Functional genomics
+
Data mining

BCH339N Systems Biology / Bioinformatics
Edward Marcotte, Univ of Texas at Austin

Functional genomics
= field that attempts to use the vast data produced by genomic projects (e.g. genome sequencing projects) to describe gene (and protein) functions and interactions.

Focuses on dynamic aspects, e.g. transcription, translation, and protein–protein interactions, as opposed to static aspects of the genome such as DNA sequence or structures.

Adapted from Wikipedia
Functional genomics + Data mining

= field that attempts to computationally discover patterns in large data sets

Adapted from Wikipedia
We’re going to first learn about clustering algorithms & classifiers

Clustering = task of *grouping* a set of objects in such a way that objects in the same group (a *cluster*) are more similar (in some sense) to each other than to those in other groups (clusters).
We’re going to first learn about clustering algorithms & classifiers

Classification = task of categorizing a new observation, on the basis of a training set of data with observations (or instances) whose categories are known

Let’s motivate this with an example:

Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling

Nature 2000
“Diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin's lymphoma ... is one disease in which attempts to define subgroups on the basis of morphology have largely failed...”

“DLBCL ... is clinically heterogeneous: 40% of patients respond well to current therapy and have prolonged survival, whereas the remainder succumb to the disease.

We proposed that this variability in natural history reflects unrecognized molecular heterogeneity in the tumours.”

Blast from the past: Profiling mRNA expression with DNA microarrays

DNA molecules are attached to a solid substrate, then... and probed with a labeled (usually fluorescent) DNA sequence.
(FYI, we would generally now just sequence the cDNA)

Note that some arrays are 1-color, some are 2. Why?
96 patient biopsies
(normal and malignant lymphocyte samples)

Extract mRNA from each sample

Perform DNA microarray experiment on each to measure mRNA abundances (~1.8 million total gene expression measurements)

Cluster samples by their expression patterns

Back to diffuse large B-cell lymphoma...

Red = high expression
Green = low

(yes, I know it’s exactly backwards from what you might expect.)
Genes can be found whose expression is specific to germinal centre B cells, and different across DLBCL's.

We can break up the DLBCL's according the germinal B-cell specific gene expression:
What good is this? These molecular phenotypes predict clinical survival.

Kaplan-Meier plot of patient survival

Grouping patients by clinical prognostic index
Regrouping low risk patients by gene expression

Nature 2000
Gene expression, and other molecular measurements, provide far deeper phenotypes for cells, tissues, and organisms than traditional measurements.

These sorts of observations have now motivated tons of work using these approaches to diagnose specific forms of disease, as well as to discover functions of genes and many other applications.

So, how does clustering work?

First, let’s think about the data, e.g. as for gene expression. From one sample, using DNA microarrays or RNA-seq, we get:

For yeast, $N \sim 6,000$
For human, $N \sim 22,000$

\[
\begin{align*}
\text{Expression level of gene } 1 \\
\text{Expression level of gene } 2 \\
\text{Expression level of gene } 3 \\
\ldots \\
\text{Expression level of gene } i \\
\ldots \\
\text{Expression level of gene } N
\end{align*}
\]

\textit{i.e., a vector of N numbers}
So, how does clustering work?

Every additional sample adds another column, giving us a matrix of data:

\[
\begin{array}{cccc}
\text{N genes} & \text{Gene 1, sample 1} & \ldots & \text{Gene 1, sample M} \\
\text{Gene 2, sample 1} & \ldots & \text{Gene 2, sample M} \\
\text{Gene 3, sample 1} & \ldots & \text{Gene 3, sample M} \\
\vdots & \vdots & \vdots \\
\text{Gene i, sample 1} & \ldots & \text{Gene i, sample M} \\
\vdots & \vdots & \vdots \\
\text{Gene N, sample 1} & \ldots & \text{Gene N, sample M} \\
\end{array}
\]

For yeast, N \sim 6,000
For human, N \sim 22,000

\(i.e.,\) a matrix of \(N \times M\) numbers

Every gene has a \textit{feature vector} of \(M\) numbers associated with it
So, how does clustering work?

Similarly, every sample has a feature vector of N numbers associated with it.

So, how does clustering work?

The first clustering method we’ll learn about simply groups the objects (samples or genes) in a hierarchy by the similarity of their feature vectors.
A hierarchical clustering algorithm

Start with each object in its own cluster

Until there is only one cluster left, repeat:
Among the current clusters, find the two most similar clusters
Merge those two clusters into one

We can choose our measure of similarity and how we merge the clusters
We’ll need to measure the similarity between feature vectors. Here are a few (of many) common distance measures used in clustering.

<table>
<thead>
<tr>
<th>Names</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euclidean distance</td>
<td>$|a - b|_2 = \sqrt{\sum_i (a_i - b_i)^2}$</td>
</tr>
<tr>
<td>Manhattan distance</td>
<td>$|a - b|_1 = \sum_i</td>
</tr>
<tr>
<td>Cosine similarity</td>
<td>$\frac{a \cdot b}{|a| |b|}$</td>
</tr>
</tbody>
</table>

Back to the B cell lymphoma example

Hierarchical clustering

Similarity measure = **Pearson correlation coefficient** between gene expression vectors

Similarity between clusters = average similarity between individual elements of each cluster (also called average linkage clustering)
K-means clustering is a common alternative clustering approach
mainly because it’s easy and can be quite fast!

The basic algorithm:
1. Pick a number \((k)\) of cluster centers
2. Assign each gene to its nearest cluster center
3. Move each cluster center to the mean of its assigned genes
4. Repeat steps 2 & 3 until convergence

See the K-means example posted on the web site

A 2-dimensional example

A 2-dimensional example: hierarchical

A 2-dimensional example: k-means
A 2-dimensional example: k-means

![Decision boundaries](image)

Some features of K-means clustering

- Depending on how you seed the clusters, it may be stochastic. You may not get the same answer every time you run it.
- Every data point ends up in exactly 1 cluster (so-called *hard* clustering)
- Not necessarily obvious how to choose k
- Great example of something we’ve seen already: **Expectation-Maximization (E-M) algorithms**

EM algorithms alternate between assigning data to models (here, assigning points to clusters) and updating the models (calculating new centroids)
Some features of K-means clustering

- Depending on how you seed the clusters, it may be stochastic. You may not get the same answer every time you run it.
- Every data point ends up in exactly 1 cluster (so-called hard clustering)
- Not necessarily obvious how to choose k

EM algorithms alternate between assigning data to models (here, assigning points to clusters) and updating the models (calculating new centroids)

Let’s think about this aspect for a minute. Why is this good or bad? How could we change it?

k-means

The basic algorithm:
1. Pick a number (k) of cluster centers
2. Assign each gene to its nearest cluster center
3. Move each cluster center to the mean of its assigned genes
4. Repeat steps 2 & 3 until convergence
Fuzzy k-means

The basic algorithm:

1. Choose k. Randomly assign cluster centers.
2. Fractionally assign each gene to each cluster:

 \[\text{occupancy } (g_i, m_j) = \frac{e^{||g_i - m_j||^2}}{\sum_j e^{||g_i - m_j||^2}} \]

 Note: $||x||$ is just shorthand for the length of the vector x.

 g_i = gene i

 m_j = centroid of cluster j

3. For each cluster, calculate weighted mean of genes to update cluster centroid
4. Repeat steps 2 & 3 until convergence
Remove genes correlated >0.7 to the identified centroids

Iterating fuzzy k-means
A fun clustering strategy that builds on these ideas: Self-organizing maps (SOMs)

- Combination of clustering & visualization
- Invented by Teuvo Kohonen, also called Kohonen maps

Dr. Eng., Emeritus Professor of the Academy of Finland; Academician

SOMs have:
- your data (points in some high-dimensional space)
- a grid of nodes, each node also linked to a point someplace in data space

1. First, SOM nodes are arbitrarily positioned in data space. Then:
2. Choose a training data point. Find the node closest to that point.
3. Move its position closer to the training data point.
4. Move its grid neighbors closer too, to a lesser extent.
Repeat 2-4. After many iterations, the grid approximates the data distribution.

Wikipedia
Here’s an example using colors. Each color has an RGB vector. Take a bunch of random colors and organize them into a map of similar colors:

Here’s the SOM →

Each SOM node lives in RGB space →

Here’s the input color data → ...

Iteratively test new colors, update the map using some rule

Updated node vector
Starting node vector
Node neighborhood

The weight and node neighborhoods shrink with time (iterations)

Over time, the map self-organizes to show clusters of like colors.

http://www.generation5.org/content/2004/kohonenApplications.asp
http://users.ics.aalto.fi/tho/thesis/
A SOM of U.S. Congress voting patterns

Red = yes votes
Blue = no votes
Exploratory Analysis of CIA Factbook Data Using Kohonen Self-Organizing Maps

SOM of Wikipedia (from Wikipedia, naturally)
(data = wiki article word frequency vectors)
SOMs can accommodate unusual data distributions

One-dimensional SOM

Data points

Wikipedia

A biological example, analyzing mRNA expression

Proc. Natl. Acad. Sci. USA

Vol. 96, pp. 2007-2022, March 1999

Genetics

Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation

Pablo Tamayo1, Donna Slonim2, Jill Mesirov2, Qing Zhu3, Sibasak Kitareewan3, Ethan Dmitrovsky3, Eric S. Lander4,5, and Todd R. Golub4,5
A biological example, analyzing mRNA expression

Yeast cell division cycle

Synchronized cells
Collect mRNAs at time points
DNA microarrays
Finally, t-SNE is a nice way to visualize data in 2 or 3D = \textit{t-distributed stochastic neighbor embedding}

t-SNE tries to reproduce high-D data neighborhoods in a 2D or 3D picture by:

1. Defining a probability distribution over pairs of high-D objects such that “similar” objects have a high probability of being picked, whilst “dissimilar” objects have an extremely small probability of being picked

2. Defining a similar probability distribution over the points in the low-D map

3. Minimizing the Kullback–Leibler divergence between the two distributions by varying the locations of the points in the low-D map, i.e.

\[
\text{minimize this: } \sum_{i \neq j} p_{ij} \log \frac{p_{ij}}{q_{ij}}
\]

probability \(p_{ij} \) and \(q_{ij} \) are close in high-D space

probability \(p_{ij} \) and \(q_{ij} \) are close in low-D space

Sum over all pairs of points

\[\text{van der Maaten & Hinton, Visualizing High-Dimensional Data Using t-SNE. } \]

You can compute your own t-SNE embeddings using the online tools at:
\[\text{http://projector.tensorflow.org/}\]

There are also some great examples at:
\[\text{http://distill.pub/2016/misread-tsne/}\]

There are only a couple of parameters you can tweak, mainly \textit{perplexity}, which effectively captures the number of neighbors (often 5 to 50)