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Functional genomics
+

Data mining

BCH364C/394P Systems Biology / Bioinformatics

Edward Marcotte, Univ of Texas at Austin

Functional genomics
+

Data mining

Adapted from Wikipedia

= field that attempts to use the vast data produced by 
genomic projects (e.g. genome sequencing projects) 

to describe gene (and protein) functions and 
interactions.  

Focuses on dynamic aspects, e.g. transcription, 
translation, and protein–protein interactions, as 

opposed to static aspects of the genome such as DNA 
sequence or structures.
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Functional genomics
+

Data mining
= field that attempts to computationally discover 

patterns in large data sets

Adapted from Wikipedia

Functional genomics
+

Data mining

www.sparkpeople.com
Adapted from Wikipedia
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We’re going to first learn 
about clustering algorithms 

& classifiers

Clustering = task of grouping a set of objects in such a 
way that objects in the same group (a cluster) are more 
similar (in some sense) to each other than to those in 
other groups (clusters).

Adapted from Wikipedia

We’re going to first learn 
about clustering algorithms 

& classifiers
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Classification = task of categorizing a new observation, 
on the basis of a training set of data with observations 
(or instances) whose categories are known

Adapted from Wikipedia

We’re going to first learn 
about clustering algorithms 

& classifiers

Nature 2000

Let’s motivate this with an example:



5

Nature 2000

“Diffuse large B-cell lymphoma (DLBCL), the most
common subtype of non-Hodgkin's lymphoma … is
one disease in which attempts to define subgroups on
the basis of morphology have largely failed…”

“DLBCL … is clinically heterogeneous:
40% of patients respond well to current therapy and
have prolonged survival, whereas the remainder
succumb to the disease.

We proposed that this variability in natural history
reflects unrecognized molecular heterogeneity in the
tumours.”

Blast from the past:  Profiling mRNA 
expression with DNA microarrays

DNA molecules are attached to 
a solid substrate, then…

…probed with a labeled (usually 
fluorescent) DNA sequence

Wikipedia



6

Wikipedia

Blast from the past:  Profiling mRNA 
expression with DNA microarrays

(FYI, we would generally now 
just sequence the cDNA)

Wikipedia

Wikipedia

Note that some 

arrays are 1-color, 
some are 2. Why?

Blast from the past:  Profiling mRNA 
expression with DNA microarrays
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Nature 2000

96 patient biopsies
(normal and malignant lymphocyte samples)

Extract mRNA from each sample

Perform DNA microarray experiment on each to 
measure mRNA abundances (~1.8 million total gene 

expression measurements)

Cluster samples by their expression patterns

Back to diffuse large B-cell lymphoma… 

Hierarchical 
clustering of 

the gene 
expression 

data 

Red = high expression
Green = low

(yes, I know it’s exactly
backwards from what 
you might expect.)

Nature 2000

G
e

n
e

s

Samples
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Genes can be 
found whose 
expression is 

specific to 
germinal 

centre B cells, 
and different 

across DLBCL’s

Nature 2000

We can break up the DLBCL’s according the 
germinal B-cell specific gene expression:

Nature 2000
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What good is this?  These molecular 
phenotypes predict clinical survival.

Kaplan-Meier plot 
of patient survival

Nature 2000

What good is this?  These molecular 
phenotypes predict clinical survival.

Grouping patients by clinical prognostic index Regrouping low risk patients by gene expression

Nature 2000
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Gene expression, and other molecular 
measurements, provide far deeper 
phenotypes for cells, tissues, and 

organisms than traditional measurements

These sorts of observations have now 
motivated tons of work using these 

approaches to diagnose specific forms of 
disease, as well as to discover functions of 

genes and many other applications

So, how does clustering work?

First, let’s think about the data, e.g. as for gene expression.

From one sample, using DNA microarrays or RNA-seq, we get:

N
g

e
n

e
s

Expression level of gene 1
Expression level of gene 2
Expression level of gene 3
.
.
.
Expression level of gene i
.
.
.
Expression level of gene N

For yeast, N ~ 6,000
For human, N ~ 22,000

i.e., a vector of 
N numbers
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So, how does clustering work?

Every additional sample adds another column, giving us a matrix 

of data:

N
g

e
n

e
s

Gene 1, sample 1     …
Gene 2, sample 1     …
Gene 3, sample 1     …
.
.
.
Gene i, sample 1      …
.
.
. 
Gene N, sample 1     …

For yeast, N ~ 6,000
For human, N ~ 22,000

M samples

Gene 1, sample j …
Gene 2, sample j       …
Gene 3, sample j …
.
.
.
Gene i, sample j …
.
.
.
Gene N, sample j …

Gene 1, sample M
Gene 2, sample M
Gene 3, sample M 

.

.

.
Gene i, sample M
.
.
.
Gene N, sample M

i.e., a matrix of N
x M numbers

So, how does clustering work?

N
g

e
n

e
s

Gene 1, sample 1     …
Gene 2, sample 1     …
Gene 3, sample 1     …
.
.
.
Gene i, sample 1      …
.
.
. 
Gene N, sample 1     …

M samples

Gene 1, sample j …
Gene 2, sample j       …
Gene 3, sample j …
.
.
.
Gene i, sample j …
.
.
.
Gene N, sample j …

Gene 1, sample M
Gene 2, sample M
Gene 3, sample M 

.

.

.
Gene i, sample M
.
.
.
Gene N, sample M

Every gene has a feature vector

of M numbers associated with it
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So, how does clustering work?

N
g

e
n

e
s

Gene 1, sample 1     …
Gene 2, sample 1     …
Gene 3, sample 1     …
.
.
.
Gene i, sample 1      …
.
.
. 
Gene N, sample 1     …

M samples

Gene 1, sample j …
Gene 2, sample j       …
Gene 3, sample j …
.
.
.
Gene i, sample j …
.
.
.
Gene N, sample j …

Gene 1, sample M
Gene 2, sample M
Gene 3, sample M 

.

.

.
Gene i, sample M
.
.
.
Gene N, sample M

Similarly, every 
sample has a feature 

vector of N numbers 
associated with it

So, how does clustering work?

N
g

e
n

e
s

Gene 1, sample 1     …
Gene 2, sample 1     …
Gene 3, sample 1     …
.
.
.
Gene i, sample 1      …
.
.
. 
Gene N, sample 1     …

M samples

Gene 1, sample j …
Gene 2, sample j       …
Gene 3, sample j …
.
.
.
Gene i, sample j …
.
.
.
Gene N, sample j …

Gene 1, sample M
Gene 2, sample M
Gene 3, sample M 

.

.

.
Gene i, sample M
.
.
.
Gene N, sample M

The first clustering method we’ll learn 
about simply groups the objects

(samples or genes) in a hierarchy by the 
similarity of their feature vectors.
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A hierarchical clustering algorithm

Start with each object in its own cluster

Until there is only one cluster left, repeat:
Among the current clusters, find the two 

most similar clusters
Merge those two clusters into one 

We can choose our measure of similarity 
and how we merge the clusters

Hierarchical clustering

Data points on an X-Y plane Dendrogram
(grouped by closeness) 

Conceptually

Wikipedia
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Wikipedia

We’ll need to measure the similarity 
between feature vectors. Here are a few 
(of many) common distance measures 

used in clustering.

Back to the
B cell 

lymphoma 
example

Nature 2000

G
e

n
e

s

Samples

Hierarchical clustering

Similarity measure = Pearson correlation 
coefficient between gene expression vectors

Similarity between clusters = average similarity 
between individual elements of each cluster 

(also called average linkage clustering)
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K-means clustering is a common 
alternative clustering approach

*mainly because it’s easy and can be quite fast!*

The basic algorithm:

1. Pick a number (k) of cluster centers
2. Assign each gene to its nearest cluster center
3. Move each cluster center to the mean of its

assigned genes
4. Repeat steps 2 & 3 until convergence

See the K-means example posted on the web site

Nature Biotech 23(12):1499-1501 (2005)

A 2-dimensional example
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Nature Biotech 23(12):1499-1501 (2005)

A 2-dimensional example: hierarchical

Nature Biotech 23(12):1499-1501 (2005)

A 2-dimensional example: k-means
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Nature Biotech 23(12):1499-1501 (2005)

A 2-dimensional example: k-means

Decision boundaries

Some features of K-means clustering

• Depending on how you seed the clusters, it may 

be stochastic. You may not get the same answer 
every time you run it.

• Every data point ends up in exactly 1 cluster
(so-called hard clustering)

• Not necessarily obvious how to choose k
• Great example of something we’ve seen already: 

Expectation-Maximization (E-M) algorithms

EM algorithms alternate between assigning data to 
models (here, assigning points to clusters) and 
updating the models (calculating new centroids)
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Some features of K-means clustering

• Depending on how you seed the clusters, it may 

be stochastic. You may not get the same answer 
every time you run it.

• Every data point ends up in exactly 1 cluster
(so-called hard clustering)

• Not necessarily obvious how to choose k
• Great example of something we’ll meet again: 

Expectation-Maximization (E-M) algorithms

EM algorithms alternate between assigning data to 
models (here, assigning points to clusters) and 
updating the models (calculating new centroids)

Let’s think about this aspect for a minute. 
Why is this good or bad?
How could we change it?

The basic algorithm:

1. Pick a number (k) of cluster centers
2. Assign each gene to its nearest cluster center
3. Move each cluster center to the mean of its

assigned genes
4. Repeat steps 2 & 3 until convergence

k-means
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Fuzzy k-means

The basic algorithm:

1. Choose k.  Randomly assign cluster centers.
2. Fractionally assign each gene to each cluster:

e.g. occupancy (gi,mj) = e

3. For each cluster, calculate weighted mean of 
genes to update cluster centroid

4. Repeat steps 2 & 3 until convergence

-||gi-mj||
2

-||gi-mj||
2

Σ e
j

Note:   ||x||  is just shorthand for the 
length of the vector x.

gi = gene i
mj = centroid of cluster j

Fuzzy k-means

Genome Biology 3(11):research0059.1–0059.22 (2002)

k-means
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Genome Biology 3(11):research0059.1–0059.22 (2002)

Remove genes 

correlated >0.7 

to the 

identified 
centroids

Remove genes 

correlated >0.7 

to the 

identified 
centroids

Iterating 
fuzzy k-
means

Genome Biology 3(11):research0059.1–0059.22 (2002)

Iterating 
fuzzy k-
means
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A fun clustering strategy that builds on 
these ideas:  Self-organizing maps (SOMs)

- Combination of clustering & visualization

- Invented by Teuvo Kohonen, also called 
Kohonen maps

Dr. Eng., Emeritus 
Professor of the 
Academy of Finland; 
Academician

A fun clustering strategy that builds on 
these ideas:  Self-organizing maps (SOMs)

SOMs have:   
your data (points in some high-dimensional space)
a grid of nodes, each node also linked to a point someplace in data space 

1. First,  SOM nodes are arbitrarily positioned in data space. Then:
2. Choose a training data point.  Find the node closest to that point. 
3. Move its position closer to the training data point.
4. Move its grid neighbors closer too, to a lesser extent.  
Repeat 2-4.  After many iterations, the grid approximates the data distribution.

Wikipedia

Data points

SOM grid

single 
observation
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Kybernetes  34(1/2): 40-53 (2005)

Here’s an example using colors.  Each color has an RGB vector. Take a bunch of 
random colors and organize them into a map of similar colors:

Here’s the input color data �

Here’s the SOM �

Each SOM node lives in 
RGB space �

Iteratively test new colors, update the map using some rule

Over time, the map self-
organizes to show 

clusters of like colors.

Updated 
node 

vector

Starting
node 

vector

Difference 
from
data 

vector

weight Node neighborhood

The weight and 
node 

neighborhoods 
shrink with time 

(iterations)

Kybernetes  34(1/2): 40-53 (2005)

http://www.generation5.org/content/2004/

kohonenApplications.asp

http://users.ics.aalto.fi/tho/thesis/
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Wikipedia

A SOM of U.S. Congress voting patterns

Republicans

Democrats

Red = yes votes
Blue = no votes
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Botswana

USA

SOM of Wikipedia (from Wikipedia, naturally)
(data = wiki article word frequency vectors) 

Wikipedia
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One-dimensional SOM 
Data points

Wikipedia

SOMs can accommodate unusual data distributions

A biological example, analyzing mRNA expression
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Image: http://www.utoronto.ca/andrewslab/overview-Aux1.htm

A biological example, analyzing mRNA expression

Yeast cell division cycle

Synchronized cells

Collect mRNAs at
time points

DNA microarrays
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Finally, t-SNE is a nice way to visualize data in 2 or 3D

= t-distributed stochastic neighbor embedding 

t-SNE tries to reproduce high-D data neighborhoods in a 2D or 3D picture by:

1. Defining a probability distribution over pairs of high-D objects such that    
“similar” objects have a high probability of being picked, whilst “dissimilar“     
objects have an extremely small probability of being picked

2. Defining a similar probability distribution over the points in the low- D map

3. Minimizing the Kullback–Leibler divergence between the two distributions
by varying the locations of the points in the low-D map, i.e.

minimize this:

van der Maaten & Hinton, Visualizing High-Dimensional Data Using t-SNE.
Journal of Machine Learning Research 9: 2579–2605 (Nov 2008)

probability i and j are close in high-D space 

probability i and j are close in low-D space 

Sum over all pairs of points

You can compute your own t-SNE embeddings
using the online tools at: 

http://projector.tensorflow.org/

There are also some great examples at:
http://distill.pub/2016/misread-tsne/

There are only a couple of parameters you can tweak, mainly perplexity, 
which effectively captures the number of neighbors (often 5 to 50)


