Network biology
(& predicting gene function)

BCH339N Systems Biology / Bioinformatics
Edward Marcotte, Univ of Texas at Austin

There are many types of biological networks. Here’s a small portion of a large metabolic network.
Contacts between proteins define protein interaction networks

X-ray structure of ATP synthase

Schematic version

Network representation

Total set = protein complex
Sum of direct + indirect interactions
Let’s look at some of the types of interaction data in more detail.

Some of these capture physical interactions, some genetic, some informational or logical.

Pairwise protein interactions

In general, purifying proteins one at a time, mixing them, and assaying for interactions is far too slow & laborious. We need something faster! Hence, high-throughput screens, e.g. yeast two-hybrid assays
High-throughput yeast two-hybrid assays

Haploid yeast cells expressing activation domain-prey fusion proteins

Diploid yeast probed with DNA-binding domain-Pcf11 bait fusion protein

Protein complexes

High-throughput complex mapping by mass spectrometry

Tag → Bait → Affinity column → SDS-page → protein 1, protein 2, protein 3, protein 4, protein 5, protein 6

Trypsin digest, identify peptides by mass spectrometry
5

493 bait proteins
3617 interactions

Systematic identification of protein complexes in *Saccharomyces cerevisiae* by mass spectrometry

A variant: tandem affinity purification (TAP)

SDS-page

Trypsin digest, identify peptides by mass spectrometry

protein 1
protein 2
protein 3
protein 4
protein 5
protein 6
Guruharsha et al. (2011) *Cell* 147, 690–703

~3,500 affinity purification experiments

~11K interactions / ~2.3K proteins

→ spans 556 complexes

Still daunting for the human proteome, but...
The current state-of-the-art in human PPI maps – large scale AP/MS

Just in the past 3 years, nearly 6K affinity purification experiments on tagged human proteins expressed in cell lines

The current state-of-the-art in animal PPI maps – co-fractionation/MS

>2,000 biochemical fractions, including replicates
>9,000 hours mass spec machine time

These data capture >80 million protein abundance measurements

Now >6,400 CF/MS experiments across animals

Extending the map across animals...

There are still lots of cellular machines left to find

- e.g. the “Commander” complex, found in all 3 recent human PPI maps, a 600 kDa protein complex expressed in nearly every human cell type and tissue

Genetic interactions

- 5.4 million gene-gene pairs assayed for synthetic genetic interactions in yeast

Genetic interactions, the 2016 version

23 million gene-gene pairs assayed for synthetic genetic interactions in yeast, identifying ~550,000 negative and ~350,000 positive genetic interactions.

A global network of genetic interaction profile similarities. (Left) Genes with similar genetic interaction profiles are connected in a global network, such that genes exhibiting more similar profiles are located closer to each other, whereas genes with less similar profiles are positioned farther apart. (Right) Spatial

Costanzo et al., Science 353: 1381 (2016)

The global genetic interaction profile similarity network reveals a hierarchy of cellular function.
Comparative genomics

Functional relationships between genes impose subtle constraints upon genome sequences. Thus, genomes carry intrinsic information about the cellular systems and pathways they encode.

Linkages can be found from aspects of gene context, including:

- Distances between sequence elements
- Order of sequences
- Variation in order between organisms
- Regulatory sequences near genes
- Gene content of an organism
- Variation in gene content between organisms
- Fusions between genes from different organisms

Phylogenetic profiles

Organisms with e.g. a flagellum have the necessary genes; those without tend to lack them.

Specific trends of gene presence/absence thus inform about biological processes.

PNAS 96, 4285-4288 (1999)
Phylogenetic profiles

Genomes

Grayscale indicates sequence similarity to closest homolog in that genome

Operons and evolutionary conservation of gene order

Prokaryotic operons tend to favor certain intergenic distances

Conserved gene neighbors also reveal functional relationships
Again, such observations can be turned into pairwise scores:

Bacterial genes <45 bp apart are more likely to be in the same operon.

These sorts of data can be combined into functional gene networks:

These networks are hypothesis generators. Given a gene, what other genes does it function with? What do they do?

Guilt-by-association in the gene network

Genes already linked to a disease or function

New candidate genes for that process
Gene networks frequently reflect functions, pathways, & phenotypes, e.g., lethality in yeast is linked to the molecular machine, not the gene.

We can propagate annotations across the graph to infer new annotations for genes (network “guilt-by-association”, or GBA).

Testing how well this works on hidden, but known, cases let’s us measure how predictive it will be for new cases.

Query with genes already linked to a disease or function, e.g. the red or blue function

Assess the network’s predictive ability for that function using cross-validated ROC or recall/precision analysis

Infer new candidate genes for that process (e.g. predicting the green genes for the red function)
Numerous algorithms exist for network GBA

Naïve Bayes assigns scores to neighboring nodes based on edges

Similar to Google’s personalized PageRank

Network diffusion algorithms start with initial annotations and the graph topology, then propagate initial scores across the network, e.g. Gaussian smoothing tries to find scores:

$$f_{\text{final}} = \arg \min \alpha \sum_i (f_i - f_i^0)^2 + (1 - \alpha) \sum_j w_{ij} (f_j - f_i)^2$$

minimizing the difference between final and initial scores of a protein & between a protein’s score and that of each of its neighbors

Calculating ROC curves

Basic idea: sort predictions from best to worst, plot TPR vs. FPR as you traverse the ranked list

<table>
<thead>
<tr>
<th>Actual</th>
<th>N</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>P' True Positive</td>
<td>False Positive</td>
<td></td>
</tr>
<tr>
<td>N' False Negative</td>
<td>True Negative</td>
<td></td>
</tr>
</tbody>
</table>

TPR = \(\frac{TP}{P} = \frac{TP}{TP + FN} \) = True Positive Rate = Sensitivity, Recall

FPR = \(\frac{FP}{N} = \frac{FP}{FP + TN} \) = False Positive Rate = 1 - Specificity

Also useful to plot Precision \(\frac{TP}{TP + FP} \) vs. Recall \(\frac{TP}{TP + FN} \)
For example, predicting genes linked with worm phenotypes in genome-wide RNAi screens

Some very poorly predicted pathways:

ROC analysis indicates the likely predictive power of the network for a system of interest.

A poor ROC → no better than random guessing.

Remarkably, this strategy works quite well

Some examples of network-guided predictions:

In worms:
Genes that can reverse ‘tumors’ in a nematode model of tumorigenesis
Lee, Lehner et al., Nature Genetics (2008)

In Arabidopsis:
New genes regulating root formation
Lee, Ambaru et al., Nature Biotech (2010)

In yeast:
New mitochondrial biogenesis genes
Hess et al., PLoS Genetics (2009)

In mice/frogs:
Functions for a birth defect gene
Gray et al., Nature Cell Biology (2009)

In worms:
Predicting tissue specific gene expression
Chikina et al., PLoS Comp Biology (2009)

We use this approach routinely, e.g. a recent example predicting new ciliopathy genes from protein complexes.

Neural tube defects in *X. laevis* upon knockdown

Live demo of STRING, BioGRID, GeneMania, functional networks and Cytoscape