
different approaches are used to map structural variants in
genomes (Snyder et al, 2010). These include paired-end
mapping (Korbel et al, 2007), read depth (Abyzov et al,
2011), split reads (Zhang et al, 2011) andmapping sequences to
breakpoint junctions (Kidd et al, 2010). Each has its own
biases, but typically all four are used to help identify SVs. SVs
affect genes as well as transcription factor-binding sites,
resulting in altered expression profiles of downstream genes
(Snyder et al, 2010). Copy number variation has also been
known to be associated with various diseases including
glomerulonephritis (Aitman et al, 2006), Crohn’s disease
(McCarroll et al, 2008), HIV-1/AIDS (Gonzalez et al, 2005) and
psoriasis (de Cid et al, 2009). Although much work remains to
be done, it is clear that SVs have a significant impact on disease
regulation and health, making this an important class of
elements to map in eukaryotic genomes.

Mapping higher-order organization in eukaryotic
genomes

New sequencing technologies have also enabled the mapping
of three-dimensional (3D) DNA interactions that were
previously not possible on a genomic scale and resolution
(Figure 1C). DNA analyses first became 3D with the develop-
ment of chromosome conformation capture techniques such
as 3C, 4C and 5C (Dekker et al, 2002; Dekker, 2006; Dostie et al,
2006; Simonis et al, 2006; Zhao et al, 2006; Dostie and Dekker,
2007). However, these techniques offered 3D mapping of DNA
interactions only within regions where interactions were
already expected (hypothesis-driven). Further, primers had
to be designed for each region, which made it very low
throughput. With the invention of Hi-C, which utilizes NGS on
cross-linked DNA fragments that have been sheared and
digested to an optimal size to identify all DNA regions that are

physically close together, genome-wide mapping of chromo-
somal 3D structures became possible, at least at low resolution
(20–100 kb) (Lieberman-Aiden et al, 2009; Zhang et al, 2012b).
These newly developed sequencing methods provided

important new insights into the global organization of
eukaryotic genomes that were previously unattainable. Ana-
lyses of individual regions revealed that some distantly located
regulatory elements, such as promoters, enhancers and
insulators, come into close proximity to better mediate their
activities (Branco and Pombo, 2006; Woodcock, 2006; Fraser
and Bickmore, 2007; Osborne and Eskiw, 2008). Transcription
factor-mediated 3D interactions obtained using immunopreci-
pitation followed by paired-end sequencing (ChIA-PET)
(Fullwood et al, 2009a, b, 2010) revealed extensive interaction
between enhancer and promoter regions, often encoded at
long distances from one another on the chromosome
(Fullwood et al, 2009a; Handoko et al, 2011; Li et al, 2012).
These large-scale analyses also revealed that chromosomal
regions are organized together into territories of similar
biological activity, such as active and inactive domains. These
topological domains seem to be conserved across multiple cell
types and mammalian species (Lieberman-Aiden et al, 2009;
Cremer and Cremer, 2010; Sung and Hager, 2011; Dixon et al,
2012). Figure 1 summarizes some of the ways that high-
throughput sequencing technologies have extended our
understanding of the structural organization of genomes.

DNA and histone modification

Besides deciphering the sequence of genomes, NGS has also
enabled the mapping of epigenetic marks such as DNA
methylation (DNAm) and histone modification patterns in a
genome-wide manner (Figure 2).
Methylation of cytosine residues in DNA is the most studied

epigenetic marker and is known to silence parts of the genome
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sufficiently commonplace that a large number of different
organisms have been sequenced. As of June 2012, according to
the Genomes Online Database, a total of 3920 bacterial and 854
different eukaryotic genomes have been completely sequenced
(Pagani et al, 2012). Although resequencing new lines and
closely related organisms is readily achieved, there are still
significant challenges (Snyder et al, 2010). Different DNA
sequencing platforms have different biases and abilities to call
variants (Clark et al, 2011; Lam et al, 2012). Short indels
(insertions and deletions) and larger structural variants are
also particularly difficult to call (see below). De novo genome
assembly can be attempted from short reads, but this remains
difficult and leads to short contigs. Increasing read length and
accuracy will greatly enhance our abilities to accurately
sequence genomes de novo, which will also enable more
precise mapping of variants between individuals.

Genome sequence and structural variation

In addition to the sequencing of the genomes of different
organisms, projects to characterize the DNA sequence of
individuals have gathered pace, and whole-genome sequen-
cing of humans is becoming commonplace (Gonzaga-Jauregui
et al, 2012). The reduced costs, increased accuracy and
lowered data turn-around time associated with NGS have
enabled clinicians and medical researchers to identify suscept-
ibility markers and inherited disease traits (see ‘Medical
Genomic Sequencing’). Identifying damaging polymorphisms

in coding regions (exonic variants) and those present in other
functional regions (discussed below) of the genome are an
integral part of clinical genomics. In order to achieve this goal,
several groups are studying human genomic variation by
sequencing or genotyping large number of individuals,
including multi-institute consortia projects such as the 1000
Genomes Project (Consortium, 2010), the Personal Genome
Project (Ball et al, 2012), the HapMap project (Consortium,
2003) and the pan-Asian single-nucleotide polymorphism
(SNP) project (Abdulla et al, 2009). The different human
genome sequencing projects have revealed that individuals
have B3.1–4M SNPs between one another and the reference
sequence (Consortium, 2003; Frazer et al, 2007), and, thus far,
a total of over 30M SNPs have been discovered from human
genome sequencing projects. Studies have been successful in
linking variants with a range of conditions, a catalogue of
which is available at dbGaP, the database of Genotype and
Phenotype (Mailman et al, 2007).
One area that has been particularly challenging in the

sequencing of human genomes and other complex genomes
are structural variations (SVs): large (41 kb) segments of the
genome that are duplicated, deleted or rearranged relative
to reference sequences and among individuals (Figures 1A
and B). Early microarray experiments indicated that SVs were
abundant in the human genome (Louie et al, 2003; Conrad
et al, 2006; Redon et al, 2006), although it was the advent of
NGS that revealed that this is much more prevalent than
previously appreciated (Ng et al, 2005; Chiu et al, 2006; Dunn

Table I The various NGS assays employed in the ENCODE project to annotate the human genome

Feature Method Description Reference

RNA-seq Isolate RNA followed by HT sequencing (Waern et al, 2011)
Transcripts, small
RNA and transcribed
regions

CAGE HT sequencing of 5’-methylated RNA (Kodzius et al, 2006)

RNA-PET CAGE combined with HT sequencing of poly-A tail (Fullwood et al, 2009c)
ChIRP-Seq Antibody-based pull down of DNA bound to lncRNAs

followed by HT sequencing
(Chu et al, 2011)

GRO-Seq HT sequencing of bromouridinated RNA to identify
transcriptionally engaged PolII and determine direction of
transcription

(Core et al, 2008)

NET-seq Deep sequencing of 30 ends of nascent transcripts associated
with RNA polymerase, to monitor transcription at
nucleotide resolution

(Churchman and
Weissman, 2011)

Ribo-Seq Quantification of ribosome-bound regions revealed uORFs
and non-ATG codons

(Ingolia et al, 2009)

Transcriptional
machinery and
protein–DNA
interactions

ChIP-seq Antibody-based pull down of DNA bound to protein
followed by HT sequencing

(Robertson et al, 2007)

DNAse footprinting HT sequencing of regions protected from DNAse1 by
presence of proteins on the DNA

(Hesselberth et al, 2009)

DNAse-seq HT sequencing of hypersensitive non-methylated regions
cut by DNAse1

(Crawford et al, 2006)

FAIRE Open regions of chromatin that is sensitive to formaldehyde
is isolated and sequenced

(Giresi et al, 2007)

Histone modification ChIP-seq to identify various methylation marks (Wang et al, 2009a)

DNA methylation RRBS Bisulfite treatment creates C to U modification that is a
marker for methylation

(Smith et al, 2009)

Chromosome-
interacting sites

5C HT sequencing of ligated chromosomal regions (Dostie et al, 2006)

ChIA-PET Chromatin-IP of formaldehyde cross-linked chromosomal
regions, followed by HT sequencing

(Fullwood et al, 2009a)
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The HiSeq X™ Ten, composed of 10 HiSeq X Systems, is the first sequencing platform 
that breaks the $1000 barrier for a 30x human genome. 
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Raw NGS data (FASTQ file) 
@HWI-ST1097:104:D13TNACXX:4:1101:18100:2240 1:Y:0:CAACTA!
TGAGGCAAACCCAACTTATATGGGTCAATATAATGGTAAAGAAGGTTTAAA!
+!
=7=<+2<AACAA<A+<A97AB7<7+2?ABBA@@B4A1?7A<*::;00=AAA!
@HWI-ST1097:104:D13TNACXX:4:1101:18326:2181 1:N:0:CAACTA!
CATACATCAAATTTTTACAAAACTCGAATCTCGGTGGTATTATTCCGACAG!
+!
CCCFFFFFHHHHGJJJIIIGJGHJIHGIGHGDEIGIHFFHIIIIGG>?DH6!
@HWI-ST1097:104:D13TNACXX:4:1101:18259:2224 1:N:0:CAACTA!
CAGGTGGAGGGACCGGGTAGTGCCGGATCAAGTAGTGTAGTATTTATTGTA!
+!
@C@DBDFDHHGHHI<DHGH1CFGHIIBHBIIIEHIIGFDGAGE>GGHGC@E!
@HWI-ST1097:104:D13TNACXX:4:1101:18256:2243 1:N:0:CAACTA!
GATAGGTTTGTATGATCTAATTGGTGGCAACTGGGTCCCTCCCATCCTAGC!
+!
@@@FFFDDDFDFHGIJGIJJIICGHIJJAHGGGHGBFGGIHIFGGEAADHG!
@HWI-ST1097:104:D13TNACXX:4:1101:18728:2073 1:N:0:CAACTA!
TTTCTTTCGAAGGAACCCCTCTTTCTCATGCTTTGTGCTACTCTGAGGCAA!
+!
@@@DDDDDHHD1<AEHGGGG<FHGIEHEH9CDDA*??D<DDHHAG<?1?1?!
!

Read ID 

Sequence 
Optional Read ID 

Base quality 
scores 

4 lines per sequence 

Filesize: few hundred Mb to 1 or 2 Gb, ~100 million lines 
for one experiment! 



Encoding quality scores 

Quality character     !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHI!
                      |         |         |         |         | !
ASCII Value           33        43        53        63        73!
!
Base Quality (Q)      0         10        20        30        40!
(ASCII-33)!

Probability of error = 10–Q/10 
This is a Phred score, a standard measure of sequencing quality 

Phred Quality Score	   Probability of incorrect base call	   Base call accuracy	  
10	   1 in 10	   90%	  

20	   1 in 100	   99%	  

30	   1 in 1000	   99.9%	  

40	   1 in 10000	   99.99%	  

50	   1 in 100000	   99.999%	  
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NGS aligners 
Mapper O.S. 

Seq. 
Plat. Input Output 

Min. 
RL 

Max.  
RL 

Mis-
matches Indels Gaps Splicing 

BFAST	   Linux,Mac I,So,4, Hel (C)FAST(A/Q) SAM TSV * Y Y Y N 
Blat	   Linux,Mac N FASTA TSV BLAST 11 5000K Score Score Y De novo 

Bow,e	  
Linux,Mac,Win
dows I,So,4,Sa,P (C)FAST(A/Q) SAM TSV 4 1K Score Score N N 

Bow,e2	  
Linux,Mac,Win
dows I,4,Ion FASTA/Q SAM TSV 4 5000K Score Score Y N 

BS-‐Seeker2	  
Linux, Unix, 
Mac I 

FASTA/Q, 
qseq SAM BAM 10 200 Score Score Y N 

BWA	  
Linux,Mac,Win
dows I,So,4,Sa,P FASTA/Q SAM 4 200 Y 8 Y N 

CloudBurst	  
Linux,Mac,Win
dows N FASTA TSV 1K Y Y Y N 

ELAND	  
Linux, Unix, 
Mac I FASTA 15 150 2 Score N N 

GMAP	  
Linux,Unix,Ma
c,Windows 

I,
4,Sa,Hel,Ion,P FASTA/Q 

SAM GFF 
Native 8 * Y Y Y De novo 

MapReads	  
Linux,Mac,Win
dows So FASTA/Q TSV 10 120 Score 0 N N 

MAQ	   Linux,Mac I,So (C)FAST(A/Q) TSV 8 63 Y Y N N 

MOSAIK	  
Linux,Unix,Ma
c,Windows 

I,So,
4,Sa,Hel,Ion,P (C)FAST(A/Q) BAM 15 1000 Y Y Y N 

mrFAST	   Linux,Unix I FASTA/Q SAM DIVET 25 1000 Score 4 N N 
Novoalign(
CS)	   Linux I,So,4,Hel,Ion 

(C)FAST(A/Q) 
Illumina SAM Native 1 250 Y Y Y Lib 

RMAP	   Linux,Mac I,So,4 (C)FAST(A/Q) BED 11 10K Y 0 N N 

SHRiMP2	  
Linux, Unix, 
Mac I,So,4 FASTA/Q SAM 30 1K Y Score N N 

SOAP2	   Linux I FASTA/Q SAM TSV 27 1K 2 0 Y N 
SOAPSplice	   Linux,Mac I,4 FASTA/Q TSV 13 3K 5 2 Y De novo 
SSAHA2	   Linux,Mac I,4,Sa FASTA/Q SAM 15 48K Score Score N N 
TopHat	  2	   Linux,Mac I FASTA/Q BAM N De novo 
VMATCH	   Linux,Mac N FASTA TSV Score Score Y N 



FASTQC 
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Short-read mappers
Such programs as Maq and Bowtie (Table 1) 
use a computational strategy known as ‘index-
ing’ to speed up their mapping algorithms. Like 
the index at the end of a book, an index of a 
large DNA sequence allows one to rapidly find 
shorter sequences embedded within it. Maq is 
based on a straightforward but effective strategy 
called spaced seed indexing6 (Fig. 1a). In this 
strategy, a read is divided into four segments of 
equal length, called the ‘seeds’. If the entire read 
aligns perfectly to the reference genome, then 
clearly all of the seeds will also align perfectly. 
If there is one mismatch, however, perhaps due 
to a single-nucleotide polymorphism (SNP), 
then it must fall within one of the four seeds, 
but the other three will still match perfectly. 
Using similar reasoning, two mismatches will 
fall in at most two seeds, leaving the other two 
to match perfectly. Thus, by aligning all pos-
sible pairs of seeds (six possible pairs) against 
the reference, it is possible to winnow the list of 
candidate locations within the reference where 
the full read may map, allowing at most two 
mismatches. Maq’s spaced seed index enables 
it to perform this winnowing operation very 
efficiently. The resulting set of candidate reads 
is typically small enough that the rest of the 
read—that is, the other two seeds that might 
contain the mismatches—may be individually 
checked against the reference.

Bowtie takes an entirely different approach, 
borrowing a technique originally developed 
for compressing large files called the Burrows-
Wheeler transform. Using this transform, the 
index for the entire human genome fits into 
less than two gigabytes of memory (an amount 
that is commonly available on today’s desktop 
and even laptop computers)—in contrast to a 
spaced seed index, which may require over 50 
gigabytes—and yet reads can still be aligned 
efficiently. Bowtie aligns a read one character 
at a time to the Burrows-Wheeler–transformed 
genome (Fig. 1b). Each successively aligned 
new character allows Bowtie to winnow the 
list of positions to which the read might map. 
If Bowtie cannot find a location where a read 
aligns perfectly, the algorithm backtracks 
to a previous character of the read, makes a  
substitution and resumes the search. In effect, 
the Burrows-Wheeler transform enables 
Bowtie to conquer the mapping problem by 
first solving a simple subproblem—align one 
character—and then building on that solution 
to solve a slightly harder problem—align two 
characters—and then continuing on to three 
characters, and so on, until the entire read has 
been aligned. Bowtie’s alignment algorithm is 
substantially more complicated than Maq’s, but 
Bowtie’s alignment speed is more than 30-fold 
faster7.

using traditional alignment algorithms such as 
BLAST or BLAT, but such grids are not acces-
sible to everyone. To reduce the computing cost 
of analysis for sequencing-based assays and to 
make them available to all investigators, we and 
others have created a new generation of align-
ment programs capable of mapping hundreds 
of millions of short reads on a single desktop 
computer. Vendors of sequencing machines 
provide specialized mapping software, such as 
the ELAND program from Illumina, but in this 
article we focus on third-party packages, some of 
which are free and open source. These programs 
are built on algorithms that exploit features of 
short DNA sequencing reads to map millions of 
reads per hour while minimizing both process-
ing time and memory requirements.

alignment between the read and its true source 
in the genome may actually have more differ-
ences than the alignment between the read 
and some other copy of the repeat. The spliced 
mapping problem faces this same challenge but 
is further complicated by the possible presence 
of intron-sized gaps.

DNA sequencers from Illumina, ABI, Roche 
(of Basel, Switzerland), Helicos and other compa-
nies produce millions of reads per run. Complete 
assays may involve many runs, so an investigator 
may need to map millions or billions of reads 
to a genome. For example, the recent cancer 
genome sequencing project by Ley et al.5 gener-
ated nearly 8 billion reads from 132 sequencing 
runs. A large, expensive computer grid might 
map the reads from this experiment in a few days 
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Figure 1  Two recent algorithmic approaches for aligning short (20–200-bp) sequencing reads.  
(a) Algorithms based on spaced-seed indexing, such as Maq, index the reads as follows: each position 
in the reference is cut into equal-sized pieces, called ‘seeds’ and these seeds are paired and stored 
in a lookup table. Each read is also cut up according to this scheme, and pairs of seeds are used as 
keys to look up matching positions in the reference. Because seed indices can be very large, some 
algorithms (including Maq) index the reads in batches and treat substrings of the reference as queries. 
(b) Algorithms based on the Burrows-Wheeler transform, such as Bowtie, store a memory-efficient 
representation of the reference genome. Reads are aligned character by character from right to left 
against the transformed string. With each new character, the algorithm updates an interval (indicated 
by blue ‘beams’) in the transformed string. When all characters in the read have been processed, 
alignments are represented by any positions within the interval. Burrows-Wheeler–based algorithms can 
run substantially faster than spaced seed approaches, primarily owing to the memory efficiency of the 
Burrows-Wheeler search. Chr., chromosome.
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does not rely on annotations. Instead, it 
uses Bowtie (in an initial alignment pass) to 
identify exons that fully contain some of the 
reads, and then aligns the remaining reads 
to junctions between those exons9. Another 
program, G-Mo.R-Se (http://www.genoscope.
cns.fr/externe/gmorse), performs a similar 
spliced alignment while constructing gene 
models from RNA-Seq data10.

Limitations and open problems
The current solutions for short-read mapping all 
have limitations. Mapping programs such as Maq 
and Bowtie offer very limited support for align-
ing reads with insertions or deletions (indels). 
Some read mappers, such as SHRiMP (http://
compbio.cs.toronto.edu/shrimp), support ABI’s 
‘color space’ sequence representation, but most 
do not. The spliced alignment programs suffer 
from these same problems and add a few of their 
own. Annotation-based methods are of course 
only as good as the annotations, and many 
organisms have annotations supported only 
by homology or computational predictions. 
Machine learning methods will perform poorly 
if they are trained on incorrect annotations, and 
they are prone to overtraining.

Many challenges and questions remain for 
developers of read mapping software. As all the 
sequencing machine vendors are trying to pro-
duce longer reads, will the short-read mapping 
programs scale well as the reads get longer? Maq, 
Bowtie and several other short-read packages 
support reads longer than 100 bp, but at some 
point, software designed for longer reads, such as 
BLAT, may be a better fit for downstream analy-
sis. Furthermore, when mapping reads from an 
organism that has diverged significantly from 
its reference genome, how should a program’s 
parameters be adjusted, and can that adjustment 
happen automatically? How useful is mapping 
quality in downstream analysis, and should it 
be computed while aligning reads, as Maq does, 
or later? The answers to each of these questions 
will depend on the type of assay and the scale 
of the analysis, and as long as the technology 
continues to change, the programs will have to 
change rapidly to keep up.
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the SAM tools (http://samtools.sourceforge.net). 
SAM includes a consensus base caller and viewer 
that can be used either with Maq or with Bowtie.

Most read mapping software is designed with 
whole-genome resequencing in mind, but the 
programs can be configured for other assays. The 
manuals for Bowtie and Maq are quite detailed, 
and the array of choices a user can make can be 
daunting. Moreover, the list of programs capa-
ble of short-read mapping is rapidly growing  
(Table 1), and not every program is ideal or 
appropriate for every experiment. Fortunately, 
there are ways to get help. The SeqAnswers 
message board (http://www.seqanswers.com) 
is an excellent resource for novice and expert 
users, frequented by the developers of many 
short-read mapping programs. One of the most 
popular SeqAnswers threads contains a catalog 
of current software for primary analysis and 
visualization of short-read data.

Spliced-read mappers
The spliced alignment problem, in which 
cDNA (from processed mRNA) sequences are 
aligned back to genomic DNA, requires more 
specialized algorithms. Reads sampled from 
exon-exon junctions need to be mapped dif-
ferently from reads that are contained entirely 
within exons (Fig. 2).

To align cDNA reads from RNA-Seq1–3 
experiments, packages such as ERANGE 
(http://woldlab.caltech.edu/rnaseq) use 
the positions of exons and introns within 
known genes as a guide. This allows ERANGE 
to construct the sequences spanning exon-
exon junctions and use them as reference 
sequences, and then to invoke a standard read 
mapper such as Maq or Bowtie to align the 
spliced reads2. Because this approach will not 
discover entirely new splice junctions, some 
studies have used machine learning meth-
ods to predict possible junctions by training 
statistical models using available reference 
annotations8. In contrast, the TopHat spliced-
read mapper (http://tophat.cbcb.umd.edu) 

Maq and Bowtie both report alignments with 
up to two mismatches when run in their default 
modes. In some alignment scenarios, a user may 
need to allow more mismatches. These two pro-
grams were originally designed for reads between 
20 and 40 bp long, and both were optimized for 
human resequencing projects. Even so, Illumina 
sequencers can now produce reads longer than 
100 bp. Additionally, some sequencing projects 
(such as bacterial or fungal genome sequencing) 
produce sequences that have many nucleotide-
level differences with respect to the closest fully 
sequenced genome. Finally, the overall quality 
of reads produced by the new technologies is 
sensitive to factors such as library preparation, 
sequencing protocol and even the temperature 
of the room housing the sequencing machine. 
Thus, it is essential to know how to change the 
various default options for any short-read map-
per and to be able to identify when those defaults 
are no longer appropriate.

Several of the new short-read mappers 
(Table 1) are open source, are simple to install 
and have good documentation and active user 
communities. The installation package for 
Bowtie includes a prebuilt index for Escherichia 
coli and a set of sample E. coli reads. To run the 
program on the sample data, just enter the fol-
lowing on the command line:

bowtie e_coli reads/e_coli_1000.fq

This command will produce a tabular report 
showing each matching read’s identifier, the 
position(s) where it aligns to the reference 
sequence, and the number and location of mis-
matches. Maq reports this same information 
when you run it with the command:

maq.pl easyrun -d outdir  

reference.fasta reads.fastq

For a given experiment, the fraction of reads 
that align to the genome depends on many fac-
tors. Assuming the sequenced DNA does not 
contain many mismatched nucleotides com-
pared to the reference, and assuming the reads 
have passed rudimentary quality filters, most 
mapping software will find an alignment for 
70–75% of the reads. This might seem surpris-
ingly low, but the sequencing technology is still 
immature—and it’s worth noting that Sanger 
sequencing had success rates of less than 80% 
until the late 1990s. Note that many reads will 
align to multiple positions in the genome. Most 
read mappers can be directed to report align-
ments only for reads that map to a unique loca-
tion in the genome.

After aligning the reads, next one might want 
to call SNPs or view the alignments against the 
reference sequence. One package for this task is 

Figure 2  RNA-Seq assays produce short reads 
sequenced from processed mRNAs. Aligning 
these reads to the genome with Bowtie or Maq will 
produce the alignments shown in black but will 
fail to align the blue reads. A spliced-read mapper 
such as TopHat or ERANGE will also report the 
(blue) alignments spanning intron boundaries.
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•  End-to-end genome sequencing 

•  Sequencing entire pedigrees 

•  Sequencing within intact cells 

•  Single-cell genomes, transcriptomes, 
epigenomes 

•  Protein-protein interactions by sequencing 

•  Cell fate mapping 

•  Single molecule protein sequencing 


