Network biology
(& predicting gene function
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There are many types of biological networks.
Here’s a small portion of a large metabolic network.
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A typical
genetic
network

Contacts between proteins define protein interaction networks
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Let’s look at some of the types of
interaction data in more detail.

Some of these capture physical
interactions, some genetic, some
informational or logical.

Pairwise protein interactions

In general, purifying proteins one at a time, mixing them, and assaying
for interactions is far too slow & laborious. We need something faster!
Hence, high-throughput screens, e.g. yeast two-hybrid assays
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High-throughput yeast two-hybrid assays

Haploid yeast
cells expressing
activation domain-
prey fusion proteins

Diploid yeast
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DNA-binding domain-
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493 bait proteins

3617 interactions

Systematic identification of protein
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A variant: tandem affinity purification (TAP)
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The current state-of-the-art in animal PPl maps — AP/MS
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The current state-of-the-art in human PPl maps — large scale AP/MS
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Just in the past 2 years, nearly 4K affinity purification
experiments on tagged human proteins expressed in cell lines

The current state-of-the-art in animal PPl maps — co-fractionation/MS
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Now >6,400 mass spec experiments across animals
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There are still lots of cellular machines left to find

e.g. the “Commander” complex, found in all 3
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Genetic interactions

5.4 million gene-gene pairs assayed for synthetic genetic interactions in yeast
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DNA replication
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Costanzo et al., Science 327: 425 (2010)




Genetic interactions, the 2016 version

23 million gene-gene pairs assayed for synthetic genetic interactions in yeast,
identifying ~550,000 negative and ~350,000 positive genetic interactions
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The global genetic interaction profile

similarity network reveals a hierarchy
of cellular function.
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Comparative genomics

Functional relationships between genes impose
subtle constraints upon genome sequences. Thus,
genomes carry intrinsic information about the
cellular systems and pathways they encode.

Linkages can be found from aspects of gene
context, including:

Distances between sequence elements

Order of sequences

Variation in order between organisms

Regulatory sequences near genes

Gene content of an organism

Variation in gene content between organisms
Fusions between genes from different organisms

Phylogenetic profiles

Organisms with e.g. a
flagellum have the
necessary genes; those
without tend to lack them.

Specific trends of gene
presence/absence thus
inform about biological
processes.

PNAS 96, 4285-4288 (1999)
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Phylogenetic profiles
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Operons and evolutionary conservation of gene order

Prokaryotic operons tend to favor certain intergenic distances
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Conserved gene neighbors also reveal functional relationships
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Again, such observations can be turned into pairwise scores:
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Operons in Escherichia coli: Genomic analyses and
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These sorts of data can be combined into
functional gene networks

Networks
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| 0 MHONORABLE MENTION

These networks are hypothesis generators.
Given a gene, what other genes does it function with?
What do they do?

Guilt-by-association
in the gene network

Genes already linked New candidate genes
to a disease or function for that process
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Gene networks frequently reflect functions, pathways, & phenotypes,
e.g., lethality in yeast is linked to the molecular machine, not the gene
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Hart, Lee, & Marcotte, BMC Bioinformatics 8:236 (2007)

We can propagate annotations across the graph to infer new
annotations for genes (network “guilt-by-association”, or GBA).

Testing how well this works on hidden, but known, cases let’s us
measure how predictive it will be for new cases.
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Lee, Ambaru et al. Nature Biotechnology 28:149-156 (2010)
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Numerous algorithms exist for network GBA

" . Similar to Google’s
Naive Bayes assigns scores to personalized PageRank

neighboring nodes based on edges

0.24
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(@) Initial network & labels (b) Naive Bayes , (c) lterative Ranking | (d) Gaussian Smoothing

pA

Network diffusion algorithms start with initial annotations and the graph topology,
then propagate initial scores across the network,
e.g. Gaussian smoothing tries to find scores:

ina s 2 o
f’ . argminge ):f(ﬁ—fig) + (1—0()L;ij,,-(ﬁ‘—fj)2

minimizing the difference between & between a protein's score and
final and initial scores of a protein that of each of its neighbors

Calculating ROC curves

Actual
p N Basic idea: sort predictions
from best to worst, plot TPR
vs. FPR as you traverse the
, True False ranked list
P Positive Positive
Prediction
Fal - TPR=TP/P=TP/(TP + FN)
N’ a st'e rug = True Positive Rate
Negative Negative = Sensitivity, Recall

FPR=FP/N=FP/(FP +TN)
= False Positive Rate
=1 - Specificity

Also useful to plot Precision [ = TP / (TP + FP) ] vs. Recall ( = TPR)




For example, predicting genes linked with worm phenotypes in
genome-wide RNAI screens
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Lee, Lehner et al., Nat Genet, 40(2):181-8 (2008)

Remarkably, this strategy works quite well
Some examples of network-guided predictions:

In worms:
Genes that can
reverse ‘tumors’
in a nematode
model of

In mice/frogs:

Functions for a

tumorigenesis birth defect gene
Lee, Lehner et al. i i P 3 Gray et al., Nature
Nature Genetics (2008) | Irst1 I ; [k ; ; Cell Biology (2009)

In Arabidopsis:
New genes
regulating root

formation

Lee, Ambaru et al.

In worms:
Nature Biotech (2010)

Predicting tissue
) b specific gene

In yeast: New wild type yir003wA expression

‘h yeast: N (e} Chikina et al,, PLoS
mitochondrial Comp Biology (2009)
biogenesis genes

Hess et al., PLoS
Genetics (2009)
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We use this approach routinely, e.g. a recent example
predicting new ciliopathy genes from protein complexes
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