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introduction
This Teaching Resource is intended for use by instructors who have 
some knowledge of statistics and linear algebra. This introductory 
material is appropriate for those with limited experience in math 
and statistics. Familiarity with the R programming environment is 
useful. Principal components analysis (PCA) is an analysis method 
that is increasingly gaining acceptance for use in high-dimensional 
data integration and analysis.

lecture notes
PCA: An Introduction
PCA is a method of extracting information from data that keeps 
only what is most important and finds the underlying trends. The 
data may be high dimensional and of a random nature, which can 
make the patterns difficult to see. A simplified example of the type 
of data that this method can be applied to comes from the following 
hypothetical experiment, which generated the data below:

Genes

0 1 0 5 0 3 0 5
2 2 1 5 0 5 0 1
1 2 1 0 2 0 0 3
0 3 2 4 2 0 7 0
0 2 0

. . . .
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Experiments

These data show the relative extents of expression of five dif-
ferent genes in four experiments. We placed the data in a table of 
numbers enclosed in parentheses in anticipation of using matrices 
to handle our data (Slide 2). This is a simplified example, and real 
data, for example, from a microarray experiment, would have more 
rows for the analysis of more genes. In each experimental observa-
tion, we may measure m variables, which might be a large number, 
and we expect that some of the variables might be codependent. 
With PCA, we can find a small number of new variables that mostly 

describe the variation within the data. These new variables will be 
independent of each other, and they will be created from a linear 
combination of the original variables. We may also be able to in-
terpret the meaning of these new variables and to understand the 
original data in terms of the new variables.

We will demonstrate how PCA works by performing the analysis 
on the simple data set. With this example, we will understand the 
workings of the method. Here, we will perform the analysis by hand 
to see how it works; however, when you apply the method to experi-
mental data, we recommend the use of MATLAB or other similar 
software. Before we proceed to perform the PCA, we need to briefly 
cover two mathematical concepts, one from basic statistics and the 
other from matrix or linear algebra.

Basic Statistical Concepts
Statistics extract trends from data wherever there is some random-
ness and uncertainty. In many areas of science, it is not possible to 
know or measure, given some initial conditions, exactly what will 
happen to the system’s variables over time; however, it is possible 
to predict the general trend of the behavior with statistics. Statistics 
are critical in biology because experiments do not produce exact 
outcomes and they are subject to measurement errors and biological 
noise. Measurement errors in experiments are a source of random-
ness because nothing can be measured perfectly accurately and be-
cause the error in measurement can be random or biased. In biology, 
and specifically in regulatory molecular systems biology, it is well 
established that noise or randomness plays a critical role in regula-
tory mechanisms.

We will introduce three variables that describe the trends in some 
random data (Slide 3). These are (i) the mean, defined as the middle 
of the data; (ii) the variance, which is the spread of the data; and (iii) 
the covariance, which is defined as the degree of codependence of 
two variables. We will cover each of these variables in turn.

The Mean
To make things clear, we will look at an example (Slide 4). We have 
a set of numbers, which we will call S, which is defined as

S = (1.1 0.5 2.6 0.3 2.0)
In this set, we have five numbers. We can refer to an individual 

element of our set of numbers, Si, as the ith element of the set. So, for 
example we can pick out the third number as follows:

S3 = 2.6
These data could be from five experiments to measure some 
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quantity; for example, they could be from several measurements of 
the relative abundance of a protein in a specific cell line after treat-
ment with different drugs. If we wanted to approximate the typical 
amount of the protein, we can compute the mean. The mean of any 
set, S, is written as S, and is given by 

     

S
n

Si
i

n

=
=
∑1

1

where n is the number of elements in the set. We can calculate 
the mean of the example set above as follows:

S = + + + +

=

1

5
1 1 0 5 2 6 0 3 2 0

1 3

( . . . . . )

.
    

Note that we never measured the protein abundance as 1.3 units; 
however, the value 1.3 represents the average abundance of the pro-
tein that we measured (Slide 4). A histogram plot of these data has a 
peaked distribution (Slide 4). The position of the mean is illustrated 
with the dotted line and shows that the mean is located roughly in 
the middle of the data.

The Variance
The variance (Slide 5) quantifies the spread in the data. The vari-
ance of the set S is given by

  
Var S S

n
S Si

i

n

( ) ( )= =
−

−
=
∑2 2

1

1

1

Note that we use n – 1 rather than n. This is because, given a 
sample of data, n – 1 rather than n gives a closer approximation to 
the true variance of the distribution.

The variance of our sample data set can be calculated as

          Var S( )
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.So, in this case, our variance is ~1.0.

An illustration of the meaning of the variance of a set of data 
(Slide 5) shows two distributions that have the same mean, but the 
distribution with the larger variance is more spread out.

The Covariance
The covariance (Slide 6) is a measure of the degree of codepen-
dency of two variables. If the two variables are unrelated, such that 
the value of one does not depend on the value of the other, then they 
are said to be “uncorrelated,” and their covariance will be zero. For 
example, under the same experimental conditions, if the expression 
of one gene is completely independent of the expression of another, 
then the covariance of several measurements of the expression of 
each gene will have a covariance of zero, or very close to zero.

If the two variables do depend on each other to some extent, 
then they are said to be “correlated,” and their covariance will be 
nonzero. The covariance will increase in size as the degree of corre-
lation between the two variables increases (Slide 6, compare panels 
a and b). The size of the covariance will also increase as the variance 
of each of the two variable increases. If an increase in one of the 
variables corresponds to an increase in the other, then the covari-
ance will be positive (Slide 6, panel c). If an increase in one of the 
variables leads to a decrease in the other variable, then the covari-
ance will be negative (Slide 6, panel d).

The covariance of two variables, X and Y (Slide 6), is given by

 
Cov X Y

n
X X Y Yi i

i

n

( , ) ( )( )=
−

− −
=
∑1

1 1

You can understand some of the features of the covariance by 
carefully studying this equation. If the variables are independent of 
each other, then, for any given ( )X Xi − the other variable ( )Y Yi −
is as likely to be positive as it is to be negative, and so the sum of 
all the terms will cancel out, resulting in a variance that is zero. If 
on the other hand, the two variables are positively correlated, then 
when ( )X Xi − is positive, ( )Y Yi − is more likely to be positive, and 
so their product is most likely to be positive. When ( )X Xi − is neg-
ative, ( )Y Yi − is more likely to be negative, and again their product 
is most likely to be positive. So, the sum of all of the terms will tend 
to be positive when they are positively correlated, and the covari-
ance will be a positive number.

Note that if you calculate the covariance of a variable with itself, 
you get the variance, thus:
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These are all of the statistics that we need to understand PCA. 
Next, we will look at the matrix algebra that we will need for PCA.

Matrix Algebra
We will convert our data into the form of a matrix. A matrix is a 
number-filled grid that obeys certain simple mathematical rules 
(Slide 7).

Here are a few examples of matrices:
   

A B

C

=
−
−









 =









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=

−

−

1 2 1

0 3 4

1 0

0 1

6 4 1

0 7 5

8 2 4 5

7 25 0

; ;

.

.
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A given matrix that has m rows and n columns is referred to as 
an m × n matrix (Slide 7). We can refer to individual elements of a 
matrix by their row number, i, and their column number, j. So, if we 
wanted to pick out the element in the ith row and the jth column from 
the matrix A, then we would call it, Aij. For example, from the matrix 
shown above, A23 = –4

So, a general 3 × 3 matrix looks like this,   
   

A
a a a
a a a
a a a

=
















11 12 13

21 22 23

31 32 33

  

A matrix with a single column is called a column vector, for 
example:

   

X

x
x

xn

=



















1

2

This is an n-dimensional column vector. As another example, 
here is a two-dimensional (2D) column vector: 

4

1−










 

Two matrices are said to be equal when they have the same num-
ber of rows and columns and when each of their corresponding ele-
ments are equal. If two matrices have the same numbers of rows 
and columns, we can add them together by adding each of their 
corresponding elements (Slide 8), for example:

A
a a
a a

b b
b b

A B
a

=




















+ =
+

11 12
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21 22

11

; ; B =  

then  
bb a b

a b a b
11 12 12

21 21 22 22

+
+ +











Let us do an example. Add
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






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1 2    

1 2

4 0

−







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1 2

4 0
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1 2

1 1 2 3

4 1 0 2

0 1

5 2

−







 +
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


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− − +
+ +











=










We can also multiply matrices by numbers simply by multiplying 
every element, as follows:

   

2 2
2 2

2 2

11 12

21 22

11 12

21 22

A
a a
a a

a a
a a

=








 =











We can multiply two matrices together like so, AB, if the number 
of columns of A is equal to the number of rows of B. The matrix 
that results from multiplying these matrices has elements that are 
generated from multiplying the elements from one row of A by the 
elements of one column of B, and summing. So, for example:

AB
a a
a a

b b
b b

a b a b a b

=



















=
+

11 12

21 22

11 12

21 22

11 11 12 21 11 122 12 22

21 11 22 21 21 12 22 22

+
+ +











a b
a b a b a b a b

For an example, let us also multiply a 2 × 2 matrix by a column 
vector, as follows:

1 2

1 4

1

2

1 1 2 2

1 1 4 2

1 4

1 8

−










−







 =

× − + ×
− × − + ×











=
− +

+

( )

( ) ( )









 =










3

9

There is a special matrix called the identity matrix, I, which, 
when it multiplies any matrix simply gives that same matrix back 
again: IA = A

The 2 × 2, and 3 × 3 versions of the identity matrix are shown 
below:

     

I I
2 3

1 0

0 1

1 0 0

0 1 0

0 0 1

=








 =

















,       

The transpose of a matrix is the matrix that is made by swapping 
the row and column of each element. So the element Aij when trans-
posed becomes Aji. The transpose of matrix, say A, is usually written 
as AT. Here is an example:

 

 If , then 
TA A=

−







 =

−










1 3

0 5

1 0

3 5

 

We are now going to take a little detour into the world of co-
ordinate transformations. We will use what we have learned about 
matrices to do some simple rotations. This will be helpful for us to 
understand exactly what goes on when we do PCA.

Coordinate Transformations: An Example of Matrix Algebra
We are going to use the matrix algebra we just learned to do something 
that may seem a little abstract but that will be useful for understanding 
what occurs when we use PCA. We will consider a space and locate 
points on this space with the coordinates x1 and x2. This space may 
represent our data later, but for now just consider this as an abstract 
space (Slide 9). We will represent points in our space, defined by the 
coordinates x1 and x2, with column vectors, thus:

x
x
x

=










1

2
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For example, the point with coordinates x1 = 1 and x2 = 2 is rep-
resented by the column vector:

   

1

2











 
The point that this vector represents can be shown on a graph 

(Slide 9). This way of labeling the points is called a coordinate sys-
tem. There are many ways to label the points—there are many differ-
ent coordinate systems. We will consider one alternative. Suppose we 
have another set of axes that are rotated compared with our original 
axes (Slide 10). This new set of axes gives us a new way of labeling 
the points in our space. Points that were labeled    

x
x
1

2











have a different column vector in the new coordinate system, which 
is given by ′

′










x
x
1

2

. 

How can we relate these two coordinates? If we know that, for ex-
ample  

  

x
x
1

2

1

2









 =











, then what is the value of 

′
′











x
x
1

2 ?

To calculate this, we just need a matrix. The points in one coordi-
nate system can be expressed in another coordinate system by multi-
plying the column vector by a matrix. If we call the matrix that trans-
forms these coordinates, T, then the coordinates are related by Tx = x′

Here is an example of such a transformation. Suppose that our 
new coordinate system has axes that are rotated at 45° to the origi-
nal axes (Slide 11). The matrix that we need to transform the coordi-
nates from the original system to the new rotated system is given by

T =
−



















1

2

1

2

1

2

1

2

  
So, let us pick a point, which is identified in the original coor-

dinates as  

   

1

2











.  Then in our new rotated coordinates, this point 
has the column vector:

 

 

1

2

1

2

1

2

1

2

1

2

3 2

1 2

1

2

3

1−



























 =









 =











So when x1 = 1 and x2 = 2, then in the rotated coordinates, 
      

′ =x
1

3

2

and ′ =x
2

1

2 . 

The type of matrix that performs rotated-axis coordinate trans-
formations such as this one is called an orthogonal matrix.

In our example, we could identify points with the coordinates 
x1 = 1 and x2 = 2, or we could use a different set of coordinates that 
are related to the original ones by

′ = +

′ = − +

x x x

x x x

1 1 2

2 1 2

1

2

1

2

( )

( )

 The two sets of coordinates are related by an orthogonal matrix, 
which represents a rotation of the coordinate axes, and the two sets 
of coordinates are just two different ways of describing the same 
space. We now turn to the final ingredient of PCA, which is a special 
kind of vector called an eigenvector, which has an associated num-
ber called an eigenvalue.

Eigenvectors and Eigenvalues
We have just seen an example of a matrix that transforms a column 
vector. There is a special equation whereby the matrix maps a vector 
to a multiple of itself, thus:

Tx = λx where λ is a number and T is a square matrix (Slide 12). 
If the vector x has n dimensions, then the square matrix must be 
n × n. There are then n column vectors that satisfy this equation; 
these are the eigenvectors of the matrix T. Each eigenvector satisfies 
the equation with a particular value of λ, which is the eigenvalue 
associated with the eigenvector.

We could demonstrate how to find the eigenvalues and eigenvec-
tors of a matrix, but that will have to wait for another day. For now, 
you can use MATLAB (or free software such as OCTAVE or R), 
which will calculate these values for you.

If you calculate the eigenvectors of a symmetrical matrix (a matrix 
that is equal to its own transpose) and place each of these column vec-
tors side by side to make another square matrix, then this resultant 
matrix will be orthogonal and so will transform coordinates by a rota-
tion of the axes. Armed with this knowledge, you are now ready to 
understand the workings of PCA. This will be our next topic.

PCA
We will work through the method of PCA by applying it to a simple 
example (Slides 13 to 18). We will consider a very simple data set, 
which consists of a 2D set of points. We will have several measure-
ments of the variables, which we call x1 and x2. We take the follow-
ing ten points as our data:

x1 = 2.5; 0.5; 2.2; 1.9; 3.1; 2.3; 2.0; 1.0; 1.5; 1.1
x2 = 2.4; 0.7; 2.9; 2.2; 3.0; 2.7; 1.6; 1.1; 1.6; 0.9

Earlier, we represented a single point in a 2D space with the 
column vector 

 

x
x
1

2











We will represent our ten points by positioning all of the column 
vectors that represent each data point beside each other in a matrix, 
thus:

D =
2 5 0 5 2 2 1 9 3 1 2 3 2 0 1 0 1 5 1 1

2 4 0 7 2 9 2 2 3 0 2 7 1 6 1 1 1

. . . . . . . . . .

. . . . . . . . .66 0 9.










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In this way, our data are represented as the matrix D. This data 
matrix is written in the standard configuration in which the differ-
ent variables run down the rows and the different observations of 
these variables run across the columns. We then plotted these data 
(Slide 14).

Our data contain a certain degree of random scatter, so we will 
start to use some statistics. First, we calculate the mean of each 
variable and subtract it from each observation value. This involves 
taking the average of the numbers in each row and subtracting the 
result from the elements in each row.

For our data, the mean of the first variable is

     

1 1

10
2 5 0 5 2 2 1 9 3 1

2 3 2 0 1 0 1 5 1 1

1

1

1n
D i

i

n

=
∑ = + + + +

+ + + + +
=

( . . . . .

. . . . . )

.881

The mean of the second row is

1 1

10
2 4 0 7 2 9 2 2 3 0

2 7 1 6 1 1 1 6 0 9

1

2

1n
D i

i

n

=
∑ = + + + +

+ + + + +
=

( . . . . .

. . . . . )

.991

     
We then subtract these means from each row, to generate the 

matrix D′:
      

′ =
− − − −
−

D
0 69 1 31 0 39 0 09 1 29 0 49 0 19 0 81 0 31 0 71

0 49 1 21 0

. . . . . . . . . .

. . .999 0 29 1 09 0 79 0 31 0 81 0 31 1 01. . . . . . .− − − −










This process simply moves the data so that they are centered 
on the origin of our coordinate system (Slide 15). The next step is 
to calculate the covariance matrix, C, which is calculated from the 
matrix D′ as follows:

   
C

n
DD= ′ ′1 T

   This is a square matrix in which the element in the ith row and jth 
column is the covariance of the ith and jth variable. We have the two 
variables x1 and x2, so the covariance matrix is given by

  

Cov x x Cov x x
Cov x x Cov x x

( , ) ( , )

( , ) ( , )

1 1 1 2

2 1 2 2











If we put in the numbers, we generate
 

0 616555556 0 615444444

0 615444444 0 716555556

. .

. .











 The next step is to calculate the eigenvalues and eigenvectors of 
this covariance matrix. For our data, the eigenvalues are

0.0490833989 and 1.28402771

The corresponding eigenvectors are
  

−













0 735178656

0 677873399

0 677873399

0 735178656

.

.

.

.
 and 






 Note that these eigenvectors are unit eigenvectors. This means 
that their length is 1.0 (the sum of the squares of their elements is 
unity). This is important. If you obtain eigenvectors that do not have 
length of 1.0, then you need to rescale them.

To do this rescaling, you need to compute the length, also called 
the norm, of the eigen vector as follows:

   

length = + + + +e e e en1
2

2
2

3
2 2…

Then, use the length to rescale the vector as follows:

   e escaled
length

= 1

We then place the eigenvectors side by side to make a square 
matrix, thus:

−









0 735178656 0 677873399

0 677873399 0 735178656

. .

. .

  
We then swap the columns of this matrix around so that they 

are in order of the size of their corresponding eigenvalues, with the 
largest eigenvalue to the left. Because our columns are ordered such 
that the eigenvector with the largest eigenvalue is on the right, we 
need to swap the columns in our matrix of eigenvectors to generate 
the matrix, which we will call W:

  

W =
−









0 677873399

0 735178656

0 735178656

0 677873399

.

.

.

.

  

We will use the transpose of this matrix, W T, to perform a coor-
dinate transformation:

     

W T
  

=
−











0 677873399

0 735178656

0 735178656

0 677873399

.

.

.

.

 We will now pause during our PCA to consider what is happen-
ing. Remember that we said that the eigenvectors of a symmetrical 
matrix, when placed side by side, make a new matrix, which is 
orthogonal. We also saw how orthogonal matrices make coordinate 
transformations from one set of coordinates to a new set with axes 
that are rotated.

We have our data in a coordinate system in which our data points 
are labeled with the coordinates x1 and x2. The matrix of eigenvectors 
that we have constructed above, W T, gives us a coordinate transfor-
mation. Any data point in our original coordinates can be transformed 
into their new coordinates by multiplying the column vector by our 
matrix above. As we noted earlier, this matrix is orthogonal, and so it 
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corresponds to a rotation of the axes.
We can then plot the data represented in the matrix D′ again 

(Slide 18, top graph), but this time we include the rotated axes of 
the new coordinate system. We choose to call these new coordinates           
x′1   and  x′2 . We transform our data from the original coordinates to 
these new rotated coordinates by multiplying by the transformation 
matrix, W T, thus: W Tx = x′

For our matrix W, we can write this as      

W x
x

T
  

=
−











0 677873399

0 735178656

0 735178656

0 677873399

.

.

.

.

11

2

1

2

x

x
x











=
′
′











 Writing this out, we can express the new coordinates in terms of 
the original ones, like so:

′ = +
′ = − +
x x x
x x
1 1 2

2 2

0 677873399 0 735178656

0 735178656 0 677873

. .

. . 3399
2
x

              

 We can express our data in the new rotated coordinates by mul-
tiplying our transformation matrix W T by our shifted data matrix 
D′, like so:

DPCA = W TD′where DPCA is the matrix of data expressed in the 
new rotated coordinates. So, for our data,            

D
PCA

  
=

−










0 677873399

0 735178656

0 735178656

0 677873399

.

.

.

.

00 69 1 31 0 39 0 09 1 29 0 49 0 19 0 81 0 31 0 71

0 49 1 21 0 99

. . . . . . . . . .

. . .

− − − −
− 00 29 1 09 0 79 0 31 0 81 0 31 1 01

0 83 1 8 0 99 0 27 1

. . . . . . .

. . . . .

− − − −










=
− 88 0 91 0 099 1 1 0 44 1 2

0 18 0 14 0 38 0 13 0 21 0 18 0 35 0

. . . . .

. . . . . . . .

− − − −
− − − 0046 0 018 0 16. .−











These are our data in the new coordinates (Slide 18, bottom graph).
The coordinate transformation that we generated with this meth-

od has rotated the axes so that the first coordinate axis lines up with 
the data in such a way that most of the variation is in that coordinate. 
The data were correlated in the original coordinates, but they are 
not correlated in the new rotated coordinates. The aim of PCA is 
to derive a new set of coordinates for the data that are uncorrelated 
and that are in the order of the degree of variation in that coordinate.

In our example, we may decide that the new coordinate  x′1 cap-
tures most of the information in the data and that the coordinate           
x′2 can be discarded. In this case, we would reduce our data to a 
single dimension. How many of the new coordinates (also called 
components) are kept is an arbitrary choice; however, the intention 
is to keep only enough components to capture the essence of the 
data. So, now you understand what the C in PCA stands for.

A typical method of selecting the components to keep is to sum 
all of the eigenvalues and then keep only those components with the 

largest eigenvalues, which sum up to no less than 90% of the total. 
This is done because the larger the eigenvalue, the greater amount 
of variation of the data in the direction of the corresponding eigen-
vector. In PCA, we choose to keep only those components that carry 
most of the variation of the data. The discarded components are re-
moved by removing the corresponding columns from the W matrix. 
Then, the transformed data,

DPCA = W TD′will only have a number of rows equal to the num-
ber of retained coordinates. Hence, the transformed data in the new 
coordinates will have a reduced dimension. If we decide to keep 
only the first component in our example, then we must keep only the 
first column in the  W vector:

 
 W →











0 677873399

0 735178656

.

.

Then, if we calculate the PCA-transformed data, we obtain

       

DPCA = ( ) −
0 677873399 0 735178656

0 69 1 31 0 39 0 09 1 29 0 49 0 19
. .

. . . . . . . −− − −
− − − − −

0 81 0 31 0 71

0 49 1 21 0 99 0 29 1 09 0 79 0 31 0 81 0 31 1

. . .

. . . . . . . . . ..

( . . . . . . . . . . )

01

0 83 1 8 0 99 0 27 1 7 0 91 0 099 1 1 0 44 1 2











= − − − − −
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 You can see that we have reduced the dimension of our data to 
one, which contains most of the variance of the data.

Summary
The main points about PCA can be summarized as follows: (i) The 
data are placed in a matrix, D, with the variables running down 
the rows and the observations running across the columns. (ii) The 
means of each variable are found and subtracted from each variable, 
which generates the matrix D′. (iii) The covariance matrix is con-
structed by C = (1/n)D′D′T, where n is the number of variables. This 
matrix has the covariance of the ith jth variables in the element Cij. (iv) 
The eigenvalues and eigenvectors of the covariance matrix are found 
and placed in order of the size of the eigenvalues. (v) The eigenvec-
tors that correspond to the eigenvalues whose sum is no less than 
90% of the total are arbitrarily retained. (vi) The resulting eigenvec-
tors are placed side by side into a matrix, W, which describes a new 
coordinate system with the axes rotated so that they align with the 
greatest variation of the data. The first components carry the most 
variation because they have larger eigenvalues. And (vii), the data 
are expressed in the new coordinate system by multiplying the D′ by 
the transpose of W, thus: DPCA = W TD′

In this way, we can move the data into a new coordinate sys-
tem of variables that are independent and have a lower dimension 
because we have kept only those variables that carry most of the 
variation of the data. The concept behind PCA is that the system 
of variables with reduced dimension carries the main trends of the 
data and is easier to interpret and visualize than the original data. 
We may begin with a large number of variables; however, through 
PCA, we are able to represent most of the features of the data in a 
just a few variables.

The example we have used here is simple and has only two vari-

  a B c D e F g H i 

G1  1.4553  0.01416  1.50532  1.36762  0.446724  1.31581  0.154451  1.35969  1.35211 

G2  0.944012  0.861993  0.78199  0.177722  1.08446  1.01952  1.09119  0.102935  0.0632143 

G3  1.35651  0.204572  1.33507  1.10833  0.495636  1.33565  0.136843  1.04292  1.05102 

G4  0.291371  0.20958  0.439246  1.215  0.263377  0.320713  0.0174625  1.50438  1.31253 

G5  1.74347  0.282323  1.69477  0.616727  0.157345  2.06409  0.392771  0.514497  0.651402

ables; however, the same method may be applied to much higher 
dimensional data, with a much larger number of data points. This 
method could be used for comparing gene expression microarrays or 
RNA-seq, proteomics, phosphoproteomics, or any other type of high-
dimensional data collected in systems biology. The observations made 
under different conditions, cell types, or time points may be treated as 
the variables, or the genes, proteins, or other molecular species that are 
measured may be treated as variables. Both are valid ways of explor-
ing the data (Slide 19). For example, we have used the PCA approach 
to visualize the similarity between Nestin+ hematopoietic niche cells 
isolated from the bone marrow and other relevant cell types that were 
profiled by different groups (1). Our analysis placed the gene expres-
sion profile in Nestin+ cells in the context of those of other similar 
cell types previously isolated from the bone marrow, and we showed 
that this cell population was distinct from the others. Careful analysis 
of the genes that distinguished between Nestin+ cells and the other 
cell types revealed less expression of cell cycle–related genes and in-
creased expression of genes involved in metabolic pathways, support-
ing the proposed role of the Nestin+ cells as niche cells (Slide 20).

problem Set
Suppose you are given the results of a microarray experiment. The 
experiment measures the expression of five genes (in practice, this 
number will be much larger than five), which are labeled G1, G2, 
G3, G4, and G5. The expression of these genes is measured in nine 
samples, labeled A to I. The data that you are given are shown be-
low. The experimentalist hypothesizes that these samples should fall 
into three separate categories. The following questions will lead to 
PCA of these data. You can use this to reveal whether the hypothesis 
is correct, and if so, identify which genes in the sample belong in 
which category.

You can create a text file containing these data as a matrix. It is rec-
ommended that you use the programming language “R” to solve the 
following problems because the answers are given in that format; how-
ever, you can use any other software tool that can perform the analysis. 
Answer each of the questions that follow to perform the PCA:

Question 1. What is the mean expression of each gene? Gener-
ate a new data matrix that is shifted to have a mean of zero.

Question 2. Compute the covariance matrix of the shifted data 
matrix from Q. 1.

Question 3. Compute the eigenvalues of the covariance matrix 
from Q. 2. How many principal components do you need to capture 
at least 90% of the variation in the data?

Question 4. Compute the eigenvectors of the covariance matrix 
and construct a matrix composed of these vectors.

Question 5. Project the data onto the new coordinate axes by 
multiplying the transposed matrix of eigenvectors (that is, the trans-
pose of the matrix calculated in Q. 4).

Question 6. Generate a plot of the first two principal compo-
nents. Identify the samples that belong to any of the clusters that 
you might find. Was the experimentalist correct in hypothesizing 
that there are three clusters?

educational Details
Learning Resource Type: Lecture, assignment, PowerPoint
Context: Graduate
Intended Users: Teacher, learner
Intended Educational Use: Learn, plan, teach
Discipline: Biochemistry; biocomplexity; bioinformatics, 
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genomics and proteomics; biostatistics; biotechnology; cell bi-
ology; molecular biology; pharmacology; proteomics; systems 
biology; theoretical biology
Keywords: Cell signaling, computational biology, principal 
components analysis, dimensionality reduction, clustering 
Analysis

technical Details
Software: R
Requirements: Platform-independent open-source
Download: http://www.r-project.org/index.html

Supplementary materials
(http://stke.sciencemag.org/cgi/content/full/sigtrans;4/190/tr3/DC1)

Slides: Introduction to Statistical Methods for Analyzing Large 
Data Sets: Principal Components Analysis
Problem set key is available upon request.
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